toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lu, X.P.; Bruggeman, P.J.; Reuter, S.; Naidis, G.; Bogaerts, A.; Laroussi, M.; Keidar, M.; Robert, E.; Pouvesle, J.-M.; Liu, D.W.; Ostrikov, K.(K.) url  doi
openurl 
  Title Grand challenges in low temperature plasmas Type A1 Journal article
  Year 2022 Publication Frontiers in physics Abbreviated Journal  
  Volume 10 Issue Pages 1040658-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Low temperature plasmas (LTPs) enable to create a highly reactive environment at near ambient temperatures due to the energetic electrons with typical kinetic energies in the range of 1 to 10 eV (1 eV = 11600K), which are being used in applications ranging from plasma etching of electronic chips and additive manufacturing to plasma-assisted combustion. LTPs are at the core of many advanced technologies. Without LTPs, many of the conveniences of modern society would simply not exist. New applications of LTPs are continuously being proposed. Researchers are facing many grand challenges before these new applications can be translated to practice. In this paper, we will discuss the challenges being faced in the field of LTPs, in particular for atmospheric pressure plasmas, with a focus on health, energy and sustainability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000878212000001 Publication Date 2022-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor 3.1 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.1  
  Call Number UA @ admin @ c:irua:192173 Serial 7267  
Permanent link to this record
 

 
Author Seyedmohammadzadeh, M.; Sevik, C.; Guelseren, O. url  doi
openurl 
  Title Two-dimensional heterostructures formed by graphenelike ZnO and MgO monolayers for optoelectronic applications Type A1 Journal article
  Year 2022 Publication Physical review materials Abbreviated Journal  
  Volume 6 Issue 10 Pages 104004-104013  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional heterostructures are an emerging class of materials for novel applications because of extensive engineering potential by tailoring intriguing properties of different layers as well as the ones arising from their interface. A systematic investigation of mechanical, electronic, and optical properties of possible heterostructures formed by bilayer structures graphenelike ZnO and MgO monolayers is presented. Different functionality of each layer makes these heterostructures very appealing for device applications. ZnO layer is convenient for electron transport in these structures, while MgO layer improves electron collection. At the outset, all of the four possible stacking configurations across the heterostructure are mechanically stable. In addition, stability analysis using phonon dispersion reveals that the AB stacking formed by placing the Mg atom on top of the O atom of the ZnO layer is also dynamically stable at zero temperature. Henceforth, we have investigated the optical properties of these stable heterostructures by applying many-body perturbation theory within the framework of GW approximation and solving the Bethe-Salpeter equation. It is demonstrated that strong excitonic effects reduce the optical band gap to the visible light spectrum range. These results show that this new two-dimensional form of ZnO/MgO heterostructures open an avenue for novel optoelectronic device applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000877514900005 Publication Date 2022-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.4  
  Call Number UA @ admin @ c:irua:192167 Serial 7346  
Permanent link to this record
 

 
Author Gobato, Y.G.; de Brito, C.S.; Chaves, A.; Prosnikov, M.A.; Wozniak, T.; Guo, S.; Barcelos, I.D.; Milošević, M.V.; Withers, F.; Christianen, P.C.M. pdf  url
doi  openurl
  Title Distinctive g-factor of Moire-confined excitons in van der Waals heterostructures Type A1 Journal article
  Year 2022 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 22 Issue 21 Pages 8641-8641  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We investigated the valley Zeeman splitting of excitonic peaks in the microphotoluminescence (mu PL) spectra of high-quality hBN/WS2/MoSe2/hBN heterostructures under perpendicular magnetic fields up to 20 T. We identify two neutral exciton peaks in the mu PL spectra; the lower-energy peak exhibits a reduced g-factor relative to that of the higher energy peak and much lower than the recently reported values for interlayer excitons in other van der Waals (vdW) heterostructures. We provide evidence that such a discernible g-factor stems from the spatial confinement of the exciton in the potential landscape created by the moire pattern due to lattice mismatch or interlayer twist in heterobilayers. This renders magneto-mu PL an important tool to reach a deeper understanding of the effect of moire patterns on excitonic confinement in vdW heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000877287800001 Publication Date 2022-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 3 Open Access OpenAccess  
  Notes Approved Most recent IF: 10.8  
  Call Number UA @ admin @ c:irua:192166 Serial 7298  
Permanent link to this record
 

 
Author Pandey, T.; Du, M.-H.; Parker, D.S.; Lindsay, L. pdf  doi
openurl 
  Title Origin of ultralow phonon transport and strong anharmonicity in lead-free halide perovskites Type A1 Journal article
  Year 2022 Publication Materials Today Physics Abbreviated Journal  
  Volume 28 Issue Pages 100881-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract All-inorganic lead-free halide double perovskites offer a promising avenue toward non-toxic, stable optoelec-tronic materials, properties that are missing in their prominent lead-containing counterparts. Their large ther-mopowers and high carrier mobilities also make them promising for thermoelectric applications. Here, we present a first-principles study of the lattice vibrations and thermal transport behaviors of Cs2SnI6 and gamma-CsSnI3, two prototypical compounds in this materials class. We show that conventional static zero temperature density functional theory (DFT) calculations severely underestimate the lattice thermal conductivities (kappa l) of these compounds, indicating the importance of dynamical effects. By calculating anharmonic renormalized phonon dispersions, we show that some optic phonons significantly harden with increasing temperature (T), which reduces the scattering of heat carrying phonons and enhances calculated kappa l values when compared with standard zero temperature DFT. Furthermore, we demonstrate that coherence contributions to kappa l, arising from wave like phonon tunneling, are important in both compounds. Overall, calculated kappa l with temperature-dependent inter-atomic force constants, built from particle and coherence contributions, are in good agreement with available measured data, for both magnitude and temperature dependence. Large anharmonicity combined with low phonon group velocities yield ultralow kappa l values, with room temperature values of 0.26 W/m-K and 0.72 W/m-K predicted for Cs2SnI6 and gamma-CsSnI3, respectively. We further show that the lattice dynamics of these compounds are highly anharmonic, largely mediated by rotation of the SnI6 octahedra and localized modes originating from Cs rattling motion. These thermal characteristics combined with their previously computed excellent electronic properties make these perovskites promising candidates for optoelectronic and room temperature thermoelectric applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000876484300002 Publication Date 2022-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-5293 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.5 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 11.5  
  Call Number UA @ admin @ c:irua:192139 Serial 7329  
Permanent link to this record
 

 
Author dela Encarnacion, C.; Lenzi, E.; Henriksen-Lacey, M.; Molina, B.; Jenkinson, K.; Herrero, A.; Colas, L.; Ramos-Cabrer, P.; Toro-Mendoza, J.; Orue, I.; Langer, J.; Bals, S.; Jimenez de Aberasturi, D.; Liz-Marzan, L.M. pdf  doi
openurl 
  Title Hybrid magnetic-plasmonic nanoparticle probes for multimodal bioimaging Type A1 Journal article
  Year 2022 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 126 Issue 45 Pages 19519-19531  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Multimodal contrast agents, which take advantage of different imaging modalities, have emerged as an interesting approach to overcome the technical limitations of individual techniques. We developed hybrid nanoparticles comprising an iron oxide core and an outer gold spiky layer, stabilized by a biocompatible polymeric shell. The combined magnetic and optical properties of the different components provide the required functionalities for magnetic resonance imaging (MRI), surface-enhanced Raman scattering (SERS), and fluorescence imaging. The fabrication of such hybrid nanoprobes comprised the adsorption of small gold nanoparticles onto premade iron oxide cores, followed by controlled growth of spiky gold shells. The gold layer thickness and branching degree (tip sharpness) can be controlled by modifying both the density of Au nanoparticle seeds on the iron oxide cores and the subsequent nanostar growth conditions. We additionally demonstrated the performance of these hybrid multifunctional nanoparticles as multimodal contrast agents for correlative imaging of in vitro cell models and ex vivo tissues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000883021700001 Publication Date 2022-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 10 Open Access Not_Open_Access  
  Notes The authors acknowledge financial support from the European Research Council (ERC-AdG-2017, 787510) and MCIN/AEI/10.13039/501100011033 through grants PID2019-108854RA-I00 and Maria de Maeztu Unit of Excellence No. MDM-2017-0720. S.B. and K.J. acknowledge financial support from the European Commission under the Horizon 2020Programme by Grant No. 823717 (ESTEEM3) and ERC Consolidator Grant No. 815128 (REALNANO) . Approved Most recent IF: 3.7  
  Call Number UA @ admin @ c:irua:192104 Serial 7311  
Permanent link to this record
 

 
Author Parzyszek, S.; Tessarolo, J.; Pedrazo-Tardajos, A.; Ortuno, A.M.; Baginski, M.; Bals, S.; Clever, G.H.; Lewandowski, W. url  doi
openurl 
  Title Tunable circularly polarized luminescence via chirality induction and energy transfer from organic films to semiconductor nanocrystals Type A1 Journal article
  Year 2022 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 16 Issue 11 Pages 18472-18482  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Circularly polarized luminescent (CPL) films with high dissymmetry factors hold great potential for optoelectronic applications. Herei n , we propose a strategy for achieving strongly dissymetric CPL in nanocomposite films based on chira l i t y induction and energy transfer to semiconductor nanocrystals. First, focusing on a purely organic system, aggregation-induced emission (AIE) and CPL activity of organic liquid crystals (LCs) forming helical nanofilaments was detected, featuring green emission with high dissymmetry factors g(lum) similar to 10(-2). The handedness of helical filaments, and thus the sign of CPL, was controlled via minute amounts of a small chiral organic dopant. Second, nanocomposite films were fabricated by incorporating InP/ZnS semi-conductor quantum dots (QDs) into the LC matri x , which induced the chiral assembly of QDs and endowed them with chiroptical properties. Due to the spectral matching of the components, energy transfer (ET) from LC to QDs was possible enabling a convenient way of tuning CPL wavelengths by varying the LC/QD ratio. As obtained, composite films exhibited absolute glum values up to similar to 10(-2) and thermally on/off switchable luminescence. Overall, we demonstrate the induction of chiroptical properties by the assembly of nonchiral building QDs on the chiral organic template and energy transfer from organic films to QDs, representing a simple and versatile approach to tune the CPL activity of organic materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000883943600001 Publication Date 2022-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 10 Open Access OpenAccess  
  Notes W.L., S.P., and M.B. acknowledge support from the National Science Center Poland under the OPUS Grant UMO-2019/35/B/ST5/04488. J.T. and G.H.C. acknowledge the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy, Grant EXC 2033-390677874-RESOLV. W.L. acknowledges financial support from the European Commission under the Horizon 2020 Programme by Grant E210400529. S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by Grant 731019 (EUSMI) and ERC Consolidator Grant 815128 (REALNANO). We thank Elie Benchimol for his help with the CPL measurements. We thank Damian Pociecha for his help in the determination of phase sequences of organic compounds. Approved Most recent IF: 17.1  
  Call Number UA @ admin @ c:irua:192101 Serial 7345  
Permanent link to this record
 

 
Author Spaeth, P.; Adhikari, S.; Heyvaert, W.; Zhuo, X.; Garcia, I.; Liz-Marzan, L.M.; Bals, S.; Orrit, M.; Albrecht, W. url  doi
openurl 
  Title Photothermal circular dichroism measurements of single chiral gold nanoparticles correlated with electron tomography Type A1 Journal article
  Year 2022 Publication ACS Photonics Abbreviated Journal Acs Photonics  
  Volume 9 Issue 12 Pages 3995-4004  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Chemically synthesized metal nanoparticles with morphological chiral features are known to exhibit strong circular dichroism. However, we still lack understanding of the correlation between morphological and chiroptical features of plasmonic nanoparticles. To shed light on that question, single nanoparticle experiments are required. We performed photothermal circular dichroism measurements of single chiral and achiral gold nanoparticles and correlated the chiroptical response to the 3D morphology of the same nanoparticles retrieved by electron tomography. In contrast to an ensemble measurement, we show that individual particles within the ensemble display a broad distribution of strength and handedness of circular dichroism signals. Whereas obvious structural chiral features, such as helical wrinkles, translate into chiroptical ones, nanoparticles with less obvious chiral morphological features can also display strong circular dichroism signals. Interestingly, we find that even seemingly achiral nanoparticles can display large g-factors. The origin of this circular dichroism signal is discussed in terms of plasmonics and other potentially relevant factors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000884432100001 Publication Date 2022-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2330-4022 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited 5 Open Access OpenAccess  
  Notes This work was supported by The Netherlands Organisation for Scientific Research (NWO) as part of the Open Technology Program (OTP, Project No. 16008) and by a Spinoza prize (M.O.) . W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 Program (Grant No. 797153, SOPMEN) . L.M.L.M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (Grants PID2020-117779RB-I00 and MDM-2017-0720) . We thank Dr. Wolfgang L?fer for providing optical equipment. We also acknowledge the European Soft Matter Infrastructure (EUSMI: E201200468) . Approved Most recent IF: 7  
  Call Number UA @ admin @ c:irua:192098 Serial 7331  
Permanent link to this record
 

 
Author De Kerf, T.; Gestels, A.; Janssens, K.; Scheunders, P.; Steenackers, G.; Vanlanduit, S. url  doi
openurl 
  Title Quantitative detection of corrosion minerals in carbon steel using shortwave infrared hyperspectral imaging Type A1 Journal article
  Year 2022 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 12 Issue 50 Pages 32775-32783  
  Keywords A1 Journal article; Engineering sciences. Technology; Vision lab; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract This study presents a novel method for the detection and quantification of atmospheric corrosion products on carbon steel. Using hyperspectral imaging (HSI) in the short-wave infrared range (SWIR) (900-1700 nm), we are able to identify the most common corrosion minerals such as: alpha-FeO(OH) (goethite), gamma-FeO(OH) (lepidocrocite), and gamma-Fe2O3 (maghemite). Six carbon steel samples were artificially corroded in a salt spray chamber, each sample with a different duration (between 1 h and 120 hours). These samples were analysed by scanning X-ray diffraction (XRD) and also using a SWIR HSI system. The XRD data is used as baseline data. A random forest regression algorithm is used for training on the combined XRD and HSI data set. Using the trained model, we can predict the abundance map based on the HSI images alone. Several image correlation metrics are used to assess the similarity between the original XRD images and the HSI images. The overall abundance is also calculated and compared for XRD and HSI images. The analysis results show that we are able to obtain visually similar images, with error rates ranging from 3.27 to 13.37%. This suggests that hyperspectral imaging could be a viable tool for the study of corrosion minerals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000885554600001 Publication Date 2022-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.9  
  Call Number UA @ admin @ c:irua:192085 Serial 7334  
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C. url  doi
openurl 
  Title Extending and validating bubble nucleation rate predictions in a Lennard-Jones fluid with enhanced sampling methods and transition state theory Type A1 Journal article
  Year 2022 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys  
  Volume 157 Issue 18 Pages 184113-10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We calculate bubble nucleation rates in a Lennard-Jones fluid through explicit molecular dynamics simulations. Our approach-based on a recent free energy method (dubbed reweighted Jarzynski sampling), transition state theory, and a simple recrossing correction-allows us to probe a fairly wide range of rates in several superheated and cavitation regimes in a consistent manner. Rate predictions from this approach bridge disparate independent literature studies on the same model system. As such, we find that rate predictions based on classical nucleation theory, direct brute force molecular dynamics simulations, and seeding are consistent with our approach and one another. Published rates derived from forward flux sampling simulations are, however, found to be outliers. This study serves two purposes: First, we validate the reliability of common modeling techniques and extrapolation approaches on a paradigmatic problem in materials science and chemical physics. Second, we further test our highly generic recipe for rate calculations, and establish its applicability to nucleation processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000885260600002 Publication Date 2022-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.4  
  Call Number UA @ admin @ c:irua:192076 Serial 7266  
Permanent link to this record
 

 
Author Yao, Y.; Ugras, T.J.; Meyer, T.; Dykes, M.; Wang, D.; Arbe, A.; Bals, S.; Kahr, B.; Robinson, R.D. pdf  doi
openurl 
  Title Extracting pure circular dichroism from hierarchically structured CdS magic cluster films Type A1 Journal article
  Year 2022 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 16 Issue 12 Pages 20457-20469  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Chiroptically active, hierarchically structured materials are difficult to accurately characterize due to linear anisotropic contributions (i.e., linear dichroism (LD) and linear birefringence (LB)) and parasitic ellipticities that produce artifactual circular dichroism (CD) signals, in addition to chiral analyte contributions ranging from molecular-scale clusters to micron-sized assemblies. Recently, we have shown that CdS magic-sized clusters (MSC) can self-assemble into ordered films that have a hierarchical structure spanning seven orders of length-scale. These films have a strong CD response, but the chiral origins are obfuscated by the hierarchical architecture and LDLB contributions. Here, we derive and demonstrate a method for extracting the “pure” CD signal (CD generated by structural dissymmetry) from hierarchical MSC films and identified the chiral origin. The theory behind the method is derived using Mueller matrix and Stokes vector conventions and verified experimentally before being applied to hierarchical MSC and nanoparticle films with varying macroscopic orderings. Each film's extracted “true CD” shares a bisignate profile aligned with the exciton peak, indicating the assemblies adopt a chiral arrangement and form an exciton coupled system. Interestingly, the linearly aligned MSC film possesses one of the highest g-factors (0.05) among semiconducting nanostructures reported. Additionally, we find that films with similar electronic transition dipole alignment can possess greatly different g-factors, indicating chirality change rather than anisotropy is the cause of the difference in the CD signal. The difference in g-factor is controllable via film evaporation geometry. This study provides a simple means to measure “true” CD and presents an example of experimentally understanding chiroptic interactions in hierarchical nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000888219600001 Publication Date 2022-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 8 Open Access Not_Open_Access  
  Notes This work was supported in part by the National Science Foundation (NSF) under Award Nos. DMR-2003431 and CHE-2003586. This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (DMR-1719875). This work is partly supported by Grant PID2021-123438NB-I00 (MCIN/AEI/10.13039/501100011033 and “ERDF vA way of making Europe”) and Grant IT1566-22 (Eusko Jaurlaritza). D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in the Horizon 2020 program (Grant 894254 SuprAtom). S.B. acknowledges financial support from ERC Consolidator Grant No. 815128 REALNANO. B.K. acknowledges NSF award DMR-2003968. We would like to thank Dr. Mark August Pfeifer for help with circular dichroism measurements. Additionally, we would like to thank Professor Luis M. Liz-Marzan for invaluable discussions on chirality. Approved Most recent IF: 17.1  
  Call Number UA @ admin @ c:irua:192070 Serial 7305  
Permanent link to this record
 

 
Author Parastaev, A.; Muravev, V.; Osta, E.H.; Kimpel, T.F.; Simons, J.F.M.; van Hoof, A.J.F.; Uslamin, E.; Zhang, L.; Struijs, J.J.C.; Burueva, D.B.; Pokochueva, E.V.; Kovtunov, K.V.; Koptyug, I.V.; Villar-Garcia, I.J.; Escudero, C.; Altantzis, T.; Liu, P.; Béché, A.; Bals, S.; Kosinov, N.; Hensen, E.J.M. url  doi
openurl 
  Title Breaking structure sensitivity in CO2 hydrogenation by tuning metal–oxide interfaces in supported cobalt nanoparticles Type A1 Journal article
  Year 2022 Publication Nature Catalysis Abbreviated Journal Nat Catal  
  Volume 5 Issue 11 Pages 1051-1060  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract A high dispersion of the active metal phase of transition metals on oxide supports is important when designing efficient heterogeneous catalysts. Besides nanoparticles, clusters and even single metal atoms can be attractive for a wide range of reactions. However, many industrially relevant catalytic transformations suffer from structure sensitivity, where reducing the size of the metal particles below a certain size substantially lowers catalytic performance. A case in point is the low activity of small cobalt nanoparticles in the hydrogenation of CO and CO2. Here we show how engineering of catalytic sites at the metal–oxide interface in cerium oxide–zirconium dioxide (ceria–zirconia)-supported cobalt can overcome this structure sensitivity. Few-atom cobalt clusters dispersed on 3 nm cobalt(II)-oxide particles stabilized by ceria–zirconia yielded a highly active CO2 methanation catalyst with a specific activity higher than that of larger particles under the same conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000884939300006 Publication Date 2022-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2520-1158 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 37.8 Times cited 32 Open Access OpenAccess  
  Notes This research was supported by the Applied and Engineering Sciences division of the Netherlands Organization for Scientific Research through the Alliander (now Qirion) Perspective program on Plasma Conversion of CO2. We acknowledge Diamond Light Source for time on beamline B18 under proposal SP20715-1. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO) and T.A. acknowledges funding from the University of Antwerp Research fund (BOF). A.B. received funding from the European Union under grant agreement No 823717 – ESTEEM3. The authors acknowledge funding through the Hercules grant (FWO, University of Antwerp) I003218N “Infrastructure for imaging nanoscale processes in gas/vapour or liquid environments”. I.V.K., D.B.B., and E.V.P. acknowledge the Russian Ministry of Science and Higher Education (contract 075-15-2021-580) for financial support of parahydrogen-based studies. Experiments using synchrotron radiation XPS were performed at the CIRCE beamline at ALBA Synchrotron with the collaboration of ALBA staff. F. Oropeza Palacio and Rim C.J. van de Poll are acknowledged for the help with RPES measurements.; esteem3reported; esteem3jra Approved Most recent IF: 37.8  
  Call Number EMAT @ emat @c:irua:192068 Serial 7230  
Permanent link to this record
 

 
Author Wang, L.; Ratkowsky, D.A.; Gielis, J.; Ricci, P.E.; Shi, P. url  doi
openurl 
  Title Effects of the numerical values of the parameters in the Gielis equation on its geometries Type A1 Journal article
  Year 2022 Publication Symmetry Abbreviated Journal Symmetry-Basel  
  Volume 14 Issue 12 Pages 2475-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The Lamé curve is an extension of an ellipse, the latter being a special case. Dr. Johan Gielis further extended the Lamé curve in the polar coordinate system by introducing additional parameters (n1, n2, n3; m): rφ=1Acosm4φn2+1Bsinm4φn3−1/n1, which can be applied to model natural geometries. Here, r is the polar radius corresponding to the polar angle φ; A, B, n1, n2 and n3 are parameters to be estimated; m is the positive real number that determines the number of angles of the Gielis curve. Most prior studies on the Gielis equation focused mainly on its applications. However, the Gielis equation can also generate a large number of shapes that are rotationally symmetric and axisymmetric when A = B and n2 = n3, interrelated with the parameter m, with the parameters n1 and n2 determining the shapes of the curves. In this paper, we prove the relationship between m and the rotational symmetry and axial symmetry of the Gielis curve from a theoretical point of view with the condition A = B, n2 = n3. We also set n1 and n2 to take negative real numbers rather than only taking positive real numbers, then classify the curves based on extremal properties of r(φ) at φ = 0, π/m when n1 and n2 are in different intervals, and analyze how n1, n2 precisely affect the shapes of Gielis curves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000904525700001 Publication Date 2022-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-8994 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor 2.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.7  
  Call Number UA @ admin @ c:irua:191860 Serial 7301  
Permanent link to this record
 

 
Author Yao, W.; Niinemets, Ü.; Yao, W.; Gielis, J.; Schrader, J.; Yu, K.; Shi, P. url  doi
openurl 
  Title Comparison of two simplified versions of the Gielis equation for describing the shape of bamboo leaves Type A1 Journal article
  Year 2022 Publication Plants Abbreviated Journal  
  Volume 11 Issue 22 Pages 3058-11  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Bamboo is an important component in subtropical and tropical forest communities. The plant has characteristic long lanceolate leaves with parallel venation. Prior studies have shown that the leaf shapes of this plant group can be well described by a simplified version (referred to as SGE-1) of the Gielis equation, a polar coordinate equation extended from the superellipse equation. SGE-1 with only two model parameters is less complex than the original Gielis equation with six parameters. Previous studies have seldom tested whether other simplified versions of the Gielis equation are superior to SGE-1 in fitting empirical leaf shape data. In the present study, we compared a three-parameter Gielis equation (referred to as SGE-2) with the two-parameter SGE-1 using the leaf boundary coordinate data of six bamboo species within the same genus that have representative long lanceolate leaves, with >300 leaves for each species. We sampled 2000 data points at approximately equidistant locations on the boundary of each leaf, and estimated the parameters for the two models. The root–mean–square error (RMSE) between the observed and predicted radii from the polar point to data points on the boundary of each leaf was used as a measure of the model goodness of fit, and the mean percent error between the RMSEs from fitting SGE-1 and SGE-2 was used to examine whether the introduction of an additional parameter in SGE-1 remarkably improves the model’s fitting. We found that the RMSE value of SGE-2 was always smaller than that of SGE-1. The mean percent errors among the two models ranged from 7.5% to 20% across the six species. These results indicate that SGE-2 is superior to SGE-1 and should be used in fitting leaf shapes. We argue that the results of the current study can be potentially extended to other lanceolate leaf shapes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000887783400001 Publication Date 2022-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2223-7747 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:191859 Serial 7289  
Permanent link to this record
 

 
Author Volders, J.; Elen, K.; Raes, A.; Ninakanti, R.; Kelchtermans, A.-S.; Sastre, F.; Hardy, A.; Cool, P.; Verbruggen, S.W.; Buskens, P.; Van Bael, M.K. url  doi
openurl 
  Title Sunlight-powered reverse water gas shift reaction catalysed by plasmonic Au/TiO₂ nanocatalysts : effects of Au particle size on the activity and selectivity Type A1 Journal article
  Year 2022 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 12 Issue 23 Pages 4153-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This study reports the low temperature and low pressure conversion (up to 160 °C, p = 3.5 bar) of CO2 and H2 to CO using plasmonic Au/TiO2 nanocatalysts and mildly concentrated artificial sunlight as the sole energy source (up to 13.9 kW·m-2 = 13.9 suns). To distinguish between photothermal and non-thermal contributors, we investigated the impact of the Au nanoparticle size and light intensity on the activity and selectivity of the catalyst. A comparative study between P25 TiO2-supported Au nanocatalysts of a size of 6 nm and 16 nm displayed a 15 times higher activity for the smaller particles, which can only partially be attributed to the higher Au surface area. Other factors that may play a role are e.g., the electronic contact between Au and TiO2 and the ratio between plasmonic absorption and scattering. Both catalysts displayed ≥84% selectivity for CO (side product is CH4). Furthermore, we demonstrated that the catalytic activity of Au/TiO2 increases exponentially with increasing light intensity, which indicated the presence of a photothermal contributor. In dark, however, both Au/TiO2 catalysts solely produced CH4 at the same catalyst bed temperature (160 °C). We propose that the difference in selectivity is caused by the promotion of CO desorption through charge transfer of plasmon generated charges (as a non-thermal contributor).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000896093900001 Publication Date 2022-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.3  
  Call Number UA @ admin @ c:irua:191843 Serial 7341  
Permanent link to this record
 

 
Author Zhuo, X.; Mychinko, M.; Heyvaert, W.; Larios, D.; Obelleiro-Liz, M.; Taboada, J.M.; Bals, S.; Liz-Marzán, L.M. url  doi
openurl 
  Title Morphological and Optical Transitions during Micelle-Seeded Chiral Growth on Gold Nanorods Type A1 Journal article
  Year 2022 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Chiral plasmonics is a rapidly developing field where breakthroughs and unsolved problems coexist. We have recently reported binary surfactant-assisted seeded growth of chiral gold nanorods (Au NRs) with high chiroptical activity. Such a seeded-growth process involves the use of a chiral cosurfactant that induces micellar helicity, in turn driving the transition from achiral to chiral Au NRs, from both the morphological and the optical points of view. We report herein a detailed study on both transitions, which reveals intermediate states that were hidden so far. The correlation between structure and optical response is carefully analyzed, including the (linear and CD) spectral evolution over time, electron tomography, the impact of NR dimensions on their optical response, the variation of the absorption-to-scattering ratio during the evolution from achiral to chiral Au NRs, and the near-field enhancement related to chiral plasmon modes. Our findings provide further understanding of the growth process of chiral Au NRs and the associated optical changes, which will facilitate further study and applications of chiral nanomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000878324400001 Publication Date 2022-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 17 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (ERC-AdG-4DbioSERS-787510 to L.M.L.-M. and ERC-CoG-REALNANO-815128 to S.B.) and the MCIN/AEI/10.13039/501100011033 (Grant PID2020-117779RB-I00). X.Z. acknowledges funding from the Juan de la Cierva fellowship (FJC2018-036104-I) and the University Development Fund (UDF01002665, CUHK-Shenzhen). D.L., M.O.-L., and J.M.T. acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish Ministerio de Ciencia, Innovación y Universidades, under Projects PID2020-116627RB-C21 and PID2020-116627RB-C22, as well as from the ERDF/Galician Regional Government as part of the agreement for funding the Atlantic Research Center for Information and Communication Technologies (atlanTTic) and ERDF/Extremadura Regional Government under Projects IB18073 and GR18055. This work was performed in the framework of the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720). The authors acknowledge Dr. Guillermo González-Rubio for providing suggestions for synthesis and Dr. Irantzu Llarena for assisting with the CD measurements. Approved Most recent IF: 17.1  
  Call Number EMAT @ emat @c:irua:191815 Serial 7116  
Permanent link to this record
 

 
Author Ni, B.; Mychinko, M.; Gómez‐Graña, S.; Morales‐Vidal, J.; Obelleiro‐Liz, M.; Heyvaert, W.; Vila‐Liarte, D.; Zhuo, X.; Albrecht, W.; Zheng, G.; González‐Rubio, G.; Taboada, J.M.; Obelleiro, F.; López, N.; Pérez‐Juste, J.; Pastoriza‐Santos, I.; Cölfen, H.; Bals, S.; Liz‐Marzán, L.M. url  doi
openurl 
  Title Chiral Seeded Growth of Gold Nanorods Into 4‐Fold Twisted Nanoparticles with Plasmonic Optical Activity Type A1 Journal article
  Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume Issue Pages 2208299  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A robust and reproducible methodology to prepare stable inorganic nanoparticles with chiral morphology might hold the key to the practical utilization of these materials. We describe herein an optimized chiral growth method to prepare 4-fold twisted gold nanorods, where the amino acid cysteine is used as a dissymmetry inducer. Four tilted ridges were found to develop on the surface of single-crystal nanorods upon repeated reduction of HAuCl4, in the presence of cysteine as the chiral inducer and ascorbic acid as a reducing agent. From detailed electron microscopy analysis of the crystallographic structures, we propose that dissymmetry results from the development of chiral facets in the form of protrusions (tilted ridges) on the initial nanorods, eventually leading to a twisted shape. The role of cysteine is attributed to assisting enantioselective facet evolution, which is supported by density functional theory simulations of the surface energies, modified upon adsorption of the chiral molecule. The development of R-type and S-type chiral structures (small facets, terraces, or kinks) would thus be non-equal, removing the mirror symmetry of the Au NR and in turn resulting in a markedly chiral morphology with high plasmonic optical activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000888886000001 Publication Date 2022-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.4 Times cited 35 Open Access OpenAccess  
  Notes This work was supported by the MCIN/AEI/10.13039/501100011033 (Grants PID2019-108954RB-I00, PID2020-117371RA-I00, PID2020-117779RB-I00, and Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency Grant No. MDM-2017-0720), Xunta de Galicia/FEDER (Grant GRC ED431C 2020/09) and the European Regional Development Fund (ERDF). M.M., W.H. and S.B. acknowledge financial support from the European Commission under the Horizon 2020 Programme by ERC Consolidator grant no. 815128 (REALNANO). W.A. acknowledges financial support from the research program of AMOLF, which is partly financed by the Dutch Research Council (NWO). J. M.-V. and N. L. thank the Spanish Ministry of Science and Innovation for financial support (RTI2018- 101394-B-I00 and Severo Ochoa Grant MCIN/AEI/10.13039/501100011033 CEX2019-000925-S) and the Barcelona Supercomputing Center-MareNostrum (BSC-RES) for providing generous computer resources. S.G.-G. acknowledges the MCIN. B. N. acknowledges a postdoctoral fellowship of the Alexander von Humboldt Foundation. G. G.-R. acknowledges the Deutsche Forschungsgemeinschaft (GO 3526/1-1) for financial support. H.C. thanks Deutsche Forschungsgemeinschaft (DFG) SFB 1214 project B1 for funding. G.C-Z. acknowledges National Natural Science Foundation of China (Grant No. 21902148). Approved Most recent IF: 29.4  
  Call Number EMAT @ emat @c:irua:191808 Serial 7115  
Permanent link to this record
 

 
Author Osorio-Tejada, J.; van't Veer, K.; Long, N.V.D.; Tran, N.N.; Fulcheri, L.; Patil, B.S.; Bogaerts, A.; Hessel, V. url  doi
openurl 
  Title Sustainability analysis of methane-to-hydrogen-to-ammonia conversion by integration of high-temperature plasma and non-thermal plasma processes Type A1 Journal article
  Year 2022 Publication Energy Conversion And Management Abbreviated Journal Energ Convers Manage  
  Volume 269 Issue Pages 116095  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The Covid era has made us aware of the need for resilient, self-sufficient, and local production. We are likely willing to pay an extra price for that quality. Ammonia (NH3) synthesis accounts for 2 % of global energy production and is an important point of attention for the development of green energy technologies. Therefore, we propose a thermally integrated process for H2 production and NH3 synthesis using plasma technology, and we evaluate its techno-economic performance and CO2 footprint by life cycle assessment (LCA). The key is to integrate energy-wise a high-temperature plasma (HTP) process, with a (low-temperature) non-thermal plasma (NTP) process and to envision their joint economic potential. This particularly means raising the temperature of the NTP process, which is typically below 100 ◦ C, taking advantage of the heat released from the HTP process. For that purpose, we proposed the integrated process and conducted chemical kinetics simulations in the NTP section to determine the thermodynamically feasible operating window of this novel combined plasma process. The results suggest that an NH3 yield of 2.2 mol% can be attained at 302 ◦ C at an energy yield of 1.1 g NH3/kWh. Cost calculations show that the economic performance is far from commercial, mainly because of the too low energy yield of the NTP process. However, when we base our costs on the best literature value and plausible future scenarios for the NTP energy yield, we reach a cost prediction below 452 $/tonne NH3, which is competitive with conventional small-scale Haber-Bosch NH3 synthesis for distributed production. In addition, we demonstrate that biogas can be used as feed, thus allowing the proposed integrated reactor concept to be part of a biogas-to-ammonia circular concept. Moreover, by LCA we demonstrate the environmental benefits of the pro­posed plant, which could cut by half the carbon emissions when supplied by photovoltaic electricity, and even invert the carbon balance when supplied by wind power due to the avoided emissions of the carbon black credits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000880662100007 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0196-8904 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.4 Times cited Open Access OpenAccess  
  Notes European Research Council; European Commission, 810182 ; The authors acknowledge support from the ERC Synergy Grant “Surface-COnfined fast modulated Plasma for process and Energy intensification” (SCOPE), from the European Commission, with Grant No. 810182. Approved Most recent IF: 10.4  
  Call Number PLASMANT @ plasmant @c:irua:191785 Serial 7103  
Permanent link to this record
 

 
Author Hao, Y. url  openurl
  Title A joint experimental-modeling study of the structure and properties of functional molecular monolayers for the control of organic crystal growth Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages xiii, 174 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Among all types of discovered crystals, those formed by organic molecules show the greatest diversity, which results from the intrinsic complexity of the organic molecules and the weak interactions between them. Even for a given compound, different crystal structures can exist. This feature is referred to as polymorphism in the modern crystallographic context and those different crystal forms are called polymorphs. In reality, the crystallization of organic molecules is often performed at the surface of a substrate, giving rise to heterogeneous crystallization. Except for the well-known catalyzing effects, the existence of substrates brings more possibilities to the polymorphic behaviors of organic molecules, promoting the formation of new polymorphs that are only stable in the vicinity of the substrates. For this reason, these new polymorphic forms are often described as substrate-induced polymorphs (SIPs). It is of great importance to understand the formation of SIPs for organic molecules as it has been reported that SIPs can show superior properties with respect to their bulk form counterparts. Up to now, most studies focus on the identifying and characterizing the presence of SIPs, which relies mainly on X-ray diffraction techniques. However, a detailed explanation about the origin of SIPs is still missing. In this work, we have combined several powerful experimental characterization techniques, including X-ray diffraction, transmission electron microscopy (TEM) and scanning tunneling microscopy (STM) in order to reach an integrated view over the formation of SIPs. These experimental studies are strongly supported by computational chemistry simulations, such as density functional theory and molecular dynamics. A big advantage of using atomistic simulations is that it enables the possibility to predict a priori the crystal structures of SIPs and to establish a posteriori the general rules for the formation of SIPs. In practice, this thesis employs state-of-art atomistic simulation approaches in order to bridge substrate-induced polymorphism with a conceptually-connected research area: the self-assembly of molecular networks (SAMNs), also called 2D crystallization. Unlike SIPs, which extend at least several molecular layers, SAMNs are composed of a single layer of molecules with ordered packing. Our simulations have enabled a more comprehensive understanding about the role of substrate during the formation of SIPs and we elucidate how the positional and orientational order of molecules propagates from the substrate to the upper 2D and even 3D crystal layers. In this way, a fundamental understanding of the substrate-induced crystallization is gained by connecting 2D and 3D crystallization using substrate-induced approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:191758 Serial 7176  
Permanent link to this record
 

 
Author Thiruvottriyur Shanmugam, S. openurl 
  Title Singlet oxygen-based photoelectrochemical detection of nucleic acids Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages 217 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract MicroRNAs (miRNAs) are small oligonucleotides (18-25 bases) that play a key role in epigenetic regulation. Since the discovery of miRNAs in 1993, their role in biological processes has been extensively investigated. By now, it has been evidenced that monitoring and detection of miRNAs can improve (early) disease diagnosis. The existing diagnostic approaches have limitations such as the need for complex multistep protocols for sample preparation, analysis, data interpretation, high cost of equipment, the need for highly qualified personnel, and high laboratory standards. As opposed to this, point-of-care biosensors and chips aim to facilitate the procedure and avoid sending samples into centralized laboratories, which saves time, reduces the chance of sample degradation, and enables analysis of patient samples in remote areas, directly at home or primary and secondary care facilities (i.e. general practitioners and specialists). The latter is essential for therapy assessment and follow-up monitoring of patients with chronic diseases and cancer. Nevertheless, the development of such sensors is lagging compared to the projections of 10 – 20 years ago, mainly due to insufficient sensitivity, poor reproducibility, and the complexity of the sensors’ design reported in the research literature. This motivates the development of new detection strategies and technologies such as photoelectrochemical sensors that combine the best features of different sensing approaches. The primary concern when developing detection technologies for miRNA is the need for a highly sensitive and selective platform. This thesis explores a novel photoelectrochemical (PEC) method that is distinctive owing to its sensitive nature and simple and robust design. Firstly, we focused on the usage of recently emerging commercial gold-sputtered electrode systems for the detection of short nucleic acid with enzymatic amplification. Importantly, cleaning such electrodes is a challenge since the standard procedures known for regular disk electrodes such as polishing cannot be employed here, since it will damage the protective layer on the electrode. However, the electrodes can be washed and pretreated chemically and/or electrochemically. Thus, a procedure to effectively clean and modify the gold-sputtered electrode has been developed, resulting in high-performance gold-sputtered nucleic acid sensors. Next, the usage of molecular photosensitizers as an alternative to enzymatic amplification has been evaluated. We took advantage of the singlet oxygen production by photosensitizers upon photoexcitation, leading to a photocurrent response due to the singlet oxygen-induced (electro)chemical conversions. Following the demonstration of the detection strategy, the analytical performance of the sensing system was evaluated using magnetic beads-based nucleic acid assay on disposable electrode platforms, with a focus to enhance the sensitivity and robustness of the technique in detecting complementary nucleic acid targets. Following the fundamental evaluation of the singlet oxygen-based PEC detection of nucleic acids, we further optimized the assay and measurement parameters and employed the sensing strategy for a polymerase chain reaction-free (PCR-free) quantification of miRNAs related to prostate cancer. By successfully detecting and quantifying low-picomolar range concentrations (< 10 pM) in plasma samples from prostate cancer patients, we successfully showed the applicability of the novel sensing strategy. We have also compared and positioned the performance of our developed PEC strategy with an existing state-of-art technique, i.e. electrochemiluminescence (ECL). Our PEC strategy performed on par with ECL, both yielding low-picomolar detection limits in serum matrices, however quicker and cheaper than ECL. Owing to the versatility of this PEC technique, the final study explored its multiplexing capability. As a starting point in this branch of the research, we have investigated two possible ways for multiplexing. To perform multiple measurements at the same time, constructing calibration plots and quantifying unknown miRNA concentrations in patient samples at the same time, we have developed a high-throughput detection with 96X multi-channel electrode systems and in-house designed and constructed 96XLED illumination sources. Secondly, to detect more than one target miRNA in a single measurement, intra-vial multiplexing where the samples were analyzed for different targets in one vial was also explored. Altogether, this thesis presents the fundamentals, development and application of a novel PEC strategy for detecting short (< 25 bases) nucleic acid sequences, in particular, miRNA. With an aim to serve as a distinctive technique to function as a clinical testing platform without any need for PCR, this work adds value to the development of nucleic acid-based sensors for miRNAs and other short-stranded nucleic acid biomarkers, and benefits in the early detection of diseases like cancer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191753 Serial 8931  
Permanent link to this record
 

 
Author Larraín, M. openurl 
  Title Recycling of plastics : linking technical, economic and policy aspects of post-consumer plastic packaging Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages x, 165 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract The rise in plastic packaging production and disposal has encouraged the progress of recycling technologies and aroused policy discussion on how to increase recycling rates. However, the effect that these policy instruments will have on the development of the different recycling technologies has not been studied holistically yet. This dissertation explores how new and existing technologies will behave under the market and policy conditions observed at present and after the implementation of the policy instruments that are under discussion. The technologies that are analyzed in this thesis are mechanical recycling and thermochemical recycling of post-consumer polyolefin waste. Using a techno-economic assessment that takes into account the physical properties of the different plastic fractions and their contamination level, the study shows that both mechanical and thermochemical recycling can be profitable if oil prices remain steady or increase. Specifically, mechanical recycling will show better results than thermochemical recycling for plastic fractions with low contamination levels. On the contrary, thermochemical recycling is more profitable for fractions with a higher contamination level from which high-quality products cannot be obtained with mechanical recycling, such as PE films. Moreover, it demonstrates that besides the oil prices and sorted waste prices, waste purity and the plant capacity are the variables that influence more the net present value of thermochemical recycling and the labor cost and waste purity the ones of mechanical recycling. The thesis explores the dynamics between the stakeholders of the circular value chain and predicts the recycling rates under the implementation of several policy instruments. This is done with a supply chain equilibrium model, based on the extended producer responsibility scheme implemented in Flanders, that uses as an input the cost structures of mechanical and thermochemical recycling obtained from the techno-economic assessments. Direct interventions like recycled content standards, can decouple the recycling industry from the oil market, but in the long term, they may not present incentives to achieve recycling levels beyond the targeted amounts and thus limit technological innovation. On the contrary, economic interventions such as taxes, create economic incentives for recycling and allow fund collection from the government but leave the recycled levels dependent on external markets. Results also show that higher recycling rates does not necessarily mean better environmental performance. Therefore, when designing circular economy policies, policymakers should carefully analyze whether the intention is to increase circularity or improve the sustainability of the value chains.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links (down) UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:191730 Serial 7366  
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Kavak, S.; Bals, S.; Meynen, V. pdf  url
doi  openurl
  Title Modifying the Stöber Process: Is the Organic Solvent Indispensable? Type A1 Journal Article
  Year 2022 Publication Chemistry-A European Journal Abbreviated Journal Chem-Eur J  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The Stöber method is one of the most important and fundamental processes for the synthesis of inorganic (nano)materials but has the drawback of using a large amount of organic solvent. Herein, ethanol was used as an example to explore if the organic solvent in a typical Stöber method can be omitted. It was found that ethanol increases the particle size of the obtained silica spheres and aids the formation of uniform silica particles rather than forming a gel. Nevertheless, the results indicated that an organic solvent in the initial synthesis mixture is not indispensable. An initially immiscible synthesis method was discovered, which can replace the organic solvent-based Stöber method to successfully synthesize silica particles with the same size ranges as the original Stöber process without addition of organic solvents. Moreover, this process can be of further value for the extension to synthesis processes of other materials based on the Stöber process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000898283500001 Publication Date 2022-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.3 Times cited 3 Open Access OpenAccess  
  Notes The authors are grateful to Alexander Vansant and Dr. Steven Mullens of VITO for their contributions to the DLS measurements in this paper. J.W acknowledges the State Scholarship funded by the China Scholarship Council (201806060123). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). S.K acknowledges the Flemish Fund for Scientific Research (FWO Flanders) through a PhD research grant (1181122N). Approved Most recent IF: 4.3  
  Call Number EMAT @ emat @c:irua:191646 Serial 7233  
Permanent link to this record
 

 
Author Montiel, F.N.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical sensing of amphetamine-type stimulants (pre)-precursors to fight against the illicit production of synthetic drugs Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal  
  Volume 436 Issue Pages 141446-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The illicit drug precursor market for the manufacture of amphetamine-type stimulants (ATS), mainly amphetamine, methamphetamine and methylenedioxymethamphetamine (MDMA), has emerged quickly in the last years. The evidence of a more complex and sophisticated drug market underlines the pressing need for new on-site methods to quickly detect precursors of synthetic drugs, with electrochemical analysis as a promising technique. Herein, the electrochemical fingerprints of ten common ATS precursors-3-oxo-2-phenylbutanenitrile (APAAN), 3-oxo-2-phenylbutanamide (APAA), methyl 3-oxo-2-phenylbutanoate (MAPA), benzyl methyl ketone (BMK), 1-(1,3-benzodioxol-5-yl)propan-2-one (PMK), ephedrine, pseudoephedrine, safrole, sassafras oil and piperonal- are reported for the first time. The electrochemical screening disclosed the redox inactivity of BMK, which is an essential starting material for the production of ATS. Therefore, the local derivatization of BMK at an electrode surface by reductive amination is presented as a feasible solution to enrich its electrochemical fingerprint. To prove that, the resulting mixture was analyzed using a set of chromatographic techniques to understand the reaction mechanism and to identify possible electrochemical active products. Two reaction products (i.e. methamphetamine and 1-phenylpropan-2-ol) were found and characterized using mass spectrometry and electrochemical methods. Subsequently, the optimization of the reaction parameters was carefully addressed to set the portable electrochemical sensing strategy. Ultimately, the analysis concept was validated for the qualitative identification of ATS precursors in seizures from a forensic institute. Overall, the electrochemical approach demonstrates to be a useful and affordable analytical tool for the early identification of ATS precursors to prevent trafficking and drug manufacture in clandestine laboratories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000914833800003 Publication Date 2022-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191622 Serial 8858  
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.H.; Barry, D.; Xin, B.; Yagmurcukardes, M.; Zhang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M. url  doi
openurl 
  Title Wien effect in interfacial water dissociation through proton-permeable graphene electrodes Type A1 Journal article
  Year 2022 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 13 Issue 1 Pages 5776-5777  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 10(7) V m(-1), sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O reversible arrow H+ + OH-) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 10(8) V m(-1). The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager's theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000862552600012 Publication Date 2022-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 14 Open Access OpenAccess  
  Notes Approved Most recent IF: 16.6  
  Call Number UA @ admin @ c:irua:191575 Serial 7228  
Permanent link to this record
 

 
Author Chen, H.; Xu, J.; Wang, Y.; Wang, D.; Ferrer-Espada, R.; Wang, Y.; Zhou, J.; Pedrazo-Tardajos, A.; Yang, M.; Tan, J.-H.; Yang, X.; Zhang, L.; Sychugov, I.; Chen, S.; Bals, S.; Paulsson, J.; Yang, Z. pdf  doi
openurl 
  Title Color-switchable nanosilicon fluorescent probes Type A1 Journal article
  Year 2022 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 16 Issue 9 Pages 15450-15459  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Fluorescent probes are vital to cell imaging by allowing specific parts of cells to be visualized and quantified. Color-switchable probes (CSPs), with tunable emission wavelength upon contact with specific targets, are particularly powerful because they not only eliminate the need to wash away all unbound probe but also allow for internal controls of probe concentrations, thereby facilitating quantification. Several such CSPs exist and have proven very useful, but not for all key cellular targets. Here we report a pioneering CSP for in situ cell imaging using aldehydefunctionalized silicon nanocrystals (SiNCs) that switch their intrinsic photoluminescence from red to blue quickly when interacting with amino acids in live cells. Though conventional probes often work better in cell-free extracts than in live cells, the SiNCs display the opposite behavior and function well and fast in universal cell lines at 37 ? while requiring much higher temperature in extracts. Furthermore, the SiNCs only disperse in cytoplasm not nucleus, and their fluorescence intensity correlated linearly with the concentration of fed amino acids. We believe these nanosilicon probes will be promising tools to visualize distribution of amino acids and potentially quantify amino acid related processes in live cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000861080700001 Publication Date 2022-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 1 Open Access Not_Open_Access  
  Notes Z.Y. and H.C. acknowledge the funding support from the National Natural Science Foundation of China (21905316, 22175201) , the Science and Technology Planning Project of Guangdong Province (2019A050510018) , the Pearl River Recruitment Program of Talent (2019QN01C108) , the EU Infrastructure Project EUSMI (Grant No. E190700310) , and Sun Yat-sen University. S.C. acknowledge the funding support from the National Natural Science Foundation of China (32171192) . D.W. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (Grant No. 894254 SuprAtom) . S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by means of the grant agreement No. 731019 (EUSMI) and the ERC Consolidator Grant No. 815128 (REALNANO) . J.Z. acknowledged the funding support from the China Scholarship Council (CSC) . L.Z and J.X. thank Huzhou Li-in Biotechnology Co., Ltd. for the instrumentational and financial support. J.X. and R.F.-E. appreciate fruitful discussion with Dr. Emanuele Leoncini and Dr. Noah Olsman. J.X. and R.F.-E. also thank Mr. Daniel Eaton and Mr. Carlos Sanchez for their help with microscope setups. Approved Most recent IF: 17.1  
  Call Number UA @ admin @ c:irua:191574 Serial 7288  
Permanent link to this record
 

 
Author De Backer, A.; Zhang, Z.; van den Bos, K.H.W.; Bladt, E.; Sánchez‐Iglesias, A.; Liz‐Marzán, L.M.; Nellist, P.D.; Bals, S.; Van Aert, S. url  doi
openurl 
  Title Element Specific Atom Counting at the Atomic Scale by Combining High Angle Annular Dark Field Scanning Transmission Electron Microscopy and Energy Dispersive X‐ray Spectroscopy Type A1 Journal article
  Year 2022 Publication Small methods Abbreviated Journal Small Methods  
  Volume Issue Pages 2200875  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A new methodology is presented to count the number of atoms in multimetallic nanocrystals by combining energy dispersive X-ray spectroscopy (EDX) and high angle annular dark field scanning transmission electron microscopy (HAADF STEM). For this purpose, the existence of a linear relationship between the incoherent HAADF STEM and EDX images is exploited. Next to the number of atoms for each element in the atomic columns, the method also allows quantification of the error in the obtained number of atoms, which is of importance given the noisy nature of the acquired EDX signals. Using experimental images of an Au@Ag core–shell nanorod, it is demonstrated that 3D structural information can be extracted at the atomic scale. Furthermore, simulated data of an Au@Pt core–shell nanorod show the prospect to characterize heterogeneous nanostructures with adjacent atomic numbers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000862072700001 Publication Date 2022-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-9608 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.4 Times cited 5 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A., Grant 815128 REALNANO to S.B., and Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0267.18N, G.0502.18N, G.0346.21N) and a postdoctoral grant to A.D.B.; esteem3reported; esteem3JRA Approved Most recent IF: 12.4  
  Call Number EMAT @ emat @c:irua:191570 Serial 7109  
Permanent link to this record
 

 
Author Samal, S.K.; Soenen, S.; Puppi, D.; De Wael, K.; Pati, S.; De Smedt, S.; Braeckmans, K.; Dubruel, P. url  doi
openurl 
  Title Bio-nanohybrid gelatin/quantum dots for cellular imaging and biosensing applications Type A1 Journal article
  Year 2022 Publication International journal of molecular sciences Abbreviated Journal  
  Volume 23 Issue 19 Pages 11867-12  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The bio-nanohybrid gelatin protein/cadmium sulfide (Gel/CdS) quantum dots (QDs) have been designed via a facile one-pot strategy. The amino acids group of gelatin chelate Cd2+ and grow CdS QDs without any agglomeration. The H-1 NMR spectra indicate that during the above process there are no alterations of the gelatin protein structure conformation and chemical functionalities. The prepared Gel/CdS QDs were characterized and their potential as a system for cellular imaging and the electrochemical sensor for hydrogen peroxide (H2O2) detection applications were investigated. The obtained results demonstrate that the developed Gel/CdS QDs system could offer a simple and convenient operating strategy both for the class of contrast agents for cell labeling and electrochemical sensors purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000867759600001 Publication Date 2022-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067; 1661-6596 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191566 Serial 8836  
Permanent link to this record
 

 
Author Le, T.-S.; Nguyen, P.-D.; Ngo, H.H.; Bui, X.-T.; Dang, B.-T.; Diels, L.; Bui, H.-H.; Nguyen, M.-T.; Le Quang, D.-T. pdf  doi
openurl 
  Title Two-stage anaerobic membrane bioreactor for co-treatment of food waste and kitchen wastewater for biogas production and nutrients recovery Type A1 Journal article
  Year 2022 Publication Chemosphere Abbreviated Journal Chemosphere  
  Volume 309 Issue 1 Pages 136537-136539  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Co-digestion of organic waste and wastewater is receiving increased attention as a plausible waste management approach toward energy recovery. However, traditional anaerobic processes for co-digestion are particularly susceptible to severe organic loading rates (OLRs) under long-term treatment. To enhance technological feasi-bility, this work presented a two-stage Anaerobic Membrane Bioreactor (2 S-AnMBR) composed of a hydrolysis reactor (HR) followed by an anaerobic membrane bioreactor (AnMBR) for long-term co-digestion of food waste and kitchen wastewater. The OLRs were expanded from 4.5, 5.6, and 6.9 kg COD m- 3 d-1 to optimize biogas yield, nitrogen recovery, and membrane fouling at ambient temperatures of 25-32 degrees C. Results showed that specific methane production of UASB was 249 +/- 7 L CH4 kg-1 CODremoved at the OLR of 6.9 kg TCOD m- 3 d-1. Total Chemical Oxygen Demand (TCOD) loss by hydrolysis was 21.6% of the input TCOD load at the hydraulic retention time (HRT) of 2 days. However, low total volatile fatty acid concentrations were found in the AnMBR, indicating that a sufficiently high hydrolysis efficiency could be accomplished with a short HRT. Furthermore, using AnMBR structure consisting of an Upflow Anaerobic Sludge Blanket Reactor (UASB) followed by a side -stream ultrafiltration membrane alleviated cake membrane fouling. The wasted digestate from the AnMBR comprised 42-47% Total Kjeldahl Nitrogen (TKN) and 57-68% total phosphorous loading, making it suitable for use in soil amendments or fertilizers. Finally, the predominance of fine particles (D10 = 0.8 mu m) in the ultra -filtration membrane housing (UFMH) could lead to a faster increase in trans-membrane pressure during the filtration process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000866470600004 Publication Date 2022-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535; 1879-1298 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.8 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.8  
  Call Number UA @ admin @ c:irua:191557 Serial 7347  
Permanent link to this record
 

 
Author Deylgat, E.; Chen, E.; Fischetti, M.V.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Image-force barrier lowering in top- and side-contacted two-dimensional materials Type A1 Journal article
  Year 2022 Publication Solid state electronics Abbreviated Journal Solid State Electron  
  Volume 198 Issue Pages 108458-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We compare the image-force barrier lowering (IFBL) and calculate the resulting contact resistance for four different metal-dielectric-two-dimensional (2D) material configurations. We analyze edge contacts in three different geometries (a homogeneous dielectric throughout, including the 2D layer; a homogeneous dielectric surrounding the 2D layer, both ungated and back gated) and also a top-contact assuming a homogeneous dielectric. The image potential energy of each configuration is determined and added to the Schottky energy barrier which is calculated assuming a textbook Schottky potential. For each configuration, the contact resistivity is calculated using the WKB approximation and the effective mass approximation using either SiO2 or HfO2 as the surrounding dielectric. We obtain the lowest contact resistance of 1 k Omega mu m by n-type doping an edge contacted transition metal-dichalcogenide (TMD) monolayer, sandwiched between SiO2 dielectric, with similar to 1012 cm-2 donor atoms. When this optimal configuration is used, the contact resistance is lowered by a factor of 50 compared to the situation when the IFBL is not considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000876289800003 Publication Date 2022-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1101 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor 1.7 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 1.7  
  Call Number UA @ admin @ c:irua:191556 Serial 7312  
Permanent link to this record
 

 
Author Yu, Y.; Xie, X.; Liu, X.; Li, J.; Peeters, F.M.; Li, L. url  doi
openurl 
  Title Two-dimensional semimetal states in transition metal trichlorides : a first-principles study Type A1 Journal article
  Year 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 121 Issue 11 Pages 112405-112407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The two-dimensional (2D) transition metal trihalide (TMX3, X = Cl, Br, I) family has attracted considerable attention in recent years due to the realization of CrCl3, CrBr3, and CrI3 monolayers. Up to now, the main focus of the theoretically predicted TMX3 monolayers has been on the Chern insulator states, which can realize the quantum anomalous Hall effect. Here, using first-principles calculations, we theoretically demonstrate that the stable OsCl3 monolayer has a ferromagnetic ground state and a spin-polarized Dirac point without spin-orbit coupling (SOC), which disappears in the band structure of a Janus OsBr1.5Cl1.5 monolayer. We find that OsCl3 exhibits in-plane magnetization when SOC is included. By manipulating the magnetization direction along the C-2 symmetry axis of the OsCl3 structure, a gapless half-Dirac semimetal state with SOC can be achieved, which is different from the gapped Chern insulator state. Both semimetal states of OsCl3 monolayer without and with SOC exhibit a linear half-Dirac point (twofold degenerate) with high Fermi velocities. The achievement of the 2D semimetal state with SOC is expected to be found in other TMX3 monolayers, and we confirm it in a TiCl3 monolayer. This provides a different perspective to study the band structure with SOC of the 2D TMX3 family.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000863219400003 Publication Date 2022-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links (down) UA library record; WoS full record  
  Impact Factor 4 Times cited 4 Open Access OpenAccess  
  Notes Approved Most recent IF: 4  
  Call Number UA @ admin @ c:irua:191541 Serial 7223  
Permanent link to this record
 

 
Author Jiang, J.; Milošević, M.V.; Wang, Y.-L.; Xiao, Z.-L.; Peeters, F.M.; Chen, Q.-H. url  doi
openurl 
  Title Field-free superconducting diode in a magnetically nanostructured superconductor Type A1 Journal article
  Year 2022 Publication Physical review applied Abbreviated Journal Phys Rev Appl  
  Volume 18 Issue 3 Pages 034064-34069  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A strong superconducting diode effect (SDE) is revealed in a thin superconducting film periodically nanostructured with magnetic dots. The SDE is caused by the current-activated dissipation mitigated by vortex-antivortex pairs (VAPs), which periodically nucleate under the dots, move and annihilate in the superconductor-eventually driving the system to the high-resistive state. Inversing the polarity of the applied current destimulates the nucleation of VAPs, the system remains superconducting up to far larger currents, leading to the pronounced diodic response. Our dissipative Ginzburg-Landau simulations detail the involved processes, and provide reliable geometric and parametric ranges for the experimental realiza-tion of such a nonvolatile superconducting diode, which operates in the absence of any applied magnetic field while being fluxonic by design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000870234200001 Publication Date 2022-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links (down) UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 9 Open Access OpenAccess  
  Notes Approved Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:191539 Serial 7307  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: