toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lee, Y.; Forte, J.D.'arf S.; Chaves, A.; Kumar, A.; Tran, T.T.; Kim, Y.; Roy, S.; Taniguchi, T.; Watanabe, K.; Chernikov, A.; Jang, J.I.; Low, T.; Kim, J. url  doi
openurl 
  Title Boosting quantum yields in two-dimensional semiconductors via proximal metal plates Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages 7095  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The short exciton lifetime and strong exciton-exciton interaction in transition metal dichalcogenides limit the efficiency of exciton emission. Here, the authors show that exciton-exciton interaction in monolayer WS2 can be screened using proximal metal plates, leading to an improved quantum yield. Monolayer transition metal dichalcogenides (1L-TMDs) have tremendous potential as atomically thin, direct bandgap semiconductors that can be used as convenient building blocks for quantum photonic devices. However, the short exciton lifetime due to the defect traps and the strong exciton-exciton interaction in TMDs has significantly limited the efficiency of exciton emission from this class of materials. Here, we show that exciton-exciton interaction in 1L-WS2 can be effectively screened using an ultra-flat Au film substrate separated by multilayers of hexagonal boron nitride. Under this geometry, induced dipolar exciton-exciton interaction becomes quadrupole-quadrupole interaction because of effective image dipoles formed within the metal. The suppressed exciton-exciton interaction leads to a significantly improved quantum yield by an order of magnitude, which is also accompanied by a reduction in the exciton-exciton annihilation (EEA) rate, as confirmed by time-resolved optical measurements. A theoretical model accounting for the screening of the dipole-dipole interaction is in a good agreement with the dependence of EEA on exciton densities. Our results suggest that fundamental EEA processes in the TMD can be engineered through proximal metallic screening, which represents a practical approach towards high-efficiency 2D light emitters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000728559600014 Publication Date 2021-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:184870 Serial 7566  
Permanent link to this record
 

 
Author Shi, P.; Yu, K.; Niinemets, Ü.; Gielis, J. url  doi
openurl 
  Title Can leaf shape be represented by the ratio of leaf width to length? Evidence from nine species of Magnolia and Michelia (Magnoliaceae) Type A1 Journal article
  Year 2021 Publication Forests Abbreviated Journal Forests  
  Volume 12 Issue 1 Pages 41  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Leaf shape is closely related to economics of leaf support and leaf functions, including light interception, water use, and CO2 uptake, so correct quantification of leaf shape is helpful for studies of leaf structure/function relationships. There are some extant indices for quantifying leaf shape, including the leaf width/length ratio (W/L), leaf shape fractal dimension (FD), leaf dissection index, leaf roundness index, standardized bilateral symmetrical index, etc. W/L ratio is the simplest to calculate, and recent studies have shown the importance of the W/L ratio in explaining the scaling exponent of leaf dry mass vs. leaf surface area and that of leaf surface area vs. leaf length. Nevertheless, whether the W/L ratio could reflect sufficient geometrical information of leaf shape has been not tested. The FD might be the most accurate measure for the complexity of leaf shape because it can characterize the extent of the self-similarity and other planar geometrical features of leaf shape. However, it is unknown how strongly different indices of leaf shape complexity correlate with each other, especially whether W/L ratio and FD are highly correlated. In this study, the leaves of nine Magnoliaceae species (>140 leaves for each species) were chosen for the study. We calculated the FD value for each leaf using the box-counting approach, and measured leaf fresh mass, surface area, perimeter, length, and width. We found that FD is significantly correlated to the W/L ratio and leaf length. However, the correlation between FD and the W/L ratio was far stronger than that between FD and leaf length for each of the nine species. There were no strong correlations between FD and other leaf characteristics, including leaf area, ratio of leaf perimeter to area, fresh mass, ratio of leaf fresh mass to area, and leaf roundness index. Given the strong correlation between FD and W/L, we suggest that the simpler index, W/L ratio, can provide sufficient information of leaf shape for similarly-shaped leaves. Future studies are needed to characterize the relationships among FD and W/L in leaves with strongly varying shape, e.g., in highly dissected leaves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000611074700001 Publication Date 2020-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1999-4907 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.951 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 1.951  
  Call Number UA @ admin @ c:irua:174473 Serial 7572  
Permanent link to this record
 

 
Author Fuoco, T.; Cuartero, M.; Parrilla, M.; García-Guzmán, J.J.; Crespo, G.A.; Finne-Wistrand, A. url  doi
openurl 
  Title Capturing the real-time hydrolytic degradation of a library of biomedical polymers by combining traditional assessment and electrochemical sensors Type A1 Journal article
  Year 2021 Publication Biomacromolecules Abbreviated Journal Biomacromolecules  
  Volume 22 Issue 2 Pages 949-960  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract We have developed an innovative methodology to overcome the lack of techniques for real-time assessment of degradable biomedical polymers at physiological conditions. The methodology was established by combining polymer characterization techniques with electrochemical sensors. The in vitro hydrolytic degradation of a series of aliphatic polyesters was evaluated by following the molar mass decrease and the mass loss at different incubation times while tracing pH and l-lactate released into the incubation media with customized miniaturized electrochemical sensors. The combination of different analytical approaches provided new insights into the mechanistic and kinetics aspects of the degradation of these biomedical materials. Although molar mass had to reach threshold values for soluble oligomers to be formed and specimens’ resorption to occur, the pH variation and l-lactate concentration were direct evidence of the resorption of the polymers and indicative of the extent of chain scission. Linear models were found for pH and released l-lactate as a function of mass loss for the l-lactide-based copolymers. The methodology should enable the sequential screening of degradable polymers at physiological conditions and has potential to be used for preclinical material’s evaluation aiming at reducing animal tests.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1525-7797 ISBN Additional Links UA library record  
  Impact Factor 5.246 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 5.246  
  Call Number UA @ admin @ c:irua:175296 Serial 7575  
Permanent link to this record
 

 
Author Alloul, A.; Muys, M.; Hertoghs, N.; Kerckhof, F.-M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Cocultivating aerobic heterotrophs and purple bacteria for microbial protein in sequential photo- and chemotrophic reactors Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 319 Issue Pages 124192  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Aerobic heterotrophic bacteria (AHB) and purple non-sulfur bacteria (PNSB) are typically explored as two separate types of microbial protein, yet their properties as respectively a bulk and added-value feed ingredient make them appealing for combined use. The feasibility of cocultivation in a sequential photo- and chemotrophic approach was investigated. First, mapping the chemotrophic growth kinetics for four Rhodobacter, Rhodopseudomonas and Rhodospirillum species on different carbon sources showed a preference for fructose (µmax 2.4–3.9 d−1 28 °C; protein 36–59%DW). Secondly, a continuous photobioreactor inoculated with Rhodobacter capsulatus (VFA as C-source) delivered the starter culture for an aerobic batch reactor (fructose as C-source). This two-stage system showed an improved nutritional quality compared to AHB production: higher protein content (45–71%DW), more attractive amino/fatty acid profile and contained up to 10% PNSB. The findings strengthen protein production with cocultures and might enable the implementation of the technology for resource recovery on streams such as wastewater.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000613136600013 Publication Date 2020-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:171766 Serial 7677  
Permanent link to this record
 

 
Author Demiroglu, I.; Karaaslan, Y.; Kocabas, T.; Keceli, M.; Vazquez-Mayagoitia, A.; Sevik, C. pdf  url
doi  openurl
  Title Computation of the thermal expansion coefficient of graphene with Gaussian approximation potentials Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 26 Pages 14409-14415  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Direct experimental measurement of thermal expansion coefficient without substrate effects is a challenging task for two-dimensional (2D) materials, and its accurate estimation with large-scale ab initio molecular dynamics is computationally very expensive. Machine learning-based interatomic potentials trained with ab initio data have been successfully used in molecular dynamics simulations to decrease the computational cost without compromising the accuracy. In this study, we investigated using Gaussian approximation potentials to reproduce the density functional theory-level accuracy for graphene within both lattice dynamical and molecular dynamical methods, and to extend their applicability to larger length and time scales. Two such potentials are considered, GAP17 and GAP20. GAP17, which was trained with pristine graphene structures, is found to give closer results to density functional theory calculations at different scales. Further vibrational and structural analyses verify that the same conclusions can be deduced with density functional theory level in terms of the reasoning of the thermal expansion behavior, and the negative thermal expansion behavior is associated with long-range out-of-plane phonon vibrations. Thus, it is argued that the enabled larger system sizes by machine learning potentials may even enhance the accuracy compared to small-size-limited ab initio molecular dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000672734100027 Publication Date 2021-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:179850 Serial 7719  
Permanent link to this record
 

 
Author Van de Sompel, P.; Khalilov, U.; Neyts, E.C. pdf  url
doi  openurl
  Title Contrasting H-etching to OH-etching in plasma-assisted nucleation of carbon nanotubes Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 14 Pages 7849-7855  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract To gain full control over the growth of carbon nanotubes (CNTs) using plasma-enhanced chemical vapor deposition (PECVD), a thorough understanding of the underlying plasma-catalyst mechanisms is required. Oxygen-containing species are often used as or added to the growth precursor gas, but these species also yield various radicals and ions, which may simultaneously etch the CNT during the growth. At present, the effect of these reactive species on the growth onset has not yet been thoroughly investigated. We here report on the etching mechanism of incipient CNT structures from OH and O radicals as derived from combined (reactive) molecular dynamics (MD) and force-bias Monte Carlo (tfMC) simulations. Our results indicate that the oxygen-containing radicals initiate a dissociation process. In particular, we show how the oxygen species weaken the interaction between the CNT and the nanocluster. As a result of this weakened interaction, the CNT closes off and dissociates from the cluster in the form of a fullerene. Beyond the specific systems studied in this work, these results are generically important in the context of PECVD-based growth of CNTs using oxygen-containing precursors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000641307100032 Publication Date 2021-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.536 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:178393 Serial 7729  
Permanent link to this record
 

 
Author Parrilla, M.; Montiel, F.N.; Van Durme, F.; De Wael, K. pdf  url
doi  openurl
  Title Derivatization of amphetamine to allow its electrochemical detection in illicit drug seizures Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 337 Issue Pages 129819  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Amphetamine (AMP) is posing critical issues in our society being one of the most encountered drugs-of-abuse in the current illicit market. The continuous drug production in Europe urges the development of new tools for the rapid on-site determination of illicit drugs such as AMP. However, the direct electrochemical detection of AMP is a challenge because the molecule is non-electroactive at the potential window of conventional graphite SPEs. For this reason, a derivatization step is needed to convert the primary amine into an electroactive oxidizable group. Herein, the rapid electrochemical detection of AMP in seized samples based on the derivatization by 1,2-naphthoquinone-4-sulfonate (NQS) is presented by using square wave voltammetry (SWV) at graphite screen-printed electrodes (SPEs). First, a detailed optimization of the key parameters and the analytical performance is provided. The method showed a sensitivity of 7.9 µA mM-1 within a linear range from 50 to 500 µM, a limit of detection of 22.2 µM, and excellent reproducibility (RSD = 4.3%, n = 5 at 500 µM). Subsequently, the effect of NQS on common cutting agents for the selective detection of AMP is addressed. The comparison of the method with drugs-of-abuse containing secondary and tertiary amines confirms the selectivity of the method. Finally, the concept is applied to quantify AMP in 20 seized samples provided by forensic laboratories, exhibiting an accuracy of 97.3 ± 10.5%. Overall, the fast analysis of samples with the electrochemical profiling of derivatized AMP exhibits a straightforward on-site screening aiming to facilitate the tasks of law enforcement agents in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000640386500001 Publication Date 2021-03-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:176353 Serial 7762  
Permanent link to this record
 

 
Author Vingerhoets, R.; Spiller, M.; De Backer, J.; Adriaens, A.; Vlaeminck, S.E.; Meers, E. pdf  url
doi  openurl
  Title Detailed nitrogen and phosphorus flow analysis, nutrient use efficiency and circularity in the agri-food system of a livestock-intensive region Type A1 Journal article
  Year 2023 Publication Journal of cleaner production Abbreviated Journal  
  Volume 410 Issue Pages 137278-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The agri-food value chain is a major cause of nitrogen (N) and phosphorus (P) emissions and associated environmental and health impacts. The EU's farm-to-fork strategy (F2F) demands an agri-food value chain approach to reduce nutrient emissions by 50% and fertilizer use by 20%. Substance flow analysis (SFA) is a method that can be applied to study complex systems such as the agri-food chain. A review of 60 SFA studies shows that they often lack detail by not sufficiently distinguishing between nodes, products and types of emissions. The present study aims to assess the added value of detail in SFAs and to illustrate that valuable indicators can be derived from detailed assessments. This aim will be attained by presenting a highly-detailed SFA for the livestock-intensive region of Flanders, Belgium. The SFA distinguishes 40 nodes and 1827 flows that are classified into eight different categories (e.g. by-products, point source emissions) following life cycle methods. Eight novel indicators were calculated, including indicators that assess the N and P recovery potential. Flanders has a low overall nutrient use efficiency (11% N, 18% P). About 55% of the N and 56% of the P embedded in recoverable streams are reused providing 35% and 37% of the total N and P input. Optimized nutrient recycling could replace 45% of N and 48% of P of the external nutrient input, exceeding the target set by the F2F strategy. Detailed accounting for N and P flows and nodes leads to the identification of more recoverable streams and larger N and P flows. More detailed flow accounting is a prerequisite for the quantification of technological intervention options. Future research should focus on including concentration and quality as a parameter in SFAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000991013600001 Publication Date 2023-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.1 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 11.1; 2023 IF: 5.715  
  Call Number UA @ admin @ c:irua:196227 Serial 7770  
Permanent link to this record
 

 
Author Roegiers, J.; Denys, S. pdf  url
doi  openurl
  Title Development of a novel type activated carbon fiber filter for indoor air purification Type A1 Journal article
  Year 2021 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 417 Issue Pages 128109  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract A novel type of activated carbon fiber filter was developed for indoor air purification. The filter is equipped with electrodes for thermo-electrical regeneration at the point of saturation. The electrodes are arranged in such a way that the filter forms a pleated structure with an electrode in the tip of each pleat. This allows for a uniform temperature distribution on the filter surface during the regeneration process and the pleated structure reduces the overall pressure drop across the filter. The latter was validated by Computational Fluid Dynamics, using Darcy-Forchheimer parameters derived in previous work. The CFD model was further used to perform a virtual sensitivity study in search for the optimal ACF filter design by varying the pleat length, pleat height and filter thickness. Finally, adsorption and desorption properties were investigated with acetaldehyde and toluene as model compounds. Freundlich and Langmuir adsorption parameters, derived in previous work were successfully validated with a Multiphysics model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000653229500132 Publication Date 2020-12-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 6.216  
  Call Number UA @ admin @ c:irua:174105 Serial 7800  
Permanent link to this record
 

 
Author Nematollahi, P.; Ma, H.; Schneider, W.F.; Neyts, E.C. pdf  url
doi  openurl
  Title DFT and microkinetic comparison of ru-doped porphyrin-like graphene and nanotubes toward catalytic formic acid decomposition and formation Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 34 Pages 18673-18683  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Immobilization of single metal atoms on a solid host opens numerous possibilities for catalyst designs. If that host is a two-dimensional sheet, sheet curvature becomes a design parameter potentially complementary to host and metal composition. Here, we use a combination of density functional theory calculations and microkinetic modeling to compare the mechanisms and kinetics of formic acid decomposition and formation, chosen for their relevance as a potential hydrogen storage medium, over single Ru atoms anchored to pyridinic nitrogen in a planar graphene flake (RuN4-G) and curved carbon nanotube (RuN4-CNT). Activation barriers are lowered and the predicted turnover frequencies are increased over RuN4-CNT relative to RuN4-CNT. The results highlight the potential of curvature control as a means to achieve high performance and robust catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000693413400013 Publication Date 2021-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:181538 Serial 7805  
Permanent link to this record
 

 
Author Yildiz, A.; Chouki, T.; Atli, A.; Harb, M.; Verbruggen, S.W.; Ninakanti, R.; Emin, S. url  doi
openurl 
  Title Efficient iron phosphide catalyst as a counter electrode in dye-sensitized solar cells Type A1 Journal article
  Year 2021 Publication ACS applied energy materials Abbreviated Journal  
  Volume 4 Issue 10 Pages 10618-10626  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Developing an efficient material as a counter electrode (CE) with excellent catalytic activity, intrinsic stability, and low cost is essential for the commercial application of dye-sensitized solar cells (DSSCs). Transition metal phosphides have been demonstrated as outstanding multifunctional catalysts in a broad range of energy conversion technologies. Here, we exploited different phases of iron phosphide as CEs in DSSCs with an I–/I3–-based electrolyte. Solvothermal synthesis using a triphenylphosphine precursor as a phosphorus source allows to grow a Fe2P phase at 300 °C and a FeP phase at 350 °C. The obtained iron phosphide catalysts were coated on fluorine-doped tin oxide substrates and heat-treated at 450 °C under an inert gas atmosphere. The solar-to-current conversion efficiency of the solar cells assembled with the Fe2P material reached 3.96 ± 0.06%, which is comparable to the device assembled with a platinum (Pt) CE. DFT calculations support the experimental observations and explain the fundamental origin behind the improved performance of Fe2P compared to FeP. These results indicate that the Fe2P catalyst exhibits excellent performance along with desired stability to be deployed as an efficient Pt-free alternative in DSSCs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000711236300022 Publication Date 2021-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181953 Serial 7853  
Permanent link to this record
 

 
Author Mirbagheri, N.; Campos, R.; Ferapontova, E.E. pdf  url
doi  openurl
  Title Electrocatalytic oxidation of water by OH- – and H₂O-capped IrOx nanoparticles electrophoretically deposited on graphite and basal plane HOPG : effect of the substrate electrode Type A1 Journal article
  Year 2021 Publication Chemelectrochem Abbreviated Journal Chemelectrochem  
  Volume 8 Issue 9 Pages 1632-1641  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Iridium oxide (IrOx) is one of the most efficient electrocatalysts for water oxidation reaction (WOR). Here, WOR electrocatalysis by 1.6 nm IrOx nanoparticles (NPs) electrophoretically deposited onto spectroscopic graphite (Gr) and basal plane highly ordered pyrolytic graphite (HOPG) was studied as a function of NPs' capping ligands and electrodeposition substrate. On Gr, OH-- and H2O-capped NPs exhibited close sub-monolayer surface coverages and specific electrocatalytic activity of 18.9-23.5 mA nmol(-1) of Ir-IV/V sites, at 1 V and pH 7. On HOPG, OH--capped NPs produced films with a diminished WOR activity of 5.17 +/- 2.40 mA nmol(-1). Electro-wettability-induced changes impeded electrophoretic deposition of H2O-capped NPs on HOPG, WOR currents being 25-fold lower than observed for OH--capped ones. The electrocatalysis efficiency correlated with hydrophilic properties of the substrate electrodes, affecting morphological and as a result catalytic properties of the formed IrOx films. These results, important both for studied and related carbon nanomaterials systems, allow fine-tuning of electrocatalysis by a proper choice of the substrate electrode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000664219100012 Publication Date 2021-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.136 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4.136  
  Call Number UA @ admin @ c:irua:179719 Serial 7859  
Permanent link to this record
 

 
Author Moiseeva, E.O.; Trashin, S.; Korostei, Y.S.; Khan, S.U.; Kosov, A.D.; De Wael, K.; Dubinina, T.V.; Tomilova, L.G. pdf  url
doi  openurl
  Title Electrochemical and spectroelectrochemical studies of tert-butyl-substituted aluminum phthalocyanine Type A1 Journal article
  Year 2021 Publication Polyhedron Abbreviated Journal Polyhedron  
  Volume 200 Issue Pages 115136  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Tetra-tert-butylphthalocyanine aluminum (III) chloride was studied by voltammetric and potential-resolved spectroelectrochemical methods in a non-coordinating solvent o-dichlorobenzene. Five redox transitions were found including two oxidation waves at 0.18 and 0.90 V and three reduction waves at −1.28, −1.65, and −2.63 V vs. Fc+/Fc. Electrochemical reversibility of the first oxidation and reduction processes was assessed by using the diagnostic criteria of cyclic voltammetry. First comprehensive spectroelectrochemical characterization of oxidation of the aluminum phthalocyanine is reported. Moreover, potential-resolved spectroelectrochemical titration revealed strong influence of aggregation on the UV–vis spectra and the half-wave potentials of the first oxidation transition and disclosed the presence of the partially oxidized complex in the initial solution, which noticeably affected the spectrum of the neutral form.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000640386000006 Publication Date 2021-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0277-5387 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.926 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 1.926  
  Call Number UA @ admin @ c:irua:176389 Serial 7860  
Permanent link to this record
 

 
Author Dragan, A.-M.; Truta, F.M.; Tertis, M.; Florea, A.; Schram, J.; Cernat, A.; Feier, B.; De Wael, K.; Cristea, C.; Oprean, R. url  doi
openurl 
  Title Electrochemical fingerprints of illicit drugs on graphene and multi-walled carbon nanotubes Type A1 Journal article
  Year 2021 Publication Frontiers In Chemistry Abbreviated Journal Front Chem  
  Volume 9 Issue Pages 641147  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Illicit drugs use and abuse remains an increasing challenge for worldwide authorities and, therefore, it is important to have accurate methods to detect them in seized samples, biological fluids and wastewaters. They are recently classified as the latest group of emerging pollutants as their consumption increased tremendously in recent years. Nanomaterials have gained much attention over the last decade in the development of sensors for a myriad of applications. The applicability of these nanomaterials, functionalized or not, significantly increases and it is therefore highly suitable for use in the detection of illicit drugs. We have assessed the suitability of various nanoplatforms, such as graphene (GPH), multi-walled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) for the electrochemical detection of illicit drugs. GPH and MWCNTs were chosen as the most suitable platforms and cocaine, 3,4-methylendioxymethamfetamine (MDMA), 3-methylmethcathinone (MMC) and alpha-pyrrolidinovalerophenone (PVP) were tested. Due to the hydrophobicity of the nanomaterials-based platforms which led to low signals, two strategies were followed namely, pretreatment of the electrodes in sulfuric acid by cyclic voltammetry and addition of Tween 20 to the detection buffer. Both strategies led to an increase in the oxidation signal of illicit drugs. Binary mixtures of illicit drugs with common adulterants found in street samples were also investigated. The proposed strategies allowed the sensitive detection of illicit drugs in the presence of most adulterants. The suitability of the proposed sensors for the detection of illicit drugs in spiked wastewaters was finally assessed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634708900001 Publication Date 2021-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-2646 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.994 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.994  
  Call Number UA @ admin @ c:irua:177704 Serial 7861  
Permanent link to this record
 

 
Author De Paepe, J.; Clauwaert, P.; Gritti, M.C.; Ganigue, R.; Sas, B.; Vlaeminck, S.E.; Rabaey, K. pdf  url
doi  openurl
  Title Electrochemical in situ pH control enables chemical-free full urine nitrification with concomitant nitrate extraction Type A1 Journal article
  Year 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 55 Issue 12 Pages 8287-8298  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urine is a valuable resource for nutrient recovery. Stabilization is, however, recommended to prevent urea hydrolysis and the associated risk for ammonia volatilization, uncontrolled precipitation, and malodor. This can be achieved by alkalinization and subsequent biological conversion of urea and ammonia into nitrate (nitrification) and organics into CO2. Yet, without pH control, the extent of nitrification is limited as a result of insufficient alkalinity. This study explored the feasibility of an integrated electrochemical cell to obtain on-demand hydroxide production through water reduction at the cathode, compensating for the acidification caused by nitritation, thereby enabling full nitrification. To deal with the inherent variability of the urine influent composition and bioprocess, the electrochemical cell was steered via a controller, modulating the current based on the pH in the bioreactor. This provided a reliable and innovative alternative to base addition, enabling full nitrification while avoiding the use of chemicals, the logistics associated with base storage and dosing, and the associated increase in salinity. Moreover, the electrochemical cell could be used as an in situ extraction and concentration technology, yielding an acidic concentrated nitrate-rich stream. The make-up of the end product could be tailored by tweaking the process configuration, offering versatility for applications on Earth and in space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663939900052 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 6.198  
  Call Number UA @ admin @ c:irua:179779 Serial 7862  
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van den Berg, J.; van Nuijs, A.L.N.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical profiling and liquid chromatography–mass spectrometry characterization of synthetic cathinones : from methodology to detection in forensic samples Type A1 Journal article
  Year 2021 Publication Drug Testing And Analysis Abbreviated Journal Drug Test Anal  
  Volume 13 Issue 7 Pages 1282-1294  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract The emergence of new psychoactive drugs in the market demands rapid and accurate tools for the on‐site classification of illegal and legal compounds with similar structures. Herein, a novel method for the classification of synthetic cathinones (SC) is presented based on their electrochemical profile. First, the electrochemical profile of five common SC (i.e., mephedrone, ethcathinone, methylone, butylone and 4‐chloro‐alpha‐pyrrolidinovalerophenone) is collected to build calibration curves using square wave voltammetry on graphite screen‐printed electrodes (SPE). Second, the elucidation of the oxidation pathways, obtained by liquid chromatography‐high resolution mass spectrometry, allows the pairing of the oxidation products to the SC electrochemical profile, providing a selective and robust classification. Additionally, the effect of common adulterants and illicit drugs on the electrochemical profile of the SC is explored. Interestingly, a cathodic pretreatment of the SPE allows the selective detection of each SC in presence of electroactive adulterants. Finally, the electrochemical approach is validated with gas‐chromatography‐mass spectrometry by analyzing 26 confiscated samples from seizures and illegal webshops. Overall, the electrochemical method exhibits a successful classification of SC including structural derivatives, a crucial attribute in an ever‐diversifying drug market.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000624902500001 Publication Date 2021-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.469 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.469  
  Call Number UA @ admin @ c:irua:175583 Serial 7863  
Permanent link to this record
 

 
Author Parrilla, M.; Joosten, F.; De Wael, K. pdf  url
doi  openurl
  Title Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 348 Issue Pages 130659  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drug consumption is a worldwide worrying phenomenon that troubles modern society. For this reason, law enforcement agencies (LEAs) are placing tremendous efforts into tackling the spreading of such substances among our community. New sensing technologies can facilitate the LEAs duties by providing portable and affordable analytical devices. Herein, we present for the first time a sensitive and low-cost electrochemical method, i.e. square-wave adsorptive stripping voltammetry on carbon screen-printed electrodes (SPE), for the detection of five illicit drugs (i.e. cocaine, heroin, 3,4-methylenedioxymethamphetamine, 4-chloro-alpha-pyrrolidinovalerophenone, and ketamine) in oral fluid by the aid of a surfactant. Particularly, the surfactant is adsorbed at the carbon electrode’s surface and yields the adsorption of illicit drug molecules, allowing for an enhanced electrochemical signal in comparison to surfactant-free media. First, the surfactant-mediated behavior is deeply explored at the SPE by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier-transform infrared spectroscopy. Subsequently, the electrochemical behavior of the five illicit drugs is studied and optimized to render optimal analytical performance. Accordingly, the analytical system exhibited a wide linear concentration range from 1 to 30 µM with sub-micromolar limits of detection and high sensitivity. This performance is similar to other reported electrochemical sensors, but with the advantage of using an unmodified SPE, thus avoiding costly and complex functionalization of the SPE. Finally, the methodology was evaluated in diluted oral fluid samples spiked with illicit drugs. Overall, this work describes a simple, rapid, portable, and sensitive method for the detection of illicit drugs aiming to provide oral fluid testing opportunities to LEAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000701915600005 Publication Date 2021-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:181307 Serial 7912  
Permanent link to this record
 

 
Author Chen, H.; Xiong, Y.; Li, J.; Abed, J.; Wang, D.; Pedrazo-Tardajos, A.; Cao, Y.; Zhang, Y.; Wang, Y.; Shakouri, M.; Xiao, Q.; Hu, Y.; Bals, S.; Sargent, E.H.H.; Su, C.-Y.; Yang, Z. url  doi
openurl 
  Title Epitaxially grown silicon-based single-atom catalyst for visible-light-driven syngas production Type A1 Journal article
  Year 2023 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 14 Issue 1 Pages 1719-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Despite the natural abundance and promising properties of Si, there are few examples of crystalline Si-based catalysts. Here, the authors report an epitaxial growth method to construct Co single atoms on Si for light driven CO2 reduction to syngas. Improving the dispersion of active sites simultaneous with the efficient harvest of photons is a key priority for photocatalysis. Crystalline silicon is abundant on Earth and has a suitable bandgap. However, silicon-based photocatalysts combined with metal elements has proved challenging due to silicon's rigid crystal structure and high formation energy. Here we report a solid-state chemistry that produces crystalline silicon with well-dispersed Co atoms. Isolated Co sites in silicon are obtained through the in-situ formation of CoSi2 intermediate nanodomains that function as seeds, leading to the production of Co-incorporating silicon nanocrystals at the CoSi2/Si epitaxial interface. As a result, cobalt-on-silicon single-atom catalysts achieve an external quantum efficiency of 10% for CO2-to-syngas conversion, with CO and H-2 yields of 4.7 mol g((Co))(-1) and 4.4 mol g((Co))(-1), respectively. Moreover, the H-2/CO ratio is tunable between 0.8 and 2. This photocatalyst also achieves a corresponding turnover number of 2 x 10(4) for visible-light-driven CO2 reduction over 6 h, which is over ten times higher than previously reported single-atom photocatalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000962607600018 Publication Date 2023-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 6 Open Access (up) OpenAccess  
  Notes This work was supported by the National Natural Science Foundation of China (21821003, 21890380, 21905316), Guangdong Natural Science Foundation (2019A1515011748), the Science and Technology Planning Project of Guangdong Province (2019A050510018), Pearl River Recruitment Program of Talent (2019QN01C108), the EU Infrastructure Project EUSMI (Grant No. E190700310), and Sun Yat-sen University. D.W. acknowledges an Individual Fellowship funded by the Marie-Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). S.B. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by grant no. 731019 (EUSMI) and ERC Consolidator grant no. 815128 (REALNANO). This project has received funding from the European Commission Grant (EUSMI E190700310). Synchrotron XAS data described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), the Natural Sciences and Engineering Research Council (NSERC), the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. Approved Most recent IF: 16.6; 2023 IF: 12.124  
  Call Number UA @ admin @ c:irua:196062 Serial 7932  
Permanent link to this record
 

 
Author Vermeyen, T.; Brence, J.; Van Echelpoel, R.; Aerts, R.; Acke, G.; Bultinck, P.; Herrebout, W. url  doi
openurl 
  Title Exploring machine learning methods for absolute configuration determination with vibrational circular dichroism Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 35 Pages 19781-19789  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Molecular Spectroscopy (MolSpec)  
  Abstract The added value of supervised Machine Learning (ML) methods to determine the Absolute Configuration (AC) of compounds from their Vibrational Circular Dichroism (VCD) spectra was explored. Among all ML methods considered, Random Forest (RF) and Feedforward Neural Network (FNN) yield the best performance for identification of the AC. At its best, FNN allows near-perfect AC determination, with accuracy of prediction up to 0.995, while RF combines good predictive accuracy (up to 0.940) with the ability to identify the spectral areas important for the identification of the AC. No loss in performance of either model is observed as long as the spectral sampling interval used does not exceed the spectral bandwidth. Increasing the sampling interval proves to be the best method to lower the dimensionality of the input data, thereby decreasing the computational cost associated with the training of the models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000691366500001 Publication Date 2021-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:180290 Serial 7951  
Permanent link to this record
 

 
Author Demiroglu, I.; Sevik, C. url  doi
openurl 
  Title Extraordinary negative thermal expansion of two-dimensional nitrides : a comparative ab initio study of quasiharmonic approximation and molecular dynamics simulations Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 8 Pages 085430  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Thermal expansion behavior of two-dimensional (2D) nitrides and graphene were studied by ab initio molecular dynamics (MD) simulations as well as quasiharmonic approximation (QHA). Anharmonicity of the acoustic phonon modes are related to the unusual negative thermal expansion (NTE) behavior of the nitrides. Our results also hint that direct ab initio MD simulations are a more elaborate method to investigate thermal expansion behavior of 2D materials than the QHA. Nevertheless, giant NTE coefficients are found for h-GaN and h-AlN within the covered temperature range 100-600 K regardless of the chosen computational method. This unusual NTE of 2D nitrides is reasoned with the out-of-plane oscillations related to the rippling behavior of the monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000620346100007 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:176671 Serial 7956  
Permanent link to this record
 

 
Author Maes, R.R.; Potters, G.; Fransen, E.; Cayetano, F.C.; Van Schaeren, R.; Lenaerts, S. url  doi
openurl 
  Title Finding the optimal fatty acid composition for biodiesel improving the emissions of a one-cylinder diesel generator Type A1 Journal article
  Year 2021 Publication Sustainability Abbreviated Journal Sustainability-Basel  
  Volume 13 Issue 21 Pages 12089  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Nitrogen oxides (NOx) and particulate matter (PM) currently are the main pollutants emitted by diesel engines. While there is a start in using hybrid and electric cars, ships will still be fueled by mineral oil products. In the quest to achieve zero-pollution and carbon-free shipping, alternative forms of energy carriers must be found to replace the commonly used mineral oil products. One of the possible alternative fuels is biodiesel. This paper explores the optimization of the composition of biodiesel in order to reduce the concentration of particulate matter and NOx in exhaust gases of a one-cylinder diesel generator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000719122800001 Publication Date 2021-11-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2071-1050 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.789 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 1.789  
  Call Number UA @ admin @ c:irua:184041 Serial 7969  
Permanent link to this record
 

 
Author Kerckhof, F.-M.; Sakarika, M.; Van Giel, M.; Muys, M.; Vermeir, P.; De Vrieze, J.; Vlaeminck, S.E.; Rabaey, K.; Boon, N. url  doi
openurl 
  Title From biogas and hydrogen to microbial protein through co-cultivation of methane and hydrogen oxidizing bacteria Type A1 Journal article
  Year 2021 Publication Frontiers in Bioengineering and Biotechnology Abbreviated Journal  
  Volume 9 Issue Pages 733753  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Increasing efforts are directed towards the development of sustainable alternative protein sources among which microbial protein (MP) is one of the most promising. Especially when waste streams are used as substrates, the case for MP could become environmentally favorable. The risks of using organic waste streams for MP production–the presence of pathogens or toxicants–can be mitigated by their anaerobic digestion and subsequent aerobic assimilation of the (filter-sterilized) biogas. Even though methane and hydrogen oxidizing bacteria (MOB and HOB) have been intensively studied for MP production, the potential benefits of their co-cultivation remain elusive. Here, we isolated a diverse group of novel HOB (that were capable of autotrophic metabolism), and co-cultured them with a defined set of MOB, which could be grown on a mixture of biogas and H2/O2. The combination of MOB and HOB, apart from the CH4 and CO2 contained in biogas, can also enable the valorization of the CO2 that results from the oxidation of methane by the MOB. Different MOB and HOB combinations were grown in serum vials to identify the best-performing ones. We observed synergistic effects on growth for several combinations, and in all combinations a co-culture consisting out of both HOB and MOB could be maintained during five days of cultivation. Relative to the axenic growth, five out of the ten co-cultures exhibited 1.1–3.8 times higher protein concentration and two combinations presented 2.4–6.1 times higher essential amino acid content. The MP produced in this study generally contained lower amounts of the essential amino acids histidine, lysine and threonine, compared to tofu and fishmeal. The most promising combination in terms of protein concentration and essential amino acid profile was Methyloparacoccus murrelli LMG 27482 with Cupriavidus necator LMG 1201. Microbial protein from M. murrelli and C. necator requires 27–67% less quantity than chicken, whole egg and tofu, while it only requires 15% more quantity than the amino acid-dense soybean to cover the needs of an average adult. In conclusion, while limitations still exist, the co-cultivation of MOB and HOB creates an alternative route for MP production leveraging safe and sustainably-produced gaseous substrates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000697897900001 Publication Date 2021-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-4185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:180591 Serial 7985  
Permanent link to this record
 

 
Author Van Hal, M.; Campos, R.; Lenaerts, S.; De Wael, K.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Gas phase photofuel cell consisting of WO₃- and TiO₂-photoanodes and an air-exposed cathode for simultaneous air purification and electricity generation Type A1 Journal article
  Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 292 Issue Pages 120204  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Research has shown the potential of photofuel cells (PFCs) for waste water treatment, enabling the (partial) recovery of the energy released from the degraded compounds as electricity. Literature on PFCs targeting air pollution on the other hand is extremely scarce. In this work an autonomously operating air purification device targeting sustainable electricity generation is presented. Knowledge on gas phase operation of PFCs was gathered by combining photocatalytic and photoelectrochemical measurements, both for TiO2 and WO3-based photocatalysts. While TiO2-based photocatalysts performed better in direct photocatalytic experiments, they were outperformed by WO3-based photoanodes in all-gas-phase PFC operation. Not only do WO3-based photocatalysts generate the highest steady state photocurrent, they also achieved the highest fuel-to-electricity conversion (>65 %). The discrepancies between gas phase photocatalytic and photoelectrochemical processes highlight the difference in driving material properties. This study serves as a proof-of-concept towards development of an autonomous, low-cost and widely applicable waste gas-to-electricity PFC device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663216500001 Publication Date 2021-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 9.446  
  Call Number UA @ admin @ c:irua:177075 Serial 7989  
Permanent link to this record
 

 
Author Beltran, V.; Marchetti, A.; De Meyer, S.; Nuyts, G.; De Wael, K. pdf  url
doi  openurl
  Title Geranium lake pigments : the role of the synthesis on the structure and composition Type A1 Journal article
  Year 2021 Publication Dyes And Pigments Abbreviated Journal Dyes Pigments  
  Volume 189 Issue Pages 109260  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Eosin Y has an extraordinary capacity to form complexes with metallic elements, that have applications in many different fields, from photovoltaics and photocatalysis to historical artists? pigments. To unravel the complexes reactivity, it is essential to have a precise knowledge of their structure and composition, as well as how these can be affected by the synthesis protocol, an often underestimated factor. This manuscript presents a thorough investigation of the structure and composition of eosin Y complexes based on Al and Pb, by FTIR, XRPD and Raman spectroscopy, with a particular focus on the effect of the synthesis conditions. Results clearly show the change of the coordination mode in Pb complexes depending on the protocol, while the structure of Al complexes remains stable. In both cases, the formation of by-products was observed. Additionally, a detailed band assignment of the FTIR and Raman spectra of eosin Y and Pb and Al complexes is described, providing interesting details such as the interaction between the metallic ion and the xanthene moiety (chromophore). This is extremely important for the analysis of historical paintings where eosin Y is bonded to metallic ions, as well as for other materials in dye-sensitized solar cells, wastewater treatment or photocatalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634733200001 Publication Date 2021-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-7208 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.473 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.473  
  Call Number UA @ admin @ c:irua:177676 Serial 8002  
Permanent link to this record
 

 
Author Ysebaert, T.; Koch, K.; Samson, R.; Denys, S. pdf  url
doi  openurl
  Title Green walls for mitigating urban particulate matter pollution : a review Type A1 Journal article
  Year 2021 Publication Urban Forestry & Urban Greening Abbreviated Journal Urban For Urban Gree  
  Volume 59 Issue Pages 127014  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Air pollution caused by particulate matter (PM) is a well-known health issue in urban environments. Urban green infrastructure offers opportunities as a nature-based solution to urban PM pollution. Green walls have advantages over other types of urban green infrastructure, since they can be applied to the enormous available wall area in cities and since they do not interfere with the prevailing ventilation resulting in elevated PM levels. However, this has raised questions about the effectiveness of GW in removing PM and this could explain the limited applicability of green walls to tackle PM pollution. Nevertheless, it is suggested that green walls have a significant unexploited potential and this review article aims to address current knowledge gaps and to propose future research requirements for the implementation of green walls to mitigate urban PM pollution. An in-depth analysis is given of the mechanisms behind PM deposition and the influence of vegetation properties on this process, as well as the practices followed to model PM dispersion and deposition. It was suggested that particle deposition on green walls depends on the green wall species, pollution level, and the residence time of PM in a street (canyon). Rainfall plays an important role in the PM pathway, although it is not a necessary requirement to sustain PM deposition on plant leaves. There are still some discrepancies in the literature about the ideal plant characteristics for PM deposition in terms of the macro- and microstructures that require further investigation, especially in comparison with tree and shrub species. In addition, extensively validated models are required to accurately calculate the impact of green walls on air flow and the PM concentration on site.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000632597600001 Publication Date 2021-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-8667 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.113 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 2.113  
  Call Number UA @ admin @ c:irua:175581 Serial 8011  
Permanent link to this record
 

 
Author Voordeckers, D.; Lauriks, T.; Denys, S.; Billen, P.; Tytgat, T.; Van Acker, M. pdf  url
doi  openurl
  Title Guidelines for passive control of traffic-related air pollution in street canyons : an overview for urban planning Type A1 Journal article
  Year 2021 Publication Landscape And Urban Planning Abbreviated Journal Landscape Urban Plan  
  Volume 207 Issue Pages 103980-20  
  Keywords A1 Journal article; Economics; Law; Engineering sciences. Technology; Art; Energy and Materials in Infrastructure and Buildings (EMIB); Research Group for Urban Development; Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Recent studies indicate the necessity of addressing traffic-related air pollution in urban environments, as street canyons are known for their lack of natural ventilation and increased pollution levels. To address this issue, numerous studies have been conducted on different aspects (e.g. aspect ratio, orientation and height variation) and their impact on ventilation and pollution dispersion/dilution performance in street canyons. Despite the numerous studies, the information remains fragmented and the results and applications are fairly unknown in urban planning. Broad review studies on numerous street canyon aspects are also quite scarce. In this study, over 200 studies were collected and reviewed across various parameters and on different configuration levels (street canyon configuration / building configuration / in-canyon configuration). Hereby, the study aims to give a comprehensive overview and to formulate spatial guidelines to improve the application of the reviewed studies for the purpose of urban planning. In total, 19 general guidelines were formulated, and an implementation strategy for the purpose of urban planning was developed. Despite the usability of these guidelines for urban planning, a high number of limitations and variabilities were detected. The broad literature review also revealed knowledge gaps, indicating the potentials for further research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000604739400006 Publication Date 2020-11-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-2046 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.563 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4.563  
  Call Number UA @ admin @ c:irua:173811 Serial 8014  
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Newsome, G.A.; Janssens, K. pdf  url
doi  openurl
  Title High-resolution mass spectrometry and nontraditional mass defect analysis of brominated historical pigments Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 93 Issue 44 Pages 14851-14858  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract The implementation of high-resolution mass spectrometry systems offers new possibilities for the analysis of complex art samples such as historical oil paintings. However, these multicomponent systems generate large and complex data sets that require advanced visualization tools to aid interpretation, especially when no chromatographic separation is performed. In the context of this research, it was crucial to propose a data analysis tool to identify the products generated during the synthesis, drying, and aging of historical pigments. This study reports for the first time a nontraditional mass defect analysis of oil paint samples containing a fugitive brominated-organic pigment, eosin or geranium lake, by using direct infusion electrospray ionization in combination with a high-resolution Orbitrap mass spectrometer. The use of nontraditional Kendrick mass defect plots is presented in this study as a processing and visualization tool to recognize brominated species based on their specific mass defect and isotope pattern. The results demonstrate that this approach could provide valuable molecular compositional information on the degradation pathways of this pigment. We anticipate that mass defect analysis will become highly relevant in future degradation studies of many more historical organic pigments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000718171600037 Publication Date 2021-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:182347 Serial 8038  
Permanent link to this record
 

 
Author Gupta, A.; Baron, G.V.; Perreault, P.; Lenaerts, S.; Ciocarlan, R.-G.; Cool, P.; Mileo, P.G.M.; Rogge, S.; Van Speybroeck, V.; Watson, G.; Van Der Voort, P.; Houlleberghs, M.; Breynaert, E.; Martens, J.; Denayer, J.F.M. url  doi
openurl 
  Title Hydrogen clathrates : next generation hydrogen storage materials Type A1 Journal article
  Year 2021 Publication Energy Storage Materials Abbreviated Journal  
  Volume 41 Issue Pages 69-107  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Extensive research has been carried on the molecular adsorption in high surface area materials such as carbonaceous materials and MOFs as well as atomic bonded hydrogen in metals and alloys. Clathrates stand among the ones to be recently suggested for hydrogen storage. Although, the simulations predict lower capacity than the expected by the DOE norms, the additional benefits of clathrates such as low production and operational cost, fully reversible reaction, environmentally benign nature, low risk of flammability make them one of the most promising materials to be explored in the next decade. The inherent ability to tailor the properties of clathrates using techniques such as addition of promoter molecules, use of porous supports and formation of novel reverse micelles morphology provide immense scope customisation and growth. As rapidly evolving materials, clathrates promise to get as close as possible in the search of “holy grail” of hydrogen storage. This review aims to provide the audience with the background of the current developments in the solid-state hydrogen storage materials, with a special focus on the hydrogen clathrates. The in-depth analysis of the hydrogen clathrates will be provided beginning from their discovery, various additives utilised to enhance their thermodynamic and kinetic properties, challenges in the characterisation of hydrogen in clathrates, theoretical developments to justify the experimental findings and the upscaling opportunities presented by this system. The review will present state of the art in the field and also provide a global picture for the path forward.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000685118300009 Publication Date 2021-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8297 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178744 Serial 8045  
Permanent link to this record
 

 
Author Voordeckers, D.; Meysman, F.J.R.; Billen, P.; Tytgat, T.; Van Acker, M. url  doi
openurl 
  Title The impact of street canyon morphology and traffic volume on NO₂ values in the street canyons of Antwerp Type A1 Journal article
  Year 2021 Publication Building And Environment Abbreviated Journal Build Environ  
  Volume 197 Issue Pages 107825-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Air pollution remains a major environmental and health concern in urban environments, especially in street canyons that show increased pollution levels due to a lack of natural ventilation. Previous studies have investigated the relationship between street canyon morphology and in-canyon pollution levels. However, these studies are typically limited to the scale of a single street canyon and city-wide assessments on this matter are scarce. In 2018, NO2 concentrations were measured in 321 street canyons in the city of Antwerp (Belgium) as part of the large-scale citizen-science project “CurieuzeNeuzen”. In our research, this data was used to study the correlation between morphological indices (e.g. aspect ratio (AR), lateral aspect ratio (LAR), presence of trees) and the traffic volumes on a city-wide scale. The maximum hourly traffic volume (TVmax) and AR correlated significantly with the measured NO2 values, making them useful indicators for air quality in street canyons. For street canyons with AR > 0.65, a TVmax of 300 vehicles/hour was found as a threshold value to guarantee acceptable air quality. No significant correlations were found for the other parameters. Finally, a number of typical street canyon types were defined, which can be of fundamental interest for further research and spatial policy making.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663167900003 Publication Date 2021-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-1323 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.053 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4.053  
  Call Number UA @ admin @ c:irua:176925 Serial 8064  
Permanent link to this record
 

 
Author Aucar Boidi, N.; Fernández García, H.; Nunez-Fernandez, Y.; Hallberg, K. url  doi
openurl 
  Title In-gap band in the one-dimensional two-orbital Kanamori-Hubbard model with interorbital Coulomb interaction Type A1 Journal article
  Year 2021 Publication Physical review research Abbreviated Journal  
  Volume 3 Issue 4 Pages 043213  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract We study the electronic spectral properties at zero temperature of the one-dimensional (1D) version of the degenerate two-orbital Kanamori-Hubbard model, one of the well-established frameworks to study transition metal compounds, using state-of-the-art numerical techniques based on the density matrix renormalization group. While the system is Mott insulating for the half-filled case, as expected for an interacting 1D system, we find interesting and rich structures in the single-particle density of states (DOS) for the hole-doped system. In particular, we find the existence of in-gap states which are pulled down to lower energies from the upper Hubbard band with increasing the interorbital Coulomb interaction V. We analyze the composition of the DOS by projecting it onto different local excitations, and we observe that for large dopings these in-gap excitations are formed mainly by interorbital holon-doublon (HD) states and their energies follow approximately the HD states in the atomic limit. We observe that the Hund interaction J increases the width of the in-gap band, as expected from the two-particle fluctuations in the Hamiltonian. The observation of a finite density of states within the gap between the Hubbard bands for this extended 1D model indicates that these systems present a rich excitation spectra which could help us understand the microscopic physics behind multiorbital compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000736651500002 Publication Date 2021-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:184836 Serial 8073  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: