|   | 
Details
   web
Records
Author Carmesin, C.; Schowalter, M.; Lorke, M.; Mourad, D.; Grieb, T.; Müller-Caspary, K.; Yacob, M.; Reithmaier, J.P.; Benyoucef, M.; Rosenauer, A.; Jahnke, F.
Title Interplay of morphology, composition, and optical properties of InP-based quantum dots emitting at the 1.55 \mum telecom wavelength Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 23 Pages 235309
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Results for the development and detailed analysis of self-organized InAs/InAlGaAs/InP quantum dots suitable for single-photon emission at the 1.55 mu m telecom wavelength are reported. The structural and compositional properties of the system are obtained from high-resolution scanning transmission electron microscopy of individual quantum dots. The system is composed of almost pure InAs quantum dots embedded in quaternary InAlGaAs barrier material, which is lattice matched to the InP substrate. When using the measured results for a representative quantum-dot geometry as well as experimentally reconstructed alloy concentrations, a combination of strain-field and electronic-state calculations is able to reproduce the quantum-dot emission wavelength in agreement with the experimentally determined photoluminescence spectrum. The inhomogeneous broadening of the latter can be related to calculated variations of the emission wavelength for the experimentally deduced In-concentration fluctuations and size variations.'));
Address
Corporate Author (down) Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000418654200009 Publication Date 2017-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access OpenAccess
Notes ; The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft Project No. JA 14-1, the BMBF Projects Q.com-H No. 16KIS0111 and No. 16KIS0112, as well as computational resources from HLRN (Hannover, Berlin). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:148505 Serial 4882
Permanent link to this record
 

 
Author Clima, S.; Belmonte, A.; Degraeve, R.; Fantini, A.; Goux, L.; Govoreanu, B.; Jurczak, M.; Ota, K.; Redolfi, A.; Kar, G.S.; Pourtois, G.
Title Kinetic and thermodynamic heterogeneity : an intrinsic source of variability in Cu-based RRAM memories Type A1 Journal article
Year 2017 Publication Journal of computational electronics Abbreviated Journal J Comput Electron
Volume 16 Issue 4 Pages 1011-1016
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract <script type='text/javascript'>document.write(unpmarked('The resistive random-access memory (RRAM) device concept is close to enabling the development of a new generation of non-volatile memories, provided that their reliability issues are properly understood. The design of a RRAM operating with extrinsic defects based on metallic inclusions, also called conductive bridge RAM, allows the use of a large spectrum of solid electrolytes. However, when scaled to device dimensions that meet the requirements of the latest technological nodes, the discrete nature of the atomic structure of the materials impacts the device operation. Using density functional theory simulations, we evaluated the migration kinetics of Cu conducting species in amorphous and solid electrolyte materials, and established that atomic disorder leads to a large variability in terms of defect stability and kinetic barriers. This variability has a significant impact on the filament resistance and its dynamics, as evidenced during the formation step of the resistive filament. Also, the atomic configuration of the formed filament can age/relax to another metastable atomic configuration, and lead to a modulation of the resistivity of the filament. All these observations are qualitatively explained on the basis of the computed statistical distributions of the defect stability and on the kinetic barriers encountered in RRAM materials.'));
Address
Corporate Author (down) Thesis
Publisher Place of Publication Place of publication unknown Editor
Language Wos 000417598100004 Publication Date 2017-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1569-8025 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.526 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 1.526
Call Number UA @ lucian @ c:irua:148569 Serial 4883
Permanent link to this record
 

 
Author Moldovan, D.; Masir, M.R.; Peeters, F.M.
Title Magnetic field dependence of the atomic collapse state in graphene Type A1 Journal article
Year 2018 Publication 2D materials Abbreviated Journal 2D Mater
Volume 5 Issue 1 Pages 015017
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Quantum electrodynamics predicts that heavy atoms (Z \u003E Z(c) approximate to 170) will undergo the process of atomic collapse where electrons sink into the positron continuum and a new family of so-called collapsing states emerges. The relativistic electrons in graphene exhibit the same physics but at a much lower critical charge (Z(c) approximate to 1) which has made it possible to confirm this phenomenon experimentally. However, there exist conflicting predictions on the effect of a magnetic field on atomic collapse. These theoretical predictions are based on the continuum Dirac-Weyl equation, which does not have an exact analytical solution for the interplay of a supercritical Coulomb potential and the magnetic field. Approximative solutions have been proposed, but because the two effects compete on similar energy scales, the theoretical treatment varies depending on the regime which is being considered. These limitations are overcome here by starting from a tight-binding approach and computing exact numerical results. By avoiding special limit cases, we found a smooth evolution between the different regimes. We predict that the atomic collapse effect persists even after the magnetic field is activated and that the critical charge remains unchanged. We show that the atomic collapse regime is characterized: (1) by a series of Landau level anticrossings and (2) by the absence of root B scaling of the Landau levels with regard to magnetic field strength.'));
Address
Corporate Author (down) Thesis
Publisher IOP Publishing Place of Publication Bristol Editor
Language Wos 000415015000001 Publication Date 2017-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 13 Open Access
Notes ; We thank Eva Andrei, Jinhai Mao and Yuhang Jiang for insightful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish Government. ; Approved Most recent IF: 6.937
Call Number UA @ lucian @ c:irua:147361UA @ admin @ c:irua:147361 Serial 4884
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Peeters, F.M.; Neilson, D.
Title Multicomponent electron-hole superfluidity and the BCS-BEC crossover in double bilayer graphene Type A1 Journal article
Year 2017 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 119 Issue 25 Pages 257002
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Superfluidity in coupled electron-hole sheets of bilayer graphene is predicted here to be multicomponent because of the conduction and valence bands. We investigate the superfluid crossover properties as functions of the tunable carrier densities and the tunable energy band gap Eg. For small band gaps there is a significant boost in the two superfluid gaps, but the interaction-driven excitations from the valence to the conduction band can weaken the superfluidity, even blocking the system from entering the Bose-Einstein condensate (BEC) regime at low densities. At a given larger density, a band gap E-g similar to 80-120 meV can carry the system into the strong-pairing multiband BCS-BEC crossover regime, the optimal range for realization of high-Tc superfluidity.'));
Address
Corporate Author (down) Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000418619100017 Publication Date 2017-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 18 Open Access
Notes ; We thank Mohammad Zarenia for useful discussions. Part of this work was supported by FWO-VI (Flemish Science Foundation) and the Methusalem program. ; Approved Most recent IF: 8.462
Call Number UA @ lucian @ c:irua:148509 Serial 4885
Permanent link to this record
 

 
Author Savina, A.A.; Morozov, V.A.; Buzlukov, A.L.; Arapova, I.Y.; Stefanovich, S.Y.; Baklanova, Y.V.; Denisova, T.A.; Medvedeva, N.I.; Bardet, M.; Hadermann, J.; Lazoryak, B.I.; Khaikina, E.G.
Title New solid electrolyte Na9Al(MoO4)6 : structure and Na+ ion conductivity Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 20 Pages 8901-8913
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Solid electrolytes are important materials with a wide range of technological applications. This work reports the crystal structure and electrical properties of a new solid electrolyte Na9Al(MoO4)(6). The monoclinic Na9Al(MoO4)(6) consists of isolated polyhedral, [Al(MoO4)(6)](9-) clusters composed of a central AlO6 octahedron sharing vertices with six MoO4 tetrahedra to form a three-dimensional framework. The AlO6 octahedron also shares edges with one NalO(6) octahedron and two Na2O(6) octahedra. Na3-Na5 atoms are located in the framework cavities. The structure is related to that of sodium ion conductor II-Na3Fe2(AsO4)(3). High-temperature conductivity measurements revealed that the conductivity (sigma) of Na9Al(MoO4)(6) at 803 K equals 1.63 X 10(-2) S cm(-1). The temperature behavior of the Na-23 and Al-27 nuclear magnetic resonance spectra and the spin-lattice relaxation rates of the Na-23 nuclei indicate the presence of fast Na+ ion diffusion in the studied compound. At T\u003C490 K, diffusion occurs by means of Na+ ion jumps exclusively through the sublattice of Na3-Na5 positions, whereas Na1 and Na2 become involved in the diffusion processes (through chemical exchange with the Na3-Na5 sublattice) only at higher temperatures.'));
Address
Corporate Author (down) Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000413884900037 Publication Date 2017-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 13 Open Access OpenAccess
Notes ; The research was performed within the state assignment of FASO of Russia (Themes 01201463330, A16-116122810214-9, and 0339-2016-0007), supported in part by the Russian Foundation for Basic Research (Projects 16-03-00510, 16-03-00164, and 17-03-00333). ; Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:147432 Serial 4886
Permanent link to this record
 

 
Author Kundys, D.; Van Duppen, B.; Marshall, O.P.; Rodriguez, F.; Torre, I.; Tomadin, A.; Polini, M.; Grigorenko, A.N.
Title Nonlinear light mixing by graphene plasmons Type A1 Journal article
Year 2018 Publication Nano letters Abbreviated Journal Nano Lett
Volume 18 Issue 1 Pages 282-287
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Graphene is known to possess strong optical nonlinearity which turned out to be suitable for creation of efficient saturable absorbers in mode locked fiber lasers. Nonlinear response of graphene can be further enhanced by the presence of graphene plasmons. Here, we report a novel nonlinear effect observed in nanostructured graphene which comes about due to excitation of graphene plasmons. We experimentally detect and theoretically explain enhanced mixing of near-infrared and mid-infrared light in arrays of graphene nanoribbons. Strong compression of light by graphene plasmons implies that the described effect of light mixing is nonlocal in nature and orders of magnitude larger than the conventional local graphene nonlinearity. Both second and third order nonlinear effects were observed in our experiments with the recalculated third-order nonlinearity coefficient reaching values of 4.5 x 10(-6) esu. The suggested effect could be used in variety of applications including nonlinear light modulators, light multiplexers, light logic, and sensing devices.'));
Address
Corporate Author (down) Thesis
Publisher Place of Publication Washington Editor
Language Wos 000420000000039 Publication Date 2017-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 12 Open Access
Notes ; This work was supported by the European Union's Horizon 2020 research and innovation programme under Grant Agreement 696656 “GrapheneCorel”, Bluestone Global Technology, and Fondazione Istituto Italiano di Tecnologia. B.V.D. is supported by a postdoctoral fellowship granted by FWO-Vl and wishes to thank Scuola Normale Superiore (Pisa, Italy) for their hospitality during the final stages of preparation of this work. ; Approved Most recent IF: 12.712
Call Number UA @ lucian @ c:irua:148457UA @ admin @ c:irua:148457 Serial 4887
Permanent link to this record
 

 
Author Sanchez-Barriga, J.; Ogorodnikov, I.I.; Kuznetsov, M.V.; Volykhov, A.A.; Matsui, F.; Callaert, C.; Hadermann, J.; Verbitskiy, N.I.; Koch, R.J.; Varykhalov, A.; Rader, O.; Yashina, L.V.
Title Observation of hidden atomic order at the interface between Fe and topological insulator Bi2Te3 Type A1 Journal article
Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue 45 Pages 30520-30532
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('To realize spintronic devices based on topological insulators (TIs), well-defined interfaces between magnetic metals and TIs are required. Here, we characterize atomically precisely the interface between the 3d transition metal Fe and the TI Bi2Te3 at different stages of its formation. Using photoelectron diffraction and holography, we show that after deposition of up to 3 monolayers Fe on Bi2Te3 at room temperature, the Fe atoms are ordered at the interface despite the surface disorder revealed by our scanning-tunneling microscopy images. We find that Fe occupies two different sites: a hollow adatom deeply relaxed into the Bi2Te3 quintuple layers and an interstitial atom between the third (Te) and fourth (Bi) atomic layers. For both sites, our core-level photoemission spectra and density-functional theory calculations demonstrate simultaneous chemical bonding of Fe to both Te and Bi atoms. We further show that upon deposition of Fe up to a thickness of 20 nm, the Fe atoms penetrate deeper into the bulk forming a 2-5 nm interface layer containing FeTe. In addition, excessive Bi is pushed down into the bulk of Bi2Te3 leading to the formation of septuple layers of Bi3Te4 within a distance of similar to 25 nm from the interface. Controlling the magnetic properties of the complex interface structures revealed by our work will be of critical importance when optimizing the efficiency of spin injection in TI-based devices.'));
Address
Corporate Author (down) Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000416054400023 Publication Date 2017-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 4 Open Access OpenAccess
Notes ; The authors acknowledge financial support within the bilateral program “Russian-German Laboratory at BESSY II” and thank Helmholtz Zentrum Berlin for granting access to the beamlines RGBL, UE112-PGM2a and U49-PGM1. The Supercomputing Center of Lomonosov Moscow State University is gratefully acknowledged for granting access to the “Lomonosov” supercomputer. The work was partially supported by DFG priority program SPP 1666, Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft (Grant No. HRJRG-408) and Russian Foundation for Basic Research (Grants No. 13-02-91327 and No. 16-29-06410). C. C. acknowledges support from the University of Antwerp through the BOF grant 31445. The authors thank Dr Vera Neudachina, Daria Tsukanova, Dr Elmar Kataev and Dr Maria Batuk for their support during the XPS and TEM experiments. ; Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:147659 Serial 4888
Permanent link to this record
 

 
Author Wang, Y.-L.; Glatz, A.; Kimmel, G.J.; Aranson, I.S.; Thoutam, L.R.; Xiao, Z.-L.; Berdiyorov, G.R.; Peeters, F.M.; Crabtree, G.W.; Kwok, W.-K.
Title Parallel magnetic field suppresses dissipation in superconducting nanostrips Type A1 Journal article
Year 2017 Publication America Abbreviated Journal P Natl Acad Sci Usa
Volume 114 Issue 48 Pages E10274-E10280
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the \u0022holy grail\u0022 of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.'));
Address
Corporate Author (down) Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000416891600007 Publication Date 2017-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.661 Times cited 18 Open Access
Notes ; This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The simulation was supported by the Scientific Discovery through Advanced Computing program funded by US DOE, Office of Science, Advanced Scientific Computing Research and Basic Energy Science, Division of Materials Science and Engineering. L.R.T. and Z.-L.X. acknowledge support through National Science Foundation Grant DMR-1407175. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. ; Approved Most recent IF: 9.661
Call Number UA @ lucian @ c:irua:147697 Serial 4889
Permanent link to this record
 

 
Author Stosic, D.; Ludermir, T.B.; Milošević, M.V.
Title Pinning of magnetic skyrmions in a monolayer Co film on Pt(111) : Theoretical characterization and exemplified utilization Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 21 Pages 214403
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Magnetic skyrmions are nanoscale windings of the spin structure that can be observed in chiral magnets and hold promise for potential applications in storing or processing information. Pinning due to ever-present material imperfections crucially affects the mobility of skyrmions. Therefore, a proper understanding of how magnetic skyrmions pin to defects is necessary for the development and performance of spintronic devices. Here we present a fundamental analysis on the interactions of single skyrmions with atomic defects of distinctly different origins, in a Co monolayer on Pt, based on minimum-energy paths considerations and atomic-spin simulations. We first report the preferred pinning loci of the skyrmion as a function of its nominal size and the type of defect being considered, to further reveal the manipulation and \u0022breathing\u0022 of skyrmion core in the vicinity of a defect. We also show the behavior of skyrmions in the presence of an extended defect of particular geometry, that can lead to ratcheted skyrmion motion or a facilitated guidance on a defect \u0022trail.\u0022 We close the study with reflections on the expected thermal stability of the skyrmion against collapse on itself for a given nature of the defect, and discuss the applications where control of skyrmions by defects is of particular interest.'));
Address
Corporate Author (down) Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000416846900002 Publication Date 2017-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 52 Open Access
Notes ; This work was supported by the Research Foundation, Flanders (FWO-Vlaanderen) and Brazilian agency CNPq (Grants No. 442668/2014-7 and No. 140840/2016-8). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:147684 Serial 4890
Permanent link to this record
 

 
Author Dutta, S.; Zografos, O.; Gurunarayanan, S.; Radu, I.; Sorée, B.; Catthoor, F.; Naeemi, A.
Title Proposal for nanoscale cascaded plasmonic majority gates for non-Boolean computation Type A1 Journal article
Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 7 Issue Pages 17866
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Surface-plasmon-polariton waves propagating at the interface between a metal and a dielectric, hold the key to future high-bandwidth, dense on-chip integrated logic circuits overcoming the diffraction limitation of photonics. While recent advances in plasmonic logic have witnessed the demonstration of basic and universal logic gates, these CMOS oriented digital logic gates cannot fully utilize the expressive power of this novel technology. Here, we aim at unraveling the true potential of plasmonics by exploiting an enhanced native functionality – the majority voter. Contrary to the state-of-the-art plasmonic logic devices, we use the phase of the wave instead of the intensity as the state or computational variable. We propose and demonstrate, via numerical simulations, a comprehensive scheme for building a nanoscale cascadable plasmonic majority logic gate along with a novel referencing scheme that can directly translate the information encoded in the amplitude and phase of the wave into electric field intensity at the output. Our MIM-based 3-input majority gate displays a highly improved overall area of only 0.636 mu m(2) for a single-stage compared with previous works on plasmonic logic. The proposed device demonstrates non-Boolean computational capability and can find direct utility in highly parallel real-time signal processing applications like pattern recognition.'));
Address
Corporate Author (down) Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000418359600116 Publication Date 2017-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:148514 Serial 4891
Permanent link to this record
 

 
Author van den Bos, K.H.W.
Title Quantitative atomic resolution transmission electron microscopy for heterogeneous nanomaterials Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author (down) Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:147953 Serial 4892
Permanent link to this record
 

 
Author Grieb, T.; Tewes, M.; Schowalter, M.; Müller-Caspary, K.; Krause, F.F.; Mehrtens, T.; Hartmann, J.-M.; Rosenauer, A.
Title Quantitative HAADF STEM of SiGe in presence of amorphous surface layers from FIB preparation Type A1 Journal article
Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 184 Issue B Pages 29-36
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('The chemical composition of four Si1-xGex layers grown on silicon was determined from quantitative scanning transmission electron microscopy (STEM). The chemical analysis was performed by a comparison of the high-angle annular dark field (HAADF) intensity with multislice simulations. It could be shown that amorphous surface layers originating from the preparation process by focused-ion beam (FIB) at 30 kV have a strong influence on the quantification: the local specimen thickness is overestimated by approximately a factor of two, and the germanium concentration is substantially underestimated. By means of simulations, the effect of amorphous surface layers on the HAADF intensity of crystalline silicon and germanium is investigated. Based on these simulations, a method is developed to analyze the experimental HAADF-STEM images by taking the influence of the amorphous layers into account which is done by a reduction of the intensities by multiplication with a constant factor. This suggested modified HAADF analysis gives germanium concentrations which are in agreement with the nominal values. The same TEM lamella was treated with low-voltage ion milling which removed the amorphous surface layers completely. The results from subsequent quantitative HAADF analyses are in agreement with the nominal concentrations which validates the applicability of the used frozen-lattice based multislice simulations to describe the HAADF scattering of Si1-xGex in STEM. (C) 2017 Elsevier B.V. All rights reserved.'));
Address
Corporate Author (down) Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000417779800004 Publication Date 2017-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 7 Open Access Not_Open_Access
Notes ; This work was supported by the German Research Foundation (DFG) under Contract No. RO2057/11-1. ; Approved Most recent IF: 2.843
Call Number UA @ lucian @ c:irua:148500 Serial 4893
Permanent link to this record
 

 
Author Vanherck, J.; Schulenborg, J.; Saptsov, R.B.; Splettstoesser, J.; Wegewijs, M.R.
Title Relaxation of quantum dots in a magnetic field at finite bias -Charge, spin, and heat currents Type A1 Journal article
Year 2017 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 254 Issue 3 Pages Unsp 1600614
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('We perform a detailed study of the effect of finite bias and magnetic field on the tunneling-induced decay of the state of a quantum dot by applying a recently discovered general duality [Phys. Rev. B 93, 81411 (2016)]. This duality provides deep physical insight into the decay dynamics of electronic open quantum systems with strong Coulomb interaction. It associates the amplitudes of decay eigenmodes of the actual system to the eigenmodes of a so-called dual system with attractive interaction. Thereby, it predicts many surprising features in the transient transport and its dependence on experimental control parameters: the attractive interaction of the dual model shows up as sharp features in the amplitudes of measurable time-dependent currents through the actual repulsive system. In particular, for interacting quantum dots, the time-dependent heat current exhibits a decay mode that dissipates the interaction energy and that is tied to the fermion parity of the system. We show that its decay amplitude has an unexpected gate-voltage dependence that is robust up to sizable bias voltages and then bifurcates, reflecting that the Coulomb blockade is lifted in the dual system. Furthermore, combining our duality relation with the known Iche-duality, we derive new symmetry properties of the decay rates as a function of magnetic field and gate voltage. Finally, we quantify charge- and spin-mode mixing due to the magnetic field using a single mixing parameter.'));
Address
Corporate Author (down) Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000395441500011 Publication Date 2017-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 4 Open Access
Notes ; We acknowledge the financial support of Erasmus Mundus (J. V.), DFG project SCHO 641/7-1 (R.B.S. and M.R.W), the Swedish VR (J.Sc., J.Sp.), and the Knut and Alice Wallenberg Foundation (J. Sp.). The authors thank F. Haupt and N. Dittmann for useful discussions on the topic. ; Approved Most recent IF: 1.674
Call Number UA @ lucian @ c:irua:142510 Serial 4894
Permanent link to this record
 

 
Author Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; Okotrub, A.V.
Title Single-walled carbon nanotube reactor for redox transformation of mercury dichloride Type A1 Journal article
Year 2017 Publication ACS nano Abbreviated Journal Acs Nano
Volume 11 Issue 9 Pages 8643-8649
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.'));
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000411918200012 Publication Date 2017-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 11 Open Access Not_Open_Access
Notes ; Collaboration between partner institutions was partially supported by European FP7 IRSES project 295180. We are grateful to the bilateral Program “Russian-German Laboratory at BESSY II” for the assistance in XPS and NEXAFS measurements. We acknowledge C. Tollan for proofreading the manuscript. We are grateful to Dr. Y.V. Shubin for XRD measurements of graphite with HgCl<INF>2</ INF>. ; Approved Most recent IF: 13.942
Call Number UA @ lucian @ c:irua:146770 Serial 4895
Permanent link to this record
 

 
Author Andrikopoulos, D.; Sorée, B.
Title Skyrmion electrical detection with the use of three-dimensional Topological Insulators/Ferromagnetic bilayers Type A1 Journal article
Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 7 Issue Pages 17871
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('The effect of the magnetic skyrmion texture on the electronic transport properties of the Tl surface state coupled to a thin-film FM is numerically investigated. It is shown that both Bloch (vortex) and Neel (hedgehog) skyrmion textures induce additional scattering on top of a homogeneous background FM texture which can modify the conductance of the system. The change in conductance depends on several factors including the skyrmion size, the dimensions of the FM and the exchange interaction strength. For the Neel skyrmion, the result of the interaction strongly depends on the skyrmion number N-sk and the skyrmion helicity h. For both skyrmion types, significant change of the resistance can be achieved, which is in the order of k Omega.'));
Address
Corporate Author (down) Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000418359600121 Publication Date 2017-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 3 Open Access
Notes ; ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:148513 Serial 4896
Permanent link to this record
 

 
Author Groenendijk, D.J.; Autieri, C.; Girovsky, J.; Martinez-Velarte, M.C.; Manca, N.; Mattoni, G.; Monteiro, A.M.R.V.L.; Gauquelin, N.; Verbeeck, J.; Otte, A.F.; Gabay, M.; Picozzi, S.; Caviglia, A.D.
Title Spin-orbit semimetal SrIrO3 in the two-dimensional limit Type A1 Journal article
Year 2017 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 119 Issue 25 Pages 256403
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('We investigate the thickness-dependent electronic properties of ultrathin SrIrO3 and discover a transition from a semimetallic to a correlated insulating state below 4 unit cells. Low-temperature magnetoconductance measurements show that spin fluctuations in the semimetallic state are significantly enhanced while approaching the transition point. The electronic properties are further studied by scanning tunneling spectroscopy, showing that 4 unit cell SrIrO(3)d is on the verge of a gap opening. Our density functional theory calculations reproduce the critical thickness of the transition and show that the opening of a gap in ultrathin SrIrO3 requires antiferromagnetic order.'));
Address
Corporate Author (down) Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000418619100014 Publication Date 2017-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 79 Open Access OpenAccess
Notes ; This work was supported by The Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience program (NanoFront), by the Dutch Foundation for Fundamental Research on Matter (FOM), and by the European Research Council under the European Union's H2020 programme/ERC Grant Agreement No. [677458]. The authors thank R. Claessen, P. Schutz, D. Di Sante, G. Sangiovanni, and A. Santander Syro for useful discussions. M. G. gratefully acknowledges support from the French National Research Agency (ANR) (Project LACUNES No. ANR-13-BS04-0006-01). C. A. and S. P. acknowledge financial support from Fondazione Cariplo via the project Magister (Project No. 2013-0726) and from CNR-SPIN via the Seed Project “CAMEO”. N. G. and J. V. acknowledge support from the GOA project “Solarpaint” of the University of Antwerp. The Qu-AntEM microscope was partly funded by the Hercules fund from the Flemish Government. ; Approved Most recent IF: 8.462
Call Number UA @ lucian @ c:irua:148510 Serial 4897
Permanent link to this record
 

 
Author Mehta, A.N.; Zhang, H.; Dabral, A.; Richard, O.; Favia, P.; Bender, H.; Delabie, A.; Caymax, M.; Houssa, M.; Pourtois, G.; Vandervorst, W.
Title Structural characterization of SnS crystals formed by chemical vapour deposition Type A1 Journal article
Year 2017 Publication Journal of microscopy T2 – 20th International Conference on Microscopy of Semiconducting Materials, (MSM), APR 09-13, 2017, Univ Oxford, Univ Oxford, Oxford, ENGLAND Abbreviated Journal J Microsc-Oxford
Volume 268 Issue 3 Pages 276-287
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract <script type='text/javascript'>document.write(unpmarked('The crystal and defect structure of SnS crystals grown using chemical vapour deposition for application in electronic devices are investigated. The structural analysis shows the presence of two distinct crystal morphologies, that is thin flakes with lateral sizes up to 50 m and nanometer scale thickness, and much thicker but smaller crystallites. Both show similar Raman response associated with SnS. The structural analysis with transmission electron microscopy shows that the flakes are single crystals of -SnS with [010] normal to the substrate. Parallel with the surface of the flakes, lamellae with varying thickness of a new SnS phase are observed. High-resolution transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), first-principles simulations (DFT) and nanobeam diffraction (NBD) techniques are employed to characterise this phase in detail. DFT results suggest that the phase is a strain stabilised \u0027 one grown epitaxially on the -SnS crystals. TEM analysis shows that the crystallites are also -SnS with generally the [010] direction orthogonal to the substrate. Contrary to the flakes the crystallites consist of two to four grains which are tilted up to 15 degrees relative to the substrate. The various grain boundary structures and twin relations are discussed. Under high-dose electron irradiation, the SnS structure is reduced and -Sn formed. It is shown that this damage only occurs for SnS in direct contact with SiO2. Lay description SnS is a p-type semiconductor, which has attracted significant interest for electronic devices due to its unique properties, low-toxicity and abundance of Sn in nature. Although in the past it has been most extensively studied as the absorber material in solar cells, it has recently garnered interest for application as a p-type two-dimensional semiconductor in nanoelectronic devices due to its anisotropic layered structure similar to the better known phosphorene. Tin sulphide can take the form of several phases and the electronic properties of the material depend strongly on its crystal structure. It is therefore crucial to study the crystal structure of the material in order to predict the electronic properties and gain insight into the growth mechanism. In this work, SnS crystals deposited using a chemical vapour deposition technique are investigated extensively for their crystal and defect structure using transmission electron microscopy (TEM) and related techniques. We find the presence of two distinct crystal morphologies, that is thin flakes with lateral sizes up to 50 m and nm scale thickness, and much thicker but smaller crystallites. The flakes are single crystals of -SnS and contain lamellae with varying thickness of a different phase which appear to be -SnS at first glance. High-resolution scanning transmission electron microscopy is used to characterise these lamellae where the annular bright field (ABF) mode better reveals the position of the sulphur columns. The sulphur columns in the lamellae are found to be shifted relative to the -SnS structure which indicates the formation of a new phase which is a distorted version of the phase which we tentatively refer to as \u0027-SnS. Simulations based on density functional theory (DFT) are used to model the interface and a similar shift of sulphur columns in the -SnS layer is observed which takes place as a result of strong interaction at the interface between the two phases resulting in strain transfer. Nanobeam electron diffraction (NBD) is used to map the lattice mismatch in the thickness of the flakes which reveals good in-plane matching and some expansion out-of-plane in the lamellae. Contrary to the flakes the crystallites are made solely of -SnS and consist of two to four grains which are tilted up to 15 degrees relative to the substrate. The various grain boundary structures and twin relations are discussed. At high electron doses, SnS is reduced to -Sn, however the damage occurs only for SnS in direct contact with SiO2.'));
Address
Corporate Author (down) Thesis
Publisher Wiley Place of Publication Hoboken Editor
Language Wos 000415900300009 Publication Date 2017-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2720 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.692 Times cited 2 Open Access Not_Open_Access
Notes Approved Most recent IF: 1.692
Call Number UA @ lucian @ c:irua:147692 Serial 4898
Permanent link to this record
 

 
Author Schulenborg, J.; Di Marco, A.; Vanherck, J.; Wegewijs, M.R.; Splettstoesser, J.
Title Thermoelectrics of interacting nanosystems-exploiting superselection instead of time-reversal symmetry Type A1 Journal article
Year 2017 Publication Entropy: an international and interdisciplinary journal of entropy and information studies Abbreviated Journal Entropy-Switz
Volume 19 Issue 12 Pages 668
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Thermoelectric transport is traditionally analyzed using relations imposed by time-reversal symmetry, ranging from Onsager\u0027s results to fluctuation relations in counting statistics. In this paper, we show that a recently discovered duality relation for fermionic systems-deriving from the fundamental fermion-parity superselection principle of quantum many-particle systems-provides new insights into thermoelectric transport. Using a master equation, we analyze the stationary charge and heat currents through a weakly coupled, but strongly interacting single-level quantum dot subject to electrical and thermal bias. In linear transport, the fermion-parity duality shows that features of thermoelectric response coefficients are actually dominated by the average and fluctuations of the charge in a dual quantum dot system, governed by attractive instead of repulsive electron-electron interaction. In the nonlinear regime, the duality furthermore relates most transport coefficients to much better understood equilibrium quantities. Finally, we naturally identify the fermion-parity as the part of the Coulomb interaction relevant for both the linear and nonlinear Fourier heat. Altogether, our findings hence reveal that next to time-reversal, the duality imposes equally important symmetry restrictions on thermoelectric transport. As such, it is also expected to simplify computations and clarify the physical understanding for more complex systems than the simplest relevant interacting nanostructure model studied here.'));
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000419007900037 Publication Date 2017-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1099-4300 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.821 Times cited 3 Open Access
Notes ; We thank Rafael Sanchez for useful comments on the manuscript. We acknowledge funding from the Knut and Alice Wallenberg foundation through their Academy Fellows program (J.Sp. and A.D.M.), from the Swedish VR (J.Sp. and J.Sc.), from the Erasmus Mundus program (J.V.), and from the DFG project SCHO 641/7-1 (M.R.W.). ; Approved Most recent IF: 1.821
Call Number UA @ lucian @ c:irua:148548 Serial 4900
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.
Title Topological phase transitions in small mesoscopic chiral p-wave superconductors Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 22 Pages 224512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Spin-triplet chiral p-wave superconductivity is typically described by a two-component order parameter, and as such is prone to unique emergent effects when compared to the standard single-component superconductors. Here we present the equilibrium phase diagram for small mesoscopic chiral p-wave superconducting disks in the presence of magnetic field, obtained by solving the microscopic Bogoliubov-de Gennes equations self-consistently. In the ultrasmall limit, the cylindrically symmetric giant-vortex states form the ground state of the system. However, with increasing sample size, the cylindrical symmetry is broken as the two components of the order parameter segregate into domains, and the number of fragmented domain walls between them characterizes the resulting states. Such domain walls are topological defects unique for the p-wave order, and constitute a dominant phase in the mesoscopic regime. Moreover, we find two possible types of domain walls, identified by their chirality-dependent interaction with the edge states.'));
Address
Corporate Author (down) Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000418653500012 Publication Date 2017-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen) and the Special Research Funds of the University of Antwerp. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:148504 Serial 4901
Permanent link to this record
 

 
Author Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M.R.; Li, G.; Watanabe, K.; Taniguchi, T.; Peeters, F.M.; Andrei, E.Y.
Title Tuning a circular p-n junction in graphene from quantum confinement to optical guiding Type A1 Journal article
Year 2017 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol
Volume 12 Issue 11 Pages 1045-+
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility(1-3), can lead to applications based on ultrafast electronic response and low dissipation(4-6). However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale(7,8). The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei(9-13). As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes(14-16), similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Perot interference pattern(17-20) for junctions close to a boundary.'));
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000414531800011 Publication Date 2017-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 38.986 Times cited 65 Open Access
Notes ; The authors acknowledge funding provided by DOE-FG02-99ER45742 (STM/STS) and NSF DMR 1708158 (fabrication). Theoretical work was supported by ESF-EUROCORES-EuroGRAPHENE, FWO VI and the Methusalem program of the Flemish government. ; Approved Most recent IF: 38.986
Call Number UA @ lucian @ c:irua:147406 Serial 4902
Permanent link to this record
 

 
Author Şentosun, K.
Title 2D and 3D characterization of plasmonic and porous nanoparticles using transmission electron microscopy Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author (down) Thesis
Publisher Place of Publication Antwerp Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:149802 Serial 4926
Permanent link to this record
 

 
Author Neyts, E.C.
Title Atomistic simulations of plasma catalytic processes Type A1 Journal article
Year 2018 Publication Frontiers of Chemical Science and Engineering Abbreviated Journal Front Chem Sci Eng
Volume 12 Issue 1 Pages 145-154
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract There is currently a growing interest in the realisation and optimization of hybrid plasma/catalyst systems for a multitude of applications, ranging from nanotechnology to environmental chemistry. In spite of this interest, there is, however, a lack in fundamental understanding of the underlying processes in such systems. While a lot of experimental research is already being carried out to gain this understanding, only recently the first simulations have appeared in the literature. In this contribution, an overview is presented on atomic scale simulations of plasma catalytic processes as carried out in our group. In particular, this contribution focusses on plasma-assisted catalyzed carbon nanostructure growth, and plasma catalysis for greenhouse gas conversion. Attention is paid to what can routinely be done, and where challenges persist.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000425156500017 Publication Date 2017-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0179 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.712 Times cited 5 Open Access Not_Open_Access
Notes Approved Most recent IF: 1.712
Call Number UA @ lucian @ c:irua:149233 Serial 4927
Permanent link to this record
 

 
Author Chin, C.-M.; Battle, P.D.; Blundell, S.J.; Hunter, E.; Lang, F.; Hendrickx, M.; Sena, R.P.; Hadermann, J.
Title Comparative study of the magnetic properties of La3Ni2B'O9 for B' = Nb, Ta or Sb Type A1 Journal article
Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 258 Issue 258 Pages 825-834
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (mu SR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random 1/3Ni/2/3B' mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B'O-9 (B' = Nb or Ta) at 5 K although in each case mu SR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2NbO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.
Address
Corporate Author (down) Thesis
Publisher Place of Publication London Editor
Language Wos 000423650400107 Publication Date 2017-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 6 Open Access Not_Open_Access
Notes ; We thank EPSRC for funding through Grants EP/M0189541 and EP/N023803. CMC thanks the Croucher Foundation and Oxford University for a graduate scholarship. We are grateful E. Suard for experimental assistance at ILL. ; Approved Most recent IF: 2.299
Call Number UA @ lucian @ c:irua:149284 Serial 4928
Permanent link to this record
 

 
Author Geenen, F.A.; van Stiphout, K.; Nanakoudis, A.; Bals, S.; Vantomme, A.; Jordan-Sweet, J.; Lavoie, C.; Detavernier, C.
Title Controlling the formation and stability of ultra-thin nickel silicides : an alloying strategy for preventing agglomeration Type A1 Journal article
Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 123 Issue 123 Pages 075303
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The electrical contact of the source and drain regions in state-of-the-art CMOS transistors is nowadays facilitated through NiSi, which is often alloyed with Pt in order to avoid morphological agglomeration of the silicide film. However, the solid-state reaction between as-deposited Ni and the Si substrate exhibits a peculiar change for as-deposited Ni films thinner than a critical thickness of t(c) = 5 nm. Whereas thicker films form polycrystalline NiSi upon annealing above 450 degrees C, thinner films form epitaxial NiSi2 films that exhibit a high resistance toward agglomeration. For industrial applications, it is therefore of utmost importance to assess the critical thickness with high certainty and find novel methodologies to either increase or decrease its value, depending on the aimed silicide formation. This paper investigates Ni films between 0 and 15 nm initial thickness by use of “thickness gradients,” which provide semi-continuous information on silicide formation and stability as a function of as-deposited layer thickness. The alloying of these Ni layers with 10% Al, Co, Ge, Pd, or Pt renders a significant change in the phase sequence as a function of thickness and dependent on the alloying element. The addition of these ternary impurities therefore changes the critical thickness t(c). The results are discussed in the framework of classical nucleation theory. Published by AIP Publishing.
Address
Corporate Author (down) Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000425807400018 Publication Date 2018-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 23 Open Access OpenAccess
Notes ; The authors acknowledge the FWO Vlaanderen, the Hercules Foundation, and BOF-UGent (GOA 01G01513) for providing financial support for this work. This research used resources of the National Synchrotron Light Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-AC02-98CH10886. ; Approved Most recent IF: 2.068
Call Number UA @ lucian @ c:irua:149912UA @ admin @ c:irua:149912 Serial 4929
Permanent link to this record
 

 
Author Klimin, S.N.; Tempere, J.; Milošević, M.V.
Title Diversified vortex phase diagram for a rotating trapped two-band Fermi gas in the BCS-BEC crossover Type A1 Journal article
Year 2018 Publication New journal of physics Abbreviated Journal New J Phys
Volume 20 Issue 20 Pages 025010
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)
Abstract We report the equilibrium vortex phase diagram of a rotating two-band Fermi gas confined to a cylindrically symmetric parabolic trapping potential, using the recently developed finite-temperature effective field theory (Klimin et al 2016 Phys. Rev. A 94 023620). A non-monotonic resonant dependence of the free energy as a function of the temperature and the rotation frequency is revealed for a two-band superfluid. We particularly focus on novel features that appear as a result of interband interactions and can be experimentally resolved. The resonant dependence of the free energy is directly manifested in vortex phase diagrams, where areas of stability for both integer and fractional vortex states are found. The study embraces the BCS-BEC crossover regime and the entire temperature range below the critical temperature T-c. Significantly different behavior of vortex matter as a function of the interband coupling is revealed in the BCS and BEC regimes.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000426002900001 Publication Date 2018-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 6 Open Access
Notes ; We thank C A R Sa de Melo and N Verhelst for valuable discussions. This work has been supported by the Research Foundation-Flanders (FWO-Vl), project nrs. G.0115.12N, G.0119.12N, G.0122.12N, G.0429.15N, G.0666.16N, by the Scientific Research Network of the Flemish Research Foundation, WO.033.09N, and by the Research Fund of the University of Antwerp. ; Approved Most recent IF: 3.786
Call Number UA @ lucian @ c:irua:149909UA @ admin @ c:irua:149909 Serial 4930
Permanent link to this record
 

 
Author Wu, J.; Zhang, L.; Xin, X.; Zhang, Y.; Wang, H.; Sun, A.; Cheng, Y.; Chen, X.; Xu, G.
Title Electrorheological fluids with high shear stress based on wrinkly tin titanyl oxalate Type A1 Journal article
Year 2018 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 10 Issue 7 Pages 6785-6792
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electrorheological (ER) fluids are considered as a type of smart fluids because their rheological characteristics can be altered through an electric field. The discovery of giant ER effect revived the researchers' interest in the ER technological area. However, the poor stability including the insufficient dynamic shear stress, the large leakage current density, and the sedimentation tendency still hinders their practical applications. Herein, we report a facile and scalable coprecipitation method for synthesizing surfactant-free tin titanyl oxalate (TTO) particles with tremella-like wrinkly microstructure (W-TTO). The W-TTO-based ER fluids exhibit enhanced ER activity compared to that of the pristine TTO because of the improved wettability between W-TTO and the silicone oil. In addition, the static yield stress and leakage current of W-TTO ER fluids also show a fine time stability during the 30 day tests. More importantly, the dynamic shear stress of W-TTO ER fluids can remain stable throughout the shear rate range, which is valuable for their use in engineering applications. The results in this work provided a promising strategy to solving the long-standing problem of ER fluid stability. Moreover, this convenient route of synthesis may be considered a green approach for the mass production of giant ER materials.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Editor
Language Wos 000426143900081 Publication Date 2018-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 7 Open Access OpenAccess
Notes ; The work was supported by the National Natural Science Foundation of China (Grant 21573267, 11674335), the Youth Innovation Promotion Association CAS (2013196), and the Program for Ningbo Municipal Science and Technology Innovative Research Team (2015B11002, 2016B10005). ; Approved Most recent IF: 7.504
Call Number UA @ lucian @ c:irua:149911 Serial 4931
Permanent link to this record
 

 
Author Jelić, Ž.
Title Emergent vortex phenomena in spatially and temporally modulated superconducting condensates Type Doctoral thesis
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author (down) Thesis
Publisher Place of Publication Liège Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:149394 Serial 4932
Permanent link to this record
 

 
Author Loo, R.; Arimura, H.; Cott, D.; Witters, L.; Pourtois, G.; Schulze, A.; Douhard, B.; Vanherle, W.; Eneman, G.; Richard, O.; Favia, P.; Mitard, J.; Mocuta, D.; Langer, R.; Collaert, N.
Title Epitaxial CVD Growth of Ultra-Thin Si Passivation Layers on Strained Ge Fin Structures Type A1 Journal article
Year 2018 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc
Volume 7 Issue 2 Pages P66-P72
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Epitaxially grown ultra-thin Si layers are often used to passivate Ge surfaces in the high-k gate module of (strained) Ge FinFET and Gate All Around devices. We use Si4H10 as Si precursor as it enables epitaxial Si growth at temperatures down to 330 degrees. C-V characteristics of blanket capacitors made on Ge virtual substrates point to the presence of an optimal Si thickness. In case of compressively strained Ge fin structures, the Si growth results in non-uniform and high strain levels in the strained Ge fin. These strain levels have been calculated for different shapes of the Ge fin and in function of the grown Si thickness. The high strain is the driving force for potential (unwanted) Ge surface reflow during Si deposition. The Ge surface reflow is strongly affected by the strength of the H-passivation during Si-capping and can be avoided by carefully selected process conditions. (C) The Author(s) 2018. Published by ECS.
Address
Corporate Author (down) Thesis
Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
Language Wos 000425215200010 Publication Date 2018-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.787 Times cited 5 Open Access OpenAccess
Notes Approved Most recent IF: 1.787
Call Number UA @ lucian @ c:irua:149326 Serial 4933
Permanent link to this record
 

 
Author Leliaert, J.; Dvornik, M.; Mulkers, J.; De Clercq, J.; Milošević, M.V.; Van Waeyenberge, B.
Title Fast micromagnetic simulations on GPU-recent advances made with mumax3 Type A1 Journal article
Year 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 51 Issue 12 Pages 123002
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In the last twenty years, numerical modeling has become an indispensable part of magnetism research. It has become a standard tool for both the exploration of new systems and for the interpretation of experimental data. In the last five years, the capabilities of micromagnetic modeling have dramatically increased due to the deployment of graphical processing units (GPU), which have sped up calculations to a factor of 200. This has enabled many studies which were previously unfeasible. In this topical review, we give an overview of this modeling approach and show how it has contributed to the forefront of current magnetism research.
Address
Corporate Author (down) Thesis
Publisher Iop publishing ltd Place of Publication Bristol Editor
Language Wos 000425774100001 Publication Date 2018-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 65 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) through Project No. G098917N. JL is supported by the Ghent University Special Research Fund (BOF postdoctoral fellowship). We gratefully acknowledge the support of the NVIDIA Corporation with the donation of a Titan Xp GPU used for this research. ; Approved Most recent IF: 2.588
Call Number UA @ lucian @ c:irua:149852UA @ admin @ c:irua:149852 Serial 4934
Permanent link to this record
 

 
Author Pramanik, G.; Humpolickova, J.; Valenta, J.; Kundu, P.; Bals, S.; Bour, P.; Dracinsky, M.; Cigler, P.
Title Gold nanoclusters with bright near-infrared photoluminescence Type A1 Journal article
Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 10 Issue 10 Pages 3792-3798
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The increase in nonradiative pathways with decreasing emission energy reduces the luminescence quantum yield (QY) of near-infrared photoluminescent (NIR PL) metal nanoclusters. Efficient surface ligand chemistry can significantly improve the luminescence QY of NIR PL metal nanoclusters. In contrast to the widely reported but modestly effective thiolate ligand-to-metal core charge transfer, we show that metal-to-ligand charge transfer (MLCT) can be used to greatly enhance the luminescence QY of NIR PL gold nanoclusters (AuNCs). We synthesized water-soluble and colloidally stable NIR PL AuNCs with unprecedentedly high QY (similar to 25%) upon introduction of triphenylphosphonium moieties into the surface capping layer. By using a combination of spectroscopic and theoretical methods, we provide evidence for gold core-to-ligand charge transfer occurring in AuNCs. We envision that this work can stimulate the development of these unusually bright AuNCs for promising optoelectronic, bioimaging, and other applications.
Address
Corporate Author (down) Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000426148500026 Publication Date 2018-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 97 Open Access OpenAccess
Notes ; The authors acknowledge support from the GACR project Nr. 18-12533S. J. V. acknowledges funding from the Ministry of Education, Youth and Sports of the Czech Republic via the V4+Japan project No. 8F15001 (cofinanced by the International Visegrad Fund). P. B. acknowledges GACR project No. 16-05935S and Ministry of Education, Youth and Sports of the Czech Republic project No. LTC17012. ; Approved Most recent IF: 7.367
Call Number UA @ lucian @ c:irua:149901UA @ admin @ c:irua:149901 Serial 4935
Permanent link to this record