toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Avetisyan, A.A.; Ghazaryan, A.V.; Djotyan, A.P.; Kirakosyan, A.A.; Moulopoulos, K.
  Title Magnetoexcitons in semiconductor quantum rings with complicated (Kane's) dispersion law Type A1 Journal article
  Year 2009 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics T2 – 4th Workshop on Quantum Chaos and Localisation Phenomena, MAY 22-24, 2009, Polish Acad Sci, Ctr Theoret Phys, Inst Phys, Polish Acad Sci, Ctr Theoret Phys, Inst Phys, War Abbreviated Journal
  Volume 116 Issue 5 Pages 826-828
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The influence of the nonparabolicity of charge carriers dispersion law (Kane's dispersion) on a magnetoexciton energy spectrum in InSb quantum rings is theoretically investigated The analytical expression for the energy spectrum of exciton in a narrow-gap semiconductor nanoring in a magnetic field is obtained. The Aharonov – Bohm oscillations in the energy of excited states are studied.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000273091200015 Publication Date 2016-02-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0587-4246 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:172293 Serial 8193
Permanent link to this record
 

 
Author Milagres de Oliveira, T.; Albrecht, W.; González-Rubio, G.; Altantzis, T.; Lobato Hoyos, I.P.; Béché, A.; Van Aert, S.; Guerrero-Martínez, A.; Liz-Marzán, L.M.; Bals, S.
  Title 3D Characterization and Plasmon Mapping of Gold Nanorods Welded by Femtosecond Laser Irradiation Type A1 Journal article
  Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano
  Volume 14 Issue Pages acsnano.0c02610
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
  Abstract Ultrafast laser irradiation can induce morphological and structural changes in plasmonic nanoparticles. Gold nanorods (Au NRs), in particular, can be welded together upon irradiation with femtosecond laser pulses, leading to dimers and trimers through the formation of necks between individual nanorods. We used electron tomography to determine the 3D (atomic) structure at such necks for representative welding geometries and to characterize the induced defects. The spatial distribution of localized surface plasmon modes for different welding configurations was assessed by electron energy loss spectroscopy. Additionally, we were able to directly compare the plasmon line width of single-crystalline and welded Au NRs with single defects at the same resonance energy, thus making a direct link between the structural and plasmonic properties. In this manner, we show that the occurrence of (single) defects results in significant plasmon broadening.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000586793400016 Publication Date 2020-08-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 17.1 Times cited 25 Open Access OpenAccess
  Notes This project has received funding from the European Research Council under the European Union's Horizon 2020 research and innovation program (ERC Consolidator Grants #815128 – REALNANO and #770887 – PICOMETRICS). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project funding G.0381.16N and G.0267.18N. W.A. acknowledges an Individual Fellowship funded by the Marie 27 Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 797153, SOPMEN). G.G.-R. acknowledge receipt of FPI Fellowship from the Spanish MINECO. This work has been funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grants RTI2018-095844-B-I00 and MAT2017-86659-R) and the Madrid Regional Government (Grant P2018/NMT-4389). A.B. acknowledges funding from FWO project G093417N and from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. L.M.L.-M. acknowledges the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720); Comunidad de Madrid, P2018/NMT-4389 ; Ministerio de Ciencia, Innovación y Universidades, MAT2017-86659-R RTI2018-095844-B-I00 ; Ministerio de Economía y Competitividad; H2020 Marie Sklodowska-Curie Actions, 797153 ; Fonds Wetenschappelijk Onderzoek, G.0267.18N G.0381.16N G093417N ; H2020 Research Infrastructures, 823717 ; H2020 European Research Council, 770887 815128 ; Agencia Estatal de Investigación, Ministerio de Ciencia, Innovación y Universidades, MDM-2017-0720 ; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942
  Call Number EMAT @ emat @c:irua:172440 Serial 6426
Permanent link to this record
 

 
Author Pennycook, T.J.; Martinez, G.T.; O'Leary, C.M.; Yang, H.; Nellist, P.D.
  Title Efficient Phase Contrast Imaging via Electron Ptychography, a Tutorial Type A1 Journal article
  Year 2019 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
  Volume 25 Issue S2 Pages 2684-2685
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2019-08-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1431-9276 ISBN Additional Links (up) UA library record
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number EMAT @ emat @c:irua:172444 Serial 6424
Permanent link to this record
 

 
Author Thiruvottriyur Shanmugam, S.; Trashin, S.; De Wael, K.
  Title Gold-sputtered microelectrodes with built-in gold reference and counter electrodes for electrochemical DNA detection Type A1 Journal article
  Year 2020 Publication Analyst Abbreviated Journal Analyst
  Volume Issue Pages
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Gold-sputtered microelectrodes with built-in gold reference and counter electrodes represent a promising platform for the development of disposable DNA sensors. Pretreating gold electrode surfaces and immobilization of DNA thereon is commonly employed in biosensing applications. However, with no scientific or practical guidelines to prepare a DNA sensor using these miniature gold-sputtered microelectrodes, cleaning and immobilization steps need to be systematically optimized and updated. In this work, we present efficient cleaning and modification of miniaturized gold-sputtered microelectrodes with thiolated DNA probes for DNA detection. Additional discussions on subtleties and nuances involved at each stage of pretreating and modifying gold-sputtered microelectrodes are included to present a robust, well-founded protocol. It was evident that the insights on cleaning polycrystalline gold disk electrodes with a benchmark electrode surface for DNA sensors, cannot be transferred to clean these miniature gold-sputtered microelectrodes. Therefore, a comparison between five different cleaning protocols was made to find the optimal one for gold-sputtered microelectrodes. Additionally, two principally different immobilization techniques for gold-sputtered microelectrode modification with thiolated ssDNA were compared i.e., immobilization through passive chemisorption and potential perturbation were compared in terms of thiol-specific attachment and thiol-unspecific adsorption through nitrogenous bases. The hybridization performance of these prepared electrodes was characterized by their sensitive complementary DNA capturing ability, detected by a standard alkaline phosphatase assay. Immobilization through passive chemisorption proved to be efficient in capturing the complementary target DNA with a detection limit of 0.14 nM and sensitivity of 9.38 A M−1 cm2. In general, this work presents a comprehensive understanding of cleaning, modification and performance of gold-sputtered microelectrodes with built-in gold reference and counter electrodes for both fundamental investigations and practical DNA sensing applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000592315100017 Publication Date 2020-09-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2654 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 4.2 Times cited Open Access
  Notes Approved Most recent IF: 4.2; 2020 IF: 3.885
  Call Number UA @ admin @ c:irua:172447 Serial 6527
Permanent link to this record
 

 
Author Freund, E.; Spadola, C.; Schmidt, A.; Privat-Maldonado, A.; Bogaerts, A.; von Woedtke, T.; Weltmann, K.-D.; Heidecke, C.-D.; Partecke, L.-I.; Käding, A.; Bekeschus, S.
  Title Risk Evaluation of EMT and Inflammation in Metastatic Pancreatic Cancer Cells Following Plasma Treatment Type A1 Journal article
  Year 2020 Publication Frontiers in physics Abbreviated Journal Front. Phys.
  Volume 8 Issue Pages
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The requirements for new technologies to serve as anticancer agents go far beyond their toxicity potential. Novel applications also need to be safe on a molecular and patient level. In a broader sense, this also relates to cancer metastasis and inflammation. In a previous study, the toxicity of an atmospheric pressure argon plasma jet in four human pancreatic cancer cell lines was confirmed and plasma treatment did not promote metastasis in vitro and in ovo. Here, these results are extended by additional types of analysis and new models to validate and define on a molecular level the changes related to metastatic processes in pancreatic cancer cells following plasma treatment in vitro and in ovo. In solid tumors that were grown on the chorion-allantois membrane of fertilized chicken eggs (TUM-CAM), plasma treatment induced modest to profound apoptosis in the tissues. This, however, was not associated with a change in the expression levels of adhesion molecules, as shown using immunofluorescence of ultrathin tissue sections. Culturing of the cells detached from these solid tumors for 6d revealed a similar or smaller total growth area and expression of ZEB1, a transcription factor associated with cancer metastasis, in the plasma-treated pancreatic cancer tissues. Analysis of in vitro and in ovo supernatants of 13 different cytokines and chemokines revealed cell line-specific effects of the plasma treatment but a noticeable increase of, e.g., growth-promoting interleukin 10 was not observed. Moreover, markers of epithelial-to-mesenchymal transition (EMT), a metastasis-promoting cellular program, were investigated. Plasma-treated pancreatic cancer cells did not present an EMT-profile. Finally, a realistic 3D tumor spheroid co-culture model with pancreatic stellate cells was employed, and the invasive properties in a gel-like cellular matrix were investigated. Tumor outgrowth and spread was similar or decreased in the plasma conditions. Altogether, these results provide valuable insights into the effect of plasma treatment on metastasis-related properties of cancer cells and did not suggest EMT-promoting effects of this novel cancer therapy.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000581086900001 Publication Date 2020-10-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2296-424X ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 3.1 Times cited Open Access
  Notes We thankfully acknowledge the technical support by Felix Niessner and Antje Janetzko. We also thank Jonas Van Audenaerde and Evelien Smits for generating the transduced cell lines used in this study. Approved Most recent IF: 3.1; 2020 IF: NA
  Call Number PLASMANT @ plasmant @c:irua:172448 Serial 6425
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Van Aert, S.
  Title Hidden Markov model for atom-counting from sequential ADF STEM images: Methodology, possibilities and limitations Type A1 Journal article
  Year 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 219 Issue Pages 113131
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We present a quantitative method which allows us to reliably measure dynamic changes in the atomic structure of monatomic crystalline nanomaterials from a time series of atomic resolution annular dark field scanning transmission electron microscopy images. The approach is based on the so-called hidden Markov model and estimates the number of atoms in each atomic column of the nanomaterial in each frame of the time series. We discuss the origin of the improved performance for time series atom-counting as compared to the current state-of-the-art atom-counting procedures, and show that the so-called transition probabilities that describe the probability for an atomic column to lose or gain one or more atoms from frame to frame are particularly important. Using these transition probabilities, we show that the method can also be used to estimate the probability and cross section related to structural changes. Furthermore, we explore the possibilities for applying the method to time series recorded under variable environmental conditions. The method is shown to be promising for a reliable quantitative analysis of dynamic processes such as surface diffusion, adatom dynamics, beam effects, or in situ experiments.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000594770500003 Publication Date 2020-10-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 2.2 Times cited Open Access OpenAccess
  Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N and EOS 30489208. Approved Most recent IF: 2.2; 2020 IF: 2.843
  Call Number EMAT @ emat @c:irua:172449 Serial 6417
Permanent link to this record
 

 
Author Attri, P.; Park, J.-H.; De Backer, J.; Kim, M.; Yun, J.-H.; Heo, Y.; Dewilde, S.; Shiratani, M.; Choi, E.H.; Lee, W.; Bogaerts, A.
  Title Structural modification of NADPH oxidase activator (Noxa 1) by oxidative stress: An experimental and computational study Type A1 Journal article
  Year 2020 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol
  Volume 163 Issue Pages 2405-2414
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract NADPH oxidases 1 (NOX1) derived reactive oxygen species (ROS) play an important role in the progression of cancer through signaling pathways. Therefore, in this paper, we demonstrate the effect of cold atmospheric plasma (CAP) on the structural changes of Noxa1 SH3 protein, one of the regulatory subunits of NOX1. For this purpose, firstly we purified the Noxa1 SH3 protein and analyzed the structure using X-ray crystallography, and subsequently, we treated the protein with two types of CAP reactors such as pulsed dielectric barrier discharge (DBD) and Soft Jet for different time intervals. The structural deformation of Noxa1 SH3 protein was analyzed by various experimental methods (circular dichroism, fluorescence, and NMR spectroscopy) and by MD simulations. Additionally, we demonstrate the effect of CAP (DBD and Soft Jet) on the viability and expression of NOX1 in A375 cancer cells. Our results are useful to understand the structural modification/oxidation occur in protein due to reactive oxygen and nitrogen (RONS) species generated by CAP.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000579839600233 Publication Date 2020-09-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0141-8130 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 8.2 Times cited Open Access
  Notes European Marie Skłodowska-Curie Individual Fellowship, 743546 ; JSPS, 20K14454 ; National Research Foundation of Korea, 2019M3A9F6021810 NRF-2017M3A9F6029753 NRF-2019M3E5D6063903 NRF-2016R1A6A3A04010213 ; Brain Korea 21; MSIT, NRF-2016K1A4A3914113 ; Hercules Foundation; Flemish Government; UA; We gratefully acknowledge the European Marie SkłodowskaCurie Individual Fellowship “Anticancer-PAM” within Horizon 2020 (grant number 743546). This work was also supported by JSPS-KAKENHI grant number 20K14454. Additionally, work was supported by several grants (2019M3A9F6021810, NRF2017M3A9F6029753, NRF-2019M3E5D6063903 to W. Lee), Basic Science Research Program (NRF-2016R1A6A3A04010213 to J.H. Yun) through the National Research Foundation of Korea and in part by the Brain Korea 21 (BK21) PLUS program (J.H.P.). EHC is thankful to National Research Foundation (NRF) of Korea, funded by the Korea government (MSIT) under the grant number (NRF2016K1A4A3914113). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 8.2; 2020 IF: 3.671
  Call Number PLASMANT @ plasmant @c:irua:172451 Serial 6419
Permanent link to this record
 

 
Author Fukuhara, S.; Bal, K.M.; Neyts, E.C.; Shibuta, Y.
  Title Entropic and enthalpic factors determining the thermodynamics and kinetics of carbon segregation from transition metal nanoparticles Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon
  Volume 171 Issue Pages 806-813
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The free energy surface (FES) for carbon segregation from nickel nanoparticles is obtained from advanced molecular dynamics simulations. A suitable reaction coordinate is developed that can distinguish dissolved carbon atoms from segregated dimers, chains and junctions on the nanoparticle surface. Because of the typically long segregation time scale (up to ms), metadynamics simulations along the developed reaction coordinate are used to construct FES over a wide range of temperatures and carbon concentrations. The FES revealed the relative stability of different stages in the segregation process, and free energy barriers and rates of the individual steps could then be calculated and decomposed into enthalpic and entropic contributions. As the carbon concentration in the nickel nanoparticle increases, segregated carbon becomes more stable in terms of both enthalpy and entropy. The activation free energy of the reaction also decreases with the increase of carbon concentration, which can be mainly attributed to entropic effects. These insights and the methodology developed to obtain them improve our understanding of carbon segregation process across materials science in general, and the nucleation and growth of carbon nanotube in particular.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000598371500084 Publication Date 2020-09-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0008-6223 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 6.337 Times cited Open Access OpenAccess
  Notes Scientific Research, 19H02415 ; JSPS, 18J22727 ; Japan Society for the Promotion of Science; JSPS; JSPS; FWO; Research Foundation; Flanders, 12ZI420N ; This work was supported by Grant-in-Aid for Scientific Research (B) (No.19H02415) and Grant-in-Aid for JSPS Research Fellow (No.18J22727) from Japan Society for the Promotion of Science (JSPS), Japan. S.F. was supported by JSPS through the Program for 812 Approved Most recent IF: 6.337
  Call Number PLASMANT @ plasmant @c:irua:172452 Serial 6421
Permanent link to this record
 

 
Author Verloy, R.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A.
  Title Cold Atmospheric Plasma Treatment for Pancreatic Cancer–The Importance of Pancreatic Stellate Cells Type A1 Journal article
  Year 2020 Publication Cancers Abbreviated Journal Cancers
  Volume 12 Issue 10 Pages 2782
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
  Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with low five-year survival rates of 8% by conventional treatment methods, e.g., chemotherapy, radiotherapy, and surgery. PDAC shows high resistance towards chemo- and radiotherapy and only 15–20% of all patients can have surgery. This disease is predicted to become the third global leading cause of cancer death due to its significant rise in incidence. Therefore, the development of an alternative or combinational method is necessary to improve current approaches. Cold atmospheric plasma (CAP) treatments could offer multiple advantages to this emerging situation. The plasma-derived reactive species can induce oxidative damage and a cascade of intracellular signaling pathways, which could lead to cell death. Previous reports have shown that CAP treatment also influences cells in the tumor microenvironment, such as the pancreatic stellate cells (PSCs). These PSCs, when activated, play a crucial role in the propagation, growth and survival of PDAC tumors. However, the effect of CAP on PSCs is not yet fully understood. This review focuses on the application of CAP for PDAC treatment and the importance of PSCs in the response to treatment.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000584150700001 Publication Date 2020-09-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2072-6694 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Server Medical Art templates were used for creating figures. Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:172454 Serial 6418
Permanent link to this record
 

 
Author Bal, K.M.; Fukuhara, S.; Shibuta, Y.; Neyts, E.C.
  Title Free energy barriers from biased molecular dynamics simulations Type A1 Journal article
  Year 2020 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
  Volume 153 Issue 11 Pages 114118
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Atomistic simulation methods for the quantification of free energies are in wide use. These methods operate by sampling the probability density of a system along a small set of suitable collective variables (CVs), which is, in turn, expressed in the form of a free energy surface (FES). This definition of the FES can capture the relative stability of metastable states but not that of the transition state because the barrier height is not invariant to the choice of CVs. Free energy barriers therefore cannot be consistently computed from the FES. Here, we present a simple approach to calculate the gauge correction necessary to eliminate this inconsistency. Using our procedure, the standard FES as well as its gauge-corrected counterpart can be obtained by reweighing the same simulated trajectory at little additional cost. We apply the method to a number of systems—a particle solvated in a Lennard-Jones fluid, a Diels–Alder reaction, and crystallization of liquid sodium—to demonstrate its ability to produce consistent free energy barriers that correctly capture the kinetics of chemical or physical transformations, and discuss the additional demands it puts on the chosen CVs. Because the FES can be converged at relatively short (sub-ns) time scales, a free energy-based description of reaction kinetics is a particularly attractive option to study chemical processes at more expensive quantum mechanical levels of theory.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000574665600004 Publication Date 2020-09-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 4.4 Times cited Open Access
  Notes Japan Society for the Promotion of Science, 19H02415 18J22727 ; Fonds Wetenschappelijk Onderzoek, 12ZI420N ; This work was supported, in part, by a Grant-in-Aid for Scientific Research (B) (Grant No. 19H02415) and Grant-in-Aid for a JSPS Research Fellow (Grant No. 18J22727) from the Japan Society for the Promotion of Science (JSPS), Japan. K.M.B. was funded as a junior postdoctoral fellow of the FWO (Research Foundation – Flanders), Grant No. 12ZI420N. S.F. was supported by JSPS through the Program for Leading Graduate Schools (MERIT). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. The authors are grateful to Pablo Piaggi for making the pair entropy CV code publicly available. Approved Most recent IF: 4.4; 2020 IF: 2.965
  Call Number PLASMANT @ plasmant @c:irua:172456 Serial 6420
Permanent link to this record
 

 
Author Uytdenhouwen, Y.; Bal, Km.; Neyts, Ec.; Meynen, V.; Cool, P.; Bogaerts, A.
  Title On the kinetics and equilibria of plasma-based dry reforming of methane Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
  Volume 405 Issue Pages 126630
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma reactors are interesting for gas-based chemical conversion but the fundamental relation between the plasma chemistry and selected conditions remains poorly understood. Apparent kinetic parameters for the loss and formation processes of individual components of gas conversion processes, can however be extracted by performing experiments in an extended residence time range (2–75 s) and fitting the gas composition to a firstorder kinetic model of the evolution towards partial chemical equilibrium (PCE). We specifically investigated the differences in kinetic characteristics and PCE state of the CO2 dissociation and CH4 reforming reactions in a dielectric barrier discharge reactor (DBD), how these are mutually affected when combining both gases in the dry reforming of methane (DRM) reaction, and how they change when a packing material (non-porous SiO2) is added to the reactor. We find that CO2 dissociation is characterized by a comparatively high reaction rate of 0.120 s−1 compared to CH4 reforming at 0.041 s−1; whereas CH4 reforming reaches higher equilibrium conversions, 82% compared to 53.6% for CO2 dissociation. Combining both feed gases makes the DRM reaction to proceed at a relatively high rate (0.088 s−1), and high conversion (75.4%) compared to CO2 dissociation, through accessing new chemical pathways between the products of CO2 and CH4. The addition of the packing material can also distinctly influence the conversion rate and position of the equilibrium, but its precise effect depends strongly on the gas composition. Comparing different CO2:CH4 ratios reveals the delicate balance of the combined chemistry. CO2 drives the loss reactions in DRM, whereas CH4 in the mixture suppresses back reactions. As a result, our methodology provides some of the insight necessary to systematically tune the conversion process.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000621197700003 Publication Date 2020-08-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1385-8947 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 6.216 Times cited Open Access OpenAccess
  Notes The authors acknowledge financial support from the European Fund for Regional Development through the cross-border collaborative Interreg V program Flanders-the Netherlands (project EnOp), the Fund for Scientific Research (FWO; grant number: G.0254.14N), a TOP-BOF project and an IOF-SBO (SynCO2Chem) project from the University of Antwerp. Approved Most recent IF: 6.216
  Call Number PLASMANT @ plasmant @c:irua:172458 Serial 6411
Permanent link to this record
 

 
Author Khalilov, U.; Neyts, E.C.
  Title Mechanisms of selective nanocarbon synthesis inside carbon nanotubes Type A1 Journal article
  Year 2021 Publication Carbon Abbreviated Journal Carbon
  Volume 171 Issue Pages 72-78
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The possibility of confinement effects inside a carbon nanotube provides new application opportunities, e.g., growth of novel carbon nanostructures. However, the understanding the precise role of catalystfeedstock in the nanostructure synthesis is still elusive. In our simulation-based study, we investigate the Ni-catalyzed growth mechanism of encapsulated carbon nanostructures, viz. double-wall carbon nanotube and graphene nanoribbon, from carbon and hydrocarbon growth precursors, respectively. Specifically, we find that the tube and ribbon growth is determined by a catalyst-vs-feedstock competition effect. We compare our results, i.e., growth mechanism and structure morphology with all available theoretical and experimental data. Our calculations show that all encapsulated nanostructures contain metal (catalyst) atoms and such structures are less stable than their pure counterparts. Therefore, we study the purification mechanism of these structures. In general, this study opens a possible route to the controllable synthesis of tubular and planar carbon nanostructures for today’s nanotechnology.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000598371500009 Publication Date 2020-09-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0008-6223 ISBN Additional Links (up) UA library record; WoS full record
  Impact Factor 6.337 Times cited Open Access OpenAccess
  Notes Fund of Scientific Research Flanders, 12M1318N ; Universiteit Antwerpen; Flemish Supercomputer Centre; Hercules Foundation; Flemish Government; The authors gratefully acknowledge the financial support from the Fund of Scientific Research Flanders (FWO), Belgium, Grant number 12M1318N. The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Centre (VSC), funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA, Belgium. Approved Most recent IF: 6.337
  Call Number PLASMANT @ plasmant @c:irua:172459 Serial 6414
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Bogaerts, A.
  Title Plasma in Cancer Treatment Type Editorial
  Year 2020 Publication Cancers Abbreviated Journal Cancers
  Volume 12 Issue 9 Pages 2617
  Keywords Editorial; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Cancer is the second leading cause of death worldwide, and while science has advanced significantly to improve the treatment outcome and quality of life in cancer patients, there are still many issues with the current therapies, such as toxicity and the development of resistance to treatment [...]
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000581447500001 Publication Date 2020-09-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2072-6694 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number PLASMANT @ plasmant @c:irua:172460 Serial 6413
Permanent link to this record
 

 
Author Wang, J.; Gauquelin, N.; Huijben, M.; Verbeeck, J.; Rijnders, G.; Koster, G.
  Title Metal-insulator transition of SrVO 3 ultrathin films embedded in SrVO 3 / SrTiO 3 superlattices Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
  Volume 117 Issue 13 Pages 133105
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The metal-insulator transition (MIT) in strongly correlated oxides is a topic of great interest for its potential applications, such as Mott field effect transistors and sensors. We report that the MIT in high quality epitaxial SrVO3 (SVO) thin films is present as the film thickness is reduced, lowering the dimensionality of the system, and electron-electron correlations start to become the dominant interactions. The critical thickness of 3 u.c is achieved by avoiding effects due to off-stoichiometry using optimal growth conditions and excluding any surface effects by a STO capping layer. Compared to the single SVO thin films, conductivity enhancement in SVO/STO superlattices is observed. This can be explained by the interlayer coupling effect between SVO sublayers in the superlattices. Magnetoresistance and Hall measurements indicate that the dominant driving force of MIT is the electron–electron interaction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000577126100001 Publication Date 2020-09-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 4 Times cited 8 Open Access OpenAccess
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 13HTSM01 ; Approved Most recent IF: 4; 2020 IF: 3.411
  Call Number EMAT @ emat @c:irua:172461 Serial 6415
Permanent link to this record
 

 
Author Groenendijk, D.J.; Autieri, C.; van Thiel, T.C.; Brzezicki, W.; Hortensius, J.R.; Afanasiev, D.; Gauquelin, N.; Barone, P.; van den Bos, K.H.W.; van Aert, S.; Verbeeck, J.; Filippetti, A.; Picozzi, S.; Cuoco, M.; Caviglia, A.D.
  Title Berry phase engineering at oxide interfaces Type A1 Journal article
  Year 2020 Publication Abbreviated Journal Phys. Rev. Research
  Volume 2 Issue 2 Pages 023404
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Three-dimensional strontium ruthenate (SrRuO3) is an itinerant ferromagnet that features Weyl points acting as sources of emergent magnetic fields, anomalous Hall conductivity, and unconventional spin dynamics. Integrating SrRuO3 in oxide heterostructures is potentially a novel route to engineer emergent electrodynamics, but its electronic band topology in the two-dimensional limit remains unknown. Here we show that ultrathin SrRuO3 exhibits spin-polarized topologically nontrivial bands at the Fermi energy. Their band anticrossings show an enhanced Berry curvature and act as competing sources of emergent magnetic fields. We control their balance by designing heterostructures with symmetric (SrTiO3/SrRuO3/SrTiO3 and SrIrO3/SrRuO3/SrIrO3) and asymmetric interfaces (SrTiO3/SrRuO3/SrIrO3). Symmetric structures exhibit an interface-tunable single-channel anomalous Hall effect, while ultrathin SrRuO3 embedded in asymmetric structures shows humplike features consistent with multiple Hall contributions. The band topology of two-dimensional SrRuO3 proposed here naturally accounts for these observations and harmonizes a large body of experimental results.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000603642700008 Publication Date 2020-06-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2643-1564 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 58 Open Access OpenAccess
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Fonds Wetenschappelijk Onderzoek; European Research Council; Horizon 2020, 677458 770887 731473 ; Fondazione Cariplo, 2013-0726 ; Narodowe Centrum Nauki, 2016/23/B/ST3/00839 ; Fundacja na rzecz Nauki Polskiej; Universiteit Antwerpen; Vlaamse regering; Approved Most recent IF: NA
  Call Number EMAT @ emat @c:irua:172462 Serial 6401
Permanent link to this record
 

 
Author Caglak, E.; Govers, K.; Lamoen, D.; Labeau, P.-E.; Verwerft, M.
  Title Atomic scale analysis of defect clustering and predictions of their concentrations in UO2+x Type A1 Journal article
  Year 2020 Publication Journal Of Nuclear Materials Abbreviated Journal J Nucl Mater
  Volume 541 Issue Pages 152403
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The physical properties of uranium dioxide vary greatly with stoichiometry. Oxidation towards hyperstoichiometric UO2 – UO2+x – might be encountered at various stages of the nuclear fuel cycle if oxidative conditions are met; the impact of stoichiometry changes upon physical properties should therefore be properly assessed to ensure safe and reliable operations. These physical properties are intimately linked to the arrangement of atomic defects in the crystalline structure. The evolution of the defect concentration with environmental parameters – oxygen partial pressure and temperature – were evaluated by means of a point defect model where the reaction energies are derived from atomic-scale simulations. To this end, various configurations and net charge states of oxygen interstitial clusters in UO2 have been calculated. Various methodologies have been tested to determine the optimum cluster configurations and a rigid lattice approach turned out to be the most useful strategy to optimize defect configuration structures. Ultimately, results from the point defect model were discussed and compared to experimental measurements of stoichiometry dependence on oxygen partial pressure and temperature.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000575165800006 Publication Date 2020-08-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3115 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 3.1 Times cited Open Access OpenAccess
  Notes This work is dedicated to the memory of Prof. Alain Dubus, ULB, Bruxelles, Belgium. Financial support from the SCK CEN is gratefully acknowledged. Approved Most recent IF: 3.1; 2020 IF: 2.048
  Call Number EMAT @ emat @c:irua:172464 Serial 6402
Permanent link to this record
 

 
Author Prabhakara, V.; Jannis, D.; Guzzinati, G.; Béché, A.; Bender, H.; Verbeeck, J.
  Title HAADF-STEM block-scanning strategy for local measurement of strain at the nanoscale Type A1 Journal article
  Year 2020 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 219 Issue Pages 113099
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Lattice strain measurement of nanoscale semiconductor devices is crucial for the semiconductor industry as strain substantially improves the electrical performance of transistors. High resolution scanning transmission electron microscopy (HR-STEM) imaging is an excellent tool that provides spatial resolution at the atomic scale and strain information by applying Geometric Phase Analysis or image fitting procedures. However, HR-STEM images regularly suffer from scanning distortions and sample drift during image acquisition. In this paper, we propose a new scanning strategy that drastically reduces artefacts due to drift and scanning distortion, along with extending the field of view. It consists of the acquisition of a series of independent small subimages containing an atomic resolution image of the local lattice. All subimages are then analysed individually for strain by fitting a nonlinear model to the lattice images. The method allows flexible tuning of spatial resolution and the field of view within the limits of the dynamic range of the scan engine while maintaining atomic resolution sampling within the subimages. The obtained experimental strain maps are quantitatively benchmarked against the Bessel diffraction technique. We demonstrate that the proposed scanning strategy approaches the performance of the diffraction technique while having the advantage that it does not require specialized diffraction cameras.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000594768500006 Publication Date 2020-09-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 2.2 Times cited 4 Open Access OpenAccess
  Notes A.B. D.J. and J.V. acknowledge funding through FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy') from the Flanders Research Fund. J.V acknowledges funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. The Qu-Ant-EM microscope and the direct electron detector used in the diffraction experiments was partly funded by the Hercules fund from the Flemish Government. This project has received funding from the GOA project “Solarpaint” of the University of Antwerp. GG acknowledges support from a postdoctoral fellowship grant from the Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO). Special thanks to Dr. Thomas Nuytten, Prof. Dr. Wilfried Vandervorst, Dr. Paola Favia, Dr. Olivier Richard from IMEC, Leuven and Prof. Dr. Sara Bals from EMAT, Antwerp for their continuous support and collaboration with the project and to the IMEC processing group for the device fabrication. Approved Most recent IF: 2.2; 2020 IF: 2.843
  Call Number EMAT @ emat @c:irua:172485 Serial 6404
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Wang, W.Z.; Thille, C.; Bogaerts, A.
  Title H2S Decomposition into H2 and S2 by Plasma Technology: Comparison of Gliding Arc and Microwave Plasma Type A1 Journal article
  Year 2020 Publication Plasma Chemistry And Plasma Processing Abbreviated Journal Plasma Chem Plasma P
  Volume 40 Issue 5 Pages 1163-1187
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We studied hydrogen sulfide (H2S) decomposition into hydrogen (H2) and sulfur (S2) in a gliding arc plasmatron (GAP) and microwave (MW) plasma by a combination of 0D and 2D models. The conversion, energy efficiency, and plasma distribution are examined for different discharge conditions, and validated with available experiments from literature. Furthermore, a comparison is made between GAP and MW plasma. The GAP operates at atmospheric pressure, while the MW plasma experiments to which comparison is made were performed at reduced pressure. Indeed, the MW discharge region becomes very much contracted near atmospheric pressure, at the conditions under study, as revealed by our 2D model. The models predict that thermal reactions play the most important role in H2S decomposition in both plasma types. The GAP has a higher energy efficiency but lower conversion than the MW plasma at their typical conditions. When compared at the same conversion, the GAP exhibits a higher energy efficiency and lower energy cost than the MW plasma.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000543012200001 Publication Date 2020-06-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0272-4324 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 3.6 Times cited Open Access
  Notes This work was supported by the Scientific Research Foundation from Dalian University of Technology, DUT19RC(3)045. We gratefully acknowledge T. Godfroid (Materia Nova) for sharing the experimental data about the MW plasma. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.6; 2020 IF: 2.355
  Call Number PLASMANT @ plasmant @c:irua:172490 Serial 6409
Permanent link to this record
 

 
Author Rodal-Cedeira, S.; Vázquez-Arias, A.; Bodelon, G.; Skorikov, A.; Núñez-Sanchez, S.; La Porta, A.; Polavarapu, L.; Bals, S.; Liz-Marzán, L.M.; Perez-Juste, J.; Pastoriza-Santos, I.
  Title An Expanded Surface-Enhanced Raman Scattering Tags Library by Combinatorial Encapsulation of Reporter Molecules in Metal Nanoshells Type A1 Journal article
  Year 2020 Publication Acs Nano Abbreviated Journal Acs Nano
  Volume Issue Pages
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Raman-encoded gold nanoparticles have been widely employed as photostable multifunctional probes for sensing, bioimaging, multiplex diagnostics, and surface-enhanced Raman scattering (SERS)-guided tumor therapy. We report a strategy toward obtaining a particularly large library of Au nanocapsules encoded with Raman codes defined by the combination of different thiol-free Raman reporters, encapsulated at defined molar ratios. The fabrication of SERS tags with tailored size and pre-defined codes is based on the in situ incorporation of Raman reporter molecules inside Au nanocapsules during their formation via Galvanic replacement coupled to seeded growth on Ag NPs. The hole-free closed shell structure of the nanocapsules is confirmed by electron tomography. The unusually wide encoding possibilities of the obtained SERS tags are investigated by means of either wavenumber-based encoding or Raman frequency combined with signal intensity, leading to an outstanding performance as exemplified by 26 and 54 different codes, respectively. We additionally demonstrate that encoded nanocapsules can be readily bioconjugated with antibodies for applications such as SERS-based targeted cell imaging and phenotyping.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000595533800019 Publication Date 2020-09-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1936-0851 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 17.1 Times cited 14 Open Access OpenAccess
  Notes L.M.L.-M. acknowledges financial support from the European Research Council (ERC-AdG-4DbioSERS-787510) and the Spanish State Research Agency (Grant No. MDM-2017-0720 and PID2019-108954RB-I00). I.P.-S. and J.P.-J. acknowledge financial support from the Spanish State Research Agency (Grant No. MAT2016-77809-R)) and Ramon Areces Foundation (Grant No. SERSforSAFETY). G.B. acknowledges financial support from CINBIO (Grant number ED431G 2019/07 Xunta de Galicia). S.B. and A.S. acknowledge financial support by the Research Foundation Flanders (FWO grant G038116N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI). S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). We thank Carlos Fernández-Lodeiro and Daniel García-Lojo for their helpful contribution to the SEM characterization and SERS analysis and Veronica Montes-García for her fruitful contribution in the PCA analysis.; sygma Approved Most recent IF: 17.1; 2020 IF: 13.942
  Call Number EMAT @ emat @c:irua:172492 Serial 6403
Permanent link to this record
 

 
Author Moro, G.; Bottari, F.; Liberi, S.; Covaceuszach, S.; Cassetta, A.; Angelini, A.; De Wael, K.; Moretto, L.M.
  Title Covalent immobilization of delipidated human serum albumin on poly(pyrrole-2-carboxylic) acid film for the impedimetric detection of perfluorooctanoic acid Type A1 Journal article
  Year 2020 Publication Bioelectrochemistry Abbreviated Journal Bioelectrochemistry
  Volume 134 Issue Pages 107540
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The immobilization of biomolecules at screen printed electrodes for biosensing applications is still an open challenge. To enrich the toolbox of bioelectrochemists, graphite screen printed electrodes (G-SPE) were modified with an electropolymerized film of pyrrole-2-carboxilic acid (Py-2-COOH), a pyrrole derivative rich in carboxylic acid functional groups. These functionalities are suitable for the covalent immobilization of biomolecular recognition layers. The electropolymerization was first optimized to obtain stable and conductive polymeric films, comparing two different electrolytes: sodium dodecyl sulphate (SDS) and sodium perchlorate. The G-SPE modified with Py-2-COOH in 0.1 M SDS solution showed the required properties and were further tested. A proof-of-concept study for the development of an impedimetric sensor for perfluorooctanoic acid (PFOA) was carried out using the delipidated human serum albumin (hSA) as bioreceptor. The data interpretation was supported by size exclusion chromatography and small-angle X-ray scattering (SEC-SAXS) analysis of the bioreceptor-target complex and the preliminary results suggest the possibility to further develop this biosensing strategy for toxicological and analytical studies.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000579727300004 Publication Date 2020-04-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1567-5394 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 5 Times cited Open Access
  Notes Approved Most recent IF: 5; 2020 IF: 3.346
  Call Number UA @ admin @ c:irua:172494 Serial 6477
Permanent link to this record
 

 
Author Rocha Segundo, I.; Landi Jr., S.; Margaritis, A.; Pipintakos, G.; Freitas, E.; Vuye, C.; Blom, J.; Tytgat, T.; Denys, S.; Carneiro, J.
  Title Physicochemical and rheological properties of a transparent asphalt binder modified with nano-TiO₂ Type A1 Journal article
  Year 2020 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel
  Volume 10 Issue 11 Pages 2152
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Energy and Materials in Infrastructure and Buildings (EMIB)
  Abstract Transparent binder is used to substitute conventional black asphalt binder and to provide light-colored pavements, whereas nano-TiO2 has the potential to promote photocatalytic and self-cleaning properties. Together, these materials provide multifunction effects and benefits when the pavement is submitted to high solar irradiation. This paper analyzes the physicochemical and rheological properties of a transparent binder modified with 0.5%, 3.0%, 6.0%, and 10.0% nano-TiO2 and compares it to the transparent base binder and conventional and polymer modified binders (PMB) without nano-TiO2. Their penetration, softening point, dynamic viscosity, master curve, black diagram, Linear Amplitude Sweep (LAS), Multiple Stress Creep Recovery (MSCR), and Fourier Transform Infrared Spectroscopy (FTIR) were obtained. The transparent binders (base and modified) seem to be workable considering their viscosity, and exhibited values between the conventional binder and PMB with respect to rutting resistance, penetration, and softening point. They showed similar behavior to the PMB, demonstrating signs of polymer modification. The addition of TiO2 seemed to reduce fatigue life, except for the 0.5% content. Nevertheless, its addition in high contents increased the rutting resistance. The TiO2 modification seems to have little effect on the chemical functional indices. The best percentage of TiO2 was 0.5%, with respect to fatigue, and 10.0% with respect to permanent deformation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000593731700001 Publication Date 2020-10-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2079-4991 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 5.3 Times cited Open Access
  Notes Approved Most recent IF: 5.3; 2020 IF: 3.553
  Call Number UA @ admin @ c:irua:172621 Serial 6580
Permanent link to this record
 

 
Author Vanderveken, F.; Ahmad, H.; Heyns, M.; Sorée, B.; Adelmann, C.; Ciubotaru, F.
  Title Excitation and propagation of spin waves in non-uniformly magnetized waveguides Type A1 Journal article
  Year 2020 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
  Volume 53 Issue 49 Pages 495006
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The characteristics of spin waves in ferromagnetic waveguides with non-uniform magnetization have been investigated for situations where the shape anisotropy field of the waveguide is comparable to the external bias field. Spin-wave generation was realized by the magnetoelastic effect by applying normal and shear strain components, as well as by the Oersted field emitted by an inductive antenna. The magnetoelastic excitation field has a non-uniform profile over the width of the waveguide because of the non-uniform magnetization orientation, whereas the Oersted field remains uniform. Using micromagnetic simulations, we indicate that both types of excitation fields generate quantised width modes with both odd and even mode numbers as well as tilted phase fronts. We demonstrate that these effects originate from the average magnetization orientation with respect to the main axes of the magnetic waveguide. Furthermore, it is indicated that the excitation efficiency of the second-order mode generally surpasses that of the first-order mode due to their symmetry. The relative intensity of the excited modes can be controlled by the strain state as well as by tuning the dimensions of the excitation area. Finally, we demonstrate that the nonreciprocity of spin-wave radiation due to the chirality of an Oersted field generated by an inductive antenna is absent for magnetoelastic spin-wave excitation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000575331600001 Publication Date 2020-08-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 3.4 Times cited 1 Open Access
  Notes ; This work has been supported by imec's industrial affiliate program on beyond-CMOS logic. It has also received funding from the European Union's Horizon 2020 research and innovation program within the FET-OPEN project CHIRON under grant agreement No. 801055. F V acknowledges financial support from the Research Foundation -Flanders (FWO) through grant No. 1S05719N. ; Approved Most recent IF: 3.4; 2020 IF: 2.588
  Call Number UA @ admin @ c:irua:172641 Serial 6515
Permanent link to this record
 

 
Author Kenawy, A.; Magnus, W.; Milošević, M.V.; Sorée, B.
  Title Electronically tunable quantum phase slips in voltage-biased superconducting rings as a base for phase-slip flux qubits Type A1 Journal article
  Year 2020 Publication Superconductor Science & Technology Abbreviated Journal Supercond Sci Tech
  Volume 33 Issue 12 Pages 125002
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Quantum phase slips represent a coherent mechanism to couple flux states of a superconducting loop. Since their first direct observation, there have been substantial developments in building charge-insensitive quantum phase-slip circuits. At the heart of these devices is a weak link, often a nanowire, interrupting a superconducting loop. Owing to the very small cross-sectional area of such a nanowire, quantum phase slip rates in the gigahertz range can be achieved. Instead, here we present the use of a bias voltage across a superconducting loop to electrostatically induce a weak link, thereby amplifying the rate of quantum phase slips without physically interrupting the loop. Our simulations reveal that the bias voltage modulates the free energy barrier between subsequent flux states in a very controllable fashion, providing a route towards a phase-slip flux qubit with a broadly tunable transition frequency.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000577207000001 Publication Date 2020-09-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-2048 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 3.6 Times cited 4 Open Access
  Notes ; ; Approved Most recent IF: 3.6; 2020 IF: 2.878
  Call Number UA @ admin @ c:irua:172643 Serial 6503
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Engelmann, Y.; van ‘t Veer, K.; Postma, R.S.; Bogaerts, A.; Lefferts, L.
  Title Plasma-driven catalysis: green ammonia synthesis with intermittent electricity Type A1 Journal article
  Year 2020 Publication Green Chemistry Abbreviated Journal Green Chem
  Volume 22 Issue 19 Pages 6258-6287
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
  Abstract Ammonia is one of the most produced chemicals, mainly synthesized from fossil fuels for fertilizer applications. Furthermore, ammonia may be one of the energy carriers of the future, when it is produced from renewable electricity. This has spurred research on alternative technologies for green ammonia production. Research on plasma-driven ammonia synthesis has recently gained traction in academic literature. In the current review, we summarize the literature on plasma-driven ammonia synthesis. We distinguish between mechanisms for ammonia synthesis in the presence of a plasma, with and without a catalyst, for different plasma conditions. Strategies for catalyst design are discussed, as well as the current understanding regarding the potential plasma-catalyst synergies as function of the plasma conditions and their implications on energy efficiency. Finally, we discuss the limitations in currently reported models and experiments, as an outlook for research opportunities for further unravelling the complexities of plasma-catalytic ammonia synthesis, in order to bridge the gap between the currently reported models and experimental results.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000575015700002 Publication Date 2020-09-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9262 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 9.8 Times cited 4 Open Access
  Notes ; ; Approved Most recent IF: 9.8; 2020 IF: 9.125
  Call Number PLASMANT @ plasmant @c:irua:172671 Serial 6430
Permanent link to this record
 

 
Author Li, L.; Kong, X.; Chen, X.; Li, J.; Sanyal, B.; Peeters, F.M.
  Title Monolayer 1T-LaN₂ : Dirac spin-gapless semiconductor of p-state and Chern insulator with a high Chern number Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
  Volume 117 Issue 14 Pages 143101
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Two-dimensional transition-metal dinitrides have attracted considerable attention in recent years due to their rich magnetic properties. Here, we focus on rare-earth-metal elements and propose a monolayer of lanthanum dinitride with a 1T structural phase, 1T-LaN2. Using first-principles calculations, we systematically investigated the structure, stability, magnetism, and band structure of this material. It is a flexible and stable monolayer exhibiting a low lattice thermal conductivity, which is promising for future thermoelectric devices. The monolayer shows the ferromagnetic ground state with a spin-polarized band structure. Two linear spin-polarized bands cross at the Fermi level forming a Dirac point, which is formed by the p atomic orbitals of the N atoms, indicating that monolayer 1T-LaN2 is a Dirac spin-gapless semiconductor of p-state. When the spin-orbit coupling is taken into account, a large nontrivial indirect bandgap (86/354meV) can be opened at the Dirac point, and three chiral edge states are obtained, corresponding to a high Chern number of C=3, implying that monolayer 1T-LaN2 is a Chern insulator. Importantly, this kind of band structure is expected to occur in more monolayers of rare-earth-metal dinitride with a 1T structural phase.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000578551800001 Publication Date 2020-10-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 4 Times cited 19 Open Access
  Notes ; This work was supported by the Natural Science Foundation of Hebei Province (Grant No. A2020202031), the FLAG-ERA project TRANS2DTMD, the Swedish Research Council project grant (No. 2016-05366), and the Swedish Research Links program grant (No. 2017-05447). The resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government, and Swedish National Infrastructure for Computing (SNIC). A portion of this research (Xiangru Kong) was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. Xin Chen thanks the China scholarship council for financial support from the China Scholarship Council (CSC, No. 201606220031). ; Approved Most recent IF: 4; 2020 IF: 3.411
  Call Number UA @ admin @ c:irua:172674 Serial 6564
Permanent link to this record
 

 
Author Siriwardane, E.M.D.; Demiroglu, I.; Sevik, C.; Peeters, F.M.; Çakir, D.
  Title Assessment of sulfur-functionalized MXenes for li-ion battery applications Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 124 Issue 39 Pages 21293-21304
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The surface termination of MXenes greatly determines the electrochemical properties and ion kinetics on their surfaces. So far, hydroxyl-, oxygen-, and fluorine-terminated MXenes have been widely studied for energy storage applications. Recently, sulfur-functionalized MXene structures, which possess low diffusion barriers, have been proposed as candidate materials to enhance battery performance. We performed first-principles calculations on the structural, stability, electrochemical, and ion dynamic properties of Li-adsorbed sulfur-functionalized groups 3B, 4B, 5B, and 6B transition-metal (M)-based MXenes (i.e., M2CS2 with M = Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W). We performed phonon calculations, which indicated that all of the above M2CS2 MXenes, except for Sc, are dynamically stable at T = 0 K. The ground-state structure of each M2CS2 monolayer depends on the type of M atom. For instance, while sulfur prefers to sit at the FCC site on Ti2CS2, it occupies the HCP site of Cr-based MXene. We determined the Li adsorption configurations at different concentrations using the cluster expansion method. The highest maximum open-circuit voltages were computed for the group 4B element (i.e., Ti, Zr, and Hf)-based M2CS2, which are larger than 2.1 V, while their average voltages are approximately 1 V. The maximum voltage for the group 6B element (i.e., Cr, Mo, W)-based M2CS2 is less than 1 V, and the average voltage is less than 0.71 V. We found that S functionalization is helpful for capacity improvements over the O-terminated MXenes. In this respect, the computed storage gravimetric capacity may reach up to 417.4 mAh/g for Ti2CS2 and 404.5 mAh/g for V2CS2. Ta-, Cr-, Mo-, and W-based M2CS2 MXenes show very low capacities, which are less than 100 mAh/g. The Li surface diffusion energy barriers for all of the considered MXenes are less than 0.22 eV, which is favorable for high charging and discharging rates. Finally, ab initio molecular dynamic simulations performed at 400 K and bond-length analysis with respect to Li concentration verify that selected promising systems are robust against thermally induced perturbations that may induce structural transformations or distortions and undesirable Li release.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000577151900008 Publication Date 2020-09-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited 24 Open Access
  Notes ; Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118F512 and the Air Force Office of Scientific Research under award no. FA9550-19-1-7048. This work was performed in part at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-06CH11357. This work was supported, in part, by The Scientific and Technological Research Council of Turkey (TUBITAK) under contract no. 118C026. ; Approved Most recent IF: 3.7; 2020 IF: 4.536
  Call Number UA @ admin @ c:irua:172693 Serial 6452
Permanent link to this record
 

 
Author Paterson, G.W.; Webster, R.W.H.; Ross, A.; Paton, K.A.; Macgregor, T.A.; McGrouther, D.; MacLaren, I.; Nord, M.
  Title Fast pixelated detectors in scanning transmission electron microscopy. part II : post-acquisition data processing, visualization, and structural characterization Type A1 Journal article
  Year 2020 Publication Microscopy And Microanalysis Abbreviated Journal Microsc Microanal
  Volume 26 Issue 5 Pages 944-963
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Fast pixelated detectors incorporating direct electron detection (DED) technology are increasingly being regarded as universal detectors for scanning transmission electron microscopy (STEM), capable of imaging under multiple modes of operation. However, several issues remain around the post-acquisition processing and visualization of the often very large multidimensional STEM datasets produced by them. We discuss these issues and present open source software libraries to enable efficient processing and visualization of such datasets. Throughout, we provide examples of the analysis methodologies presented, utilizing data from a 256 x 256 pixel Medipix3 hybrid DED detector, with a particular focus on the STEM characterization of the structural properties of materials. These include the techniques of virtual detector imaging; higher-order Laue zone analysis; nanobeam electron diffraction; and scanning precession electron diffraction. In the latter, we demonstrate a nanoscale lattice parameter mapping with a fractional precision <= 6 x 10(-4) (0.06%).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000576859800011 Publication Date 2020-09-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1431-9276 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 2.8 Times cited 3 Open Access OpenAccess
  Notes ; G.W.P. and M.N. were the principal authors of the fpd and pixStem libraries reported herein (details of all contributions are documented in the repositories) and have made all of these available under open source licence GPLv3 for the benefit of the community. R.W.H.W., A.R., and K.A.P. have also made contributions to the source codes in these libraries. G.W.P and M.N. have led the data acquisition and analysis, and the drafting of this manuscript. The performance of this work was mainly supported by Engineering and Physical Sciences Research Council (EPSRC) of the UK via the project “Fast Pixel Detectors: a paradigm shift in STEM imaging” (Grant No. EP/M009963/1). G.W.P. received additional support from the EPSRC under Grant No. EP/M024423/1. M.N. received additional support for this work from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 838001. R.W.H.W., A.R., K.A.P., T.A.M., D.McG., and I.M. have all contributed either through acquisition and analysis of data or through participation in the revision of the manuscript. The studentships of R.W.H.W. and T.A.M. were supported by the EPSRC Doctoral Training Partnership Grant No. EP/N509668/1. I.M. and D.McG. were supported by EPSRC Grant No. EP/M009963/1. The studentship of K.A.P. was funded entirely by the UK Science and Technology Facilities Council (STFC) Industrial CASE studentship “Next2 TEM Detection” (No. ST/ P002471/1) with Quantum Detectors Ltd. as the industrial partner. As an inventor of intellectual property related to the MERLIN detector hardware, D.McG. is a beneficiary of the license agreement between the University of Glasgow and Quantum Detectors Ltd. We thank Diamond Quantum Detectors Ltd. for Medipix3 detector support; Dr. Bruno Humbel from Okinawa Institute of Science and Technology; and Dr. Caroline Kizilyaprak from the University of Lausanne for providing the liver sample; Dr. Ingrid Hallsteinsen and Prof. Thomas Tybell from the Norwegian University of Science and Technology (NTNU) for providing the La0.7Sr0.3MnO3/LaFeO3/SrTiO3 sample shown in Figure 4; and NanoMEGAS for the loan of the DigiSTAR precession system and TopSpin acquisition software. The development of the integration of TopSpin with the Merlin readout of the Medipix3 camera has been performed with the aid of financial assistance from the EPSRC under Grant No. EP/R511705/1 and through direct collaboration between NanoMEGAS and Quantum Detectors Ltd. ; Approved Most recent IF: 2.8; 2020 IF: 1.891
  Call Number UA @ admin @ c:irua:172695 Serial 6519
Permanent link to this record
 

 
Author Osca, J.; Sorée, B.
  Title Skyrmion spin transfer torque due to current confined in a nanowire Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
  Volume 102 Issue 12 Pages 125436
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract In this work we compute the torque field present in a ferromagnet in contact with a metallic nanowire when a skyrmion is present. If the nanowire is narrow enough, then the current is carried by a single conduction band. In this regime the classical torque model breaks down and we show that a skyrmion driven by spin transfer torque moves in a different direction than predicted by the classical model. However, the amount of charge current required to move a skyrmion with a certain velocity in the single-band regime is similar to a classical model of torque where it is implicitly assumed current transport by many conduction bands. The single-band regime is more efficient creating spin current from charge current because of the perfect polarization of the single band but is less efficient creating torque from spin current. Nevertheless, it is possible to take profit of the single-band regime to move skyrmions even with no net charge or spin current flowing between the device contacts. We have also been able to recover the classical limit considering an ensemble of only a few electronic states. In this limit we have discovered that electron diffusion needs to be considered even in ballistic nanowires due the effect of the skyrmion structure on the electron current.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000573775300004 Publication Date 2020-09-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited Open Access
  Notes ; The authors thanks Llorenc Serra for useful discussion on the conduction electron quantum model. We also want to show gratitude to Dimitrios Andrikopoulos for sharing his knowledge about the available bibliography and to F. J. P. van Duijn for his comments on earlier versions of this manuscript. We acknowledge the Horizon 2020 project SKYTOP “Skyrmion-Topological Insulator and Weyl Semimetal Technology” (FETPROACT-2018-01, No. 824123). Finally, J.O. also acknowledges the postdoctoral fellowship provided by KU Leuven. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
  Call Number UA @ admin @ c:irua:172727 Serial 6604
Permanent link to this record
 

 
Author Chaves, A.; Moura, V.N.; Linard, F.J.A.; Covaci, L.; Milošević, M.V.
  Title Tunable magnetic focusing using Andreev scattering in superconductor-graphene hybrid devices Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
  Volume 128 Issue 12 Pages 124303
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract We perform the wavepacket dynamics simulation of a graphene-based device where propagating electron trajectories are tamed by an applied magnetic field toward a normal/superconductor interface. The magnetic field controls the incidence angle of the incoming electronic wavepacket at the interface, which results in the tunable electron-hole ratio in the reflected wave function due to the angular dependence of the Andreev reflection. Here, mapped control of the quasiparticle trajectories by the external magnetic field not only defines an experimental probe for fundamental studies of the Andreev reflection in graphene but also lays the foundation for further development of magnetic focusing devices based on nanoengineered superconducting two-dimensional materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000576393200002 Publication Date 2020-09-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; 1089-7550 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 3.2 Times cited 1 Open Access Not_Open_Access
  Notes ; This work was supported by the Brazilian Council for Research (CNPq) through the PRONEX/FUNCAP and PQ programs and by the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 3.2; 2020 IF: 2.068
  Call Number UA @ admin @ c:irua:172730 Serial 6639
Permanent link to this record
 

 
Author Liu, F.; Meng, J.; Xia, F.; Liu, Z.; Peng, H.; Sun, C.; Xu, L.; Van Tendeloo, G.; Mai, L.; Wu, J.
  Title Origin of the extra capacity in nitrogen-doped porous carbon nanofibers for high-performance potassium ion batteries Type A1 Journal article
  Year 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A
  Volume 8 Issue 35 Pages 18079-18086
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract While graphite has limited capacity as an anode material for potassium-ion batteries, nitrogen-doped carbon materials are more promising as extra capacity can usually be produced. However, the mechanism behind the origin of the extra capacity remains largely unclear. Here, the potassium storage mechanisms have been systematically studied in freestanding and porous N-doped carbon nanofibers with an additional similar to 100 mA h g(-1)discharge capacity at 0.1 A g(-1). The extra capacity is generated in the whole voltage window range from 0.01 to 2 V, which corresponds to both surface/interface K-ion absorptions due to the pyridinic N and pyrrolic N induced atomic vacancies and layer-by-layer intercalation due to the effects of graphitic N. As revealed by transmission electron microscopy, the N-doped samples have a clear and enhanced K-intercalation reaction. Theoretical calculations confirmed that the micropores with pyridinic N and pyrrolic N provide extra sites to form bonds with K, resulting in the extra capacity at high voltage. The chemical absorption of K-ions occurring inside the defective graphitic layer will prompt fast diffusion of K-ions and full realization of the intercalation capacity at low voltage. The approach of preparing N-doped carbon-based materials and the mechanism revealed by this work provide directions for the development of advanced materials for efficient energy storage.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000569873400015 Publication Date 2020-08-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7488; 2050-7496 ISBN Additional Links (up) UA library record; WoS full record; WoS citing articles
  Impact Factor 11.9 Times cited 2 Open Access OpenAccess
  Notes ; F. Liu and J. S. Meng contributed equally to this work. This work was supported by the National Natural Science Foundation of China (51832004 and 51521001), the National Key Research and Development Program of China (2016YFA0202603), and the Natural Science Foundation of Hubei Province (2019CFA001). The S/TEM work was performed at the Nanostructure Research Center (NRC), which is supported by the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX, 2020III002GX), the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and the State Key Laboratory of Silicate Materials for Architectures (all of the laboratories are at Wuhan University of Technology). ; Approved Most recent IF: 11.9; 2020 IF: 8.867
  Call Number UA @ admin @ c:irua:172741 Serial 6573
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: