toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, J.; Pereira, P.J.; Yuan, J.; Lv, Y.-Y.; Jiang, M.-P.; Lu, D.; Lin, Z.-Q.; Liu, Y.-J.; Wang, J.-F.; Li, L.; Ke, X.; Van Tendeloo, G.; Li, M.-Y.; Feng, H.-L.; Hatano, T.; Wang, H.-B.; Wu, P.-H.; Yamaura, K.; Takayama-Muromachi, E.; Vanacken, J.; Chibotaru, L.F.; Moshchalkov, V.V. url  doi
openurl 
  Title Nematic superconducting state in iron pnictide superconductors Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 8 Issue 1 Pages 1880  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nematic order often breaks the tetragonal symmetry of iron-based superconductors. It arises from regular structural transition or electronic instability in the normal phase. Here, we report the observation of a nematic superconducting state, by measuring the angular dependence of the in-plane and out-of-plane magnetoresistivity of Ba 0.5 K 0.5 Fe 2 As 2 single crystals. We find large twofold oscillations in the vicinity of the superconducting transition, when the direction of applied magnetic field is rotated within the basal plane. To avoid the influences from sample geometry or current flow direction, the sample was designed as Corbino-shape for in-plane and mesa-shape for out-of-plane measurements. Theoretical analysis shows that the nematic superconductivity arises from the weak mixture of the quasi-degenerate s-wave and d-wave components of the superconducting condensate, most probably induced by a weak anisotropy of stresses inherent to single crystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000416933400002 Publication Date 2017-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 8 Open Access (up) OpenAccess  
  Notes The authors J.L., P.J.P., and J.Y. contributed equally to this work. J.L. and J.Y. designed the experiments. J.L., H.-L.F., K.Y., and E.T.-M. grew the single crystals. J.L., J.Y., Y.-Y.L., M.-P.J., D.L., M.-Y.L., T.H., H.-B.W., P.-H.W., K.Y., E.T.-M., J.V., and V.V.M. fabricated the devices and measured transport properties. J.L., Y.-Y.L., Z.-Q.L., Y.-J.L., J.-F.W., and L.L. studied on the pulsed high field measurements. X.K. and G.V.T. measured the low temperature TEM. All authors discussed the data. J.L., P.J.P., and L.F.C. proposed the model and simulated the results. J.L., P.J.P., K.Y., E.T.-M., and L.F.C. analyzed the data and prepared the manuscript. Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @c:irua:147348 Serial 4772  
Permanent link to this record
 

 
Author Cavaliere, E.; Benetti, G.; Van Bael, M.; Winckelmans, N.; Bals, S.; Gavioli, L. pdf  url
doi  openurl
  Title Exploring the Optical and Morphological Properties of Ag and Ag/TiO2 Nanocomposites Grown by Supersonic Cluster Beam Deposition Type A1 Journal article
  Year 2017 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 7 Issue 7 Pages 442  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanocomposite systems and nanoparticle (NP) films are crucial for many applications and research fields. The structure-properties correlation raises complex questions due to the collective structure of these systems, often granular and porous, a crucial factor impacting their effectiveness and performance. In this framework, we investigate the optical and morphological properties of Ag nanoparticles (NPs) films and of Ag NPs/TiO₂ porous matrix films, one-step grown by supersonic cluster beam deposition. Morphology and structure of the Ag NPs film and of the Ag/TiO₂ (Ag/Ti 50-50) nanocomposite are related to the optical properties of the film employing spectroscopic ellipsometry (SE). We employ a simple Bruggeman effective medium approximation model, corrected by finite size effects of the nano-objects in the film structure to gather information on the structure and morphology of the nanocomposites, in particular porosity and average NPs size for the Ag/TiO₂ NP film. Our results suggest that SE is a simple, quick and effective method to measure porosity of nanoscale films and systems, where standard methods for measuring pore sizes might not be applicable.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000419186800037 Publication Date 2017-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.553 Times cited 19 Open Access (up) OpenAccess  
  Notes The authors thank Gabriele Ferrini for fruitful discussions on the spectroscopic ellipsometry model and Francesco Rossella from NEST for the optical profilometry data. The authors acknowledge financial support from the European Union through the 7th Framework Program (FP7) under a contract for an Integrated Infrastructure Initiative (Reference No. 312483 ESTEEM2). Luca Gavioli, Emanuele Cavaliere and Giulio Benetti acknowledge support from Università Cattolica del Sacro Cuore through D.1.1 and D.3.1 grants. Approved Most recent IF: 3.553  
  Call Number EMAT @ emat @c:irua:147862UA @ admin @ c:irua:147862 Serial 4802  
Permanent link to this record
 

 
Author Liao, Z.; Gauquelin, N.; Green, R.J.; Müller-Caspary, K.; Lobato, I.; Li, L.; Van Aert, S.; Verbeeck, J.; Huijben, M.; Grisolia, M.N.; Rouco, V.; El Hage, R.; Villegas, J.E.; Mercy, A.; Bibes, M.; Ghosez, P.; Sawatzky, G.A.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title Metal–insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching Type A1 Journal article
  Year 2018 Publication America Abbreviated Journal P Natl Acad Sci Usa  
  Volume 115 Issue 38 Pages 9515-9520  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In transition metal perovskites ABO3 the physical properties are largely driven by the rotations of the BO6 octahedra, which can be tuned in thin films through strain and dimensionality control. However, both approaches have fundamental and practical limitations due to discrete and indirect variations in bond angles, bond lengths and film symmetry by using commercially available substrates. Here, we introduce modulation tilt control as a new approach to tune the ground state of perovskite oxide thin films by acting explicitly on the oxygen octahedra rotation modes, i.e. directly on the bond angles. By intercalating the prototype SmNiO3 target material with a tilt-control layer, we cause the system to change the natural amplitude of a given rotation mode without affecting the interactions. In contrast to strain and dimensionality engineering, our method enables a continuous fine-tuning of the materials properties. This is achieved through two independent adjustable parameters: the nature of the tilt-control material (through its symmetry, elastic constants and oxygen rotation angles) and the relative thicknesses of the target and tilt-control materials. As a result, a magnetic and electronic phase diagram can be obtained, normally only accessible by A-site element substitution, within the single SmNiO3 compound. With this unique approach, we successfully adjusted the metal-insulator transition (MIT) to room temperature to fulfill the desired conditions for optical switching applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000447224900057 Publication Date 2018-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.661 Times cited 50 Open Access (up) OpenAccess  
  Notes We would like to acknowledge Prof. Z. Zhong for stimulated discussion. M.H., G.K. and G.R. acknowledge funding from DESCO program of the Dutch Foundation for Fundamental Research on Matter (FOM) with financial support from the Netherlands Organization for Scientific Research (NWO). This work was funded by the European Union Council under the 7th Framework Program (FP7) grant nr NMP3-LA-2010-246102 IFOX. J.V., S.V.A, N.G. and K.M.C. acknowledge funding from FWO projects G.0044.13N, G.0374.13N, G. 0368.15N, and G.0369.15N. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. N.G. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant 278510 VORTEX. N.G. and J.V. acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative (Reference No. 312483- ESTEEM2). The Canadian work was supported by NSERC and the Max Planck-UBC Centre for Quantum Materials. Some experiments for this work were performed at the Canadian Light Source, which is funded by the Canada Foundation for Innovation, NSERC, the National Research Council of Canada, the Canadian Institutes of Health Research, the Government of Saskatchewan, Western Economic Diversification Canada, and the University of Saskatchewan. MB acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC CoG grant MINT #615759. A.M. and Ph.G. were supported by the ARC project AIMED and F.R.S-FNRS PDR project HiT4FiT and acknowledge access to Céci computing facilities funded by F.R.S-FNRS (Grant No 2.5020.1), Tier-1 supercomputer of the Fédération Wallonie-Bruxelles funded by the Walloon Region (Grant No 1117545) and HPC resources from the PRACE project Megapasta. Approved Most recent IF: 9.661  
  Call Number EMAT @ emat @c:irua:154784UA @ admin @ c:irua:154784 Serial 5059  
Permanent link to this record
 

 
Author Scarabelli, L.; Schumacher, M.; Jimenez de Aberasturi, D.; Merkl, J.‐P.; Henriksen‐Lacey, M.; Milagres de Oliveira, T.; Janschel, M.; Schmidtke, C.; Bals, S.; Weller, H.; Liz‐Marzán, L.M. pdf  url
doi  openurl
  Title Encapsulation of Noble Metal Nanoparticles through Seeded Emulsion Polymerization as Highly Stable Plasmonic Systems Type A1 Journal article
  Year 2019 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 29 Issue 29 Pages 1809071  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The implementation of plasmonic nanoparticles in vivo remains hindered by important limitations such as biocompatibility, solubility in biological fluids, and physiological stability. A general and versatile protocol is presented, based on seeded emulsion polymerization, for the controlled encapsulation of gold and silver nanoparticles. This procedure enables the encapsulation of single nanoparticles as well as nanoparticle clusters inside a protecting polymer shell. Specifically, the efficient coating of nanoparticles of both metals is demonstrated, with final dimensions ranging between 50 and 200 nm, i.e., sizes of interest for bio-applications. Such hybrid nanocomposites display extraordinary stability in high ionic strength and oxidizing environments, along with high cellular uptake, and low cytotoxicity. Overall, the prepared nanostructures are promising candidates for plasmonic applications under biologically relevant conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000467109100024 Publication Date 2019-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 19 Open Access (up) OpenAccess  
  Notes L.S. and M.S. contributed equally to this work. This work was supported by the Spanish MINECO (Grant MAT2017-86659-R), by the German Research Foundation (DFG, Grant LA 2901/1-1) and by the European Research Council (Grant 335078 COLOURATOM to S.B). The authors acknowledge funding from the European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M). L.S. acknowledges funding from the American-Italian Cancer Foundation through a Post-Doctoral Research Fellowship. D.J.d.A. thanks MINECO for a Juan de la Cierva fellowship (IJCI-2015-24264). J.P.M. was financed by Verband der Chemischen Industrie e.V. (VCI). The authors thank Dr. Artur Feld, Dr. Andreas Kornowski and Stefan Werner (Institute of Physical Chemistry, University of Hamburg) for their support. Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @UA @ admin @ c:irua:160710 Serial 5190  
Permanent link to this record
 

 
Author González-Rubio, G.; Milagres de Oliveira, T.; Albrecht, W.; Díaz-Núñez, P.; Castro-Palacio, J.C.; Prada, A.; González, R.I.; Scarabelli, L.; Bañares, L.; Rivera, A.; Liz-Marzán, L.M.; Peña-Rodríguez, O.; Bals, S.; Guerrero-Martínez, A. pdf  url
doi  openurl
  Title Formation of Hollow Gold Nanocrystals by Nanosecond Laser Irradiation Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume 11 Issue 11 Pages 670-677  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The irradiation of spherical gold nanoparticles (AuNPs) with nanosecond laser pulses induces shape transformations yielding nanocrystals with an inner cavity. The concentration of the stabilizing surfactant, the use of moderate pulse fluences, and the size of the irradiated AuNPs determine the efficiency of the process and the nature of the void. Hollow nanocrystals are obtained when molecules from the surrounding medium (e.g., water and organic matter derived from the surfactant) are trapped during laser pulse irradiation. These experimental observations suggest the existence of a subtle balance between the heating and cooling processes experienced by the nanocrystals, which induce their expansion and subsequent recrystallization keeping exogenous matter inside. The described approach provides valuable insight into the mechanism of interaction of pulsed nanosecond laser with AuNPs, along with interesting prospects for the development of hollow plasmonic nanoparticles with potential applications related to gas and liquid storage at the nanoscale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000512223400012 Publication Date 2020-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited 15 Open Access (up) OpenAccess  
  Notes This work has been funded by the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grants RTI2018-095844-B-I00, PGC2018-096444-B-I00, ENE2015-70300-C3-3, and MAT2017-86659-R), the EUROfusion Consortium (Grant ENR-IFE19.CCFE-01) and the Madrid Regional Government (Grants P2018/NMT-4389 and P2018/EMT-4437). This project has received funding from the European Commission (grant 731019, EUSMI & grant 823717, ESTEEM3). The publication is based also upon work from COST Action TUMIEE (CA17126). The facilities provided by the Center for Ultrafast Lasers at Complutense University of Madrid are gratefully acknowledged. The authors also acknowledge the computer resources and technical assistance provided by the Centro de Supercomputacion y Visualizacion de Madrid (CeSViMa). L.M.L.-M. acknowledges the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant MDM-2017-0720). This project has also received funding from the European Research Council (ERC Consolidator Grant 815128, REALNANO). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (Grant 797153, SOPMEN). A.P. and R.I.G. acknowledge the support of FONDECYT under Grants 3190123 and 11180557 and Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia FB-0807. This research was partially supported by the supercomputing infrastructure of the NLHPC (ECM-02).; sygma; esteem3JRA; esteem3reported Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number EMAT @ emat @c:irua:166504 Serial 6334  
Permanent link to this record
 

 
Author Sun, M.-H.; Zhou, J.; Hu, Z.-Y.; Chen, L.-H.; Li, L.-Y.; Wang, Y.-D.; Xie, Z.-K.; Turner, S.; Van Tendeloo, G.; Hasan, T.; Su, B.-L. pdf  url
doi  openurl
  Title Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency Type A1 Journal article
  Year 2020 Publication Matter Abbreviated Journal  
  Volume 3 Issue 4 Pages 1226-1245  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract As a size- and shape-selective catalyst, zeolites are widely used in petroleum and fine-chemicals processing. However, their small micropores severely hinder molecular diffusion and are sensitive to coke formation. Hierarchically porous zeolite single crystals with fully interconnected, ordered, and tunable multimodal porosity at macro-, meso-, and microlength scale, like in leaves, offer the ideal solution. However, their synthesis remains highly challenging. Here, we report a versatile confined zeolite crystallization process to achieve these superior properties. Such zeolite single crystals lead to significantly improved mass transport properties by shortening the diffusion length while maintaining shape-selective properties, endowing them with a high efficiency of zeolite crystals, enhanced catalytic activities and lifetime, highly reduced coke formation, and reduced deactivation rate in bulky-molecule reactions and methanol-to-olefins process. Their industrial utilization can lead to the design of innovative and intensified reactors and processes with highly enhanced efficiency and minimum energy consumption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000581132600021 Publication Date 2020-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:174329 Serial 6727  
Permanent link to this record
 

 
Author Chen, X.; Li, L.; Peeters, F.M.; Sanyal, B. url  doi
openurl 
  Title Two-dimensional oxygen functionalized honeycomb and zigzag dumbbell silicene with robust Dirac cones Type A1 Journal article
  Year 2021 Publication New Journal Of Physics Abbreviated Journal New J Phys  
  Volume 23 Issue 2 Pages 023007  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Dumbbell-like structures are recently found to be energetically favored in group IV two-dimensional (2D) materials, exhibiting rich physics and many interesting properties. In this paper, using first-principles calculations, we have investigated the oxidized form of the hexagonal honeycomb (ODB-h) and zigzag dumbbell silicene (ODB-z). We confirm that both oxidization processes are energetically favorable, and their phonon spectra further demonstrate the dynamic stability. Contrary to the pristine dumbbell silicene structures (PDB-h and PDB-z silicene), these oxidized products ODB-h and ODB-z silicene are both semimetals with Dirac cones at the Fermi level. The Dirac cones of ODB-h and ODB-z silicene are at the K point and between Y and Gamma points respectively, possessing high Fermi velocities of 3.1 x 10(5) m s(-1) (ODB-h) and 2.9-3.4 x 10(5) m s(-1) (ODB-z). The origin of the Dirac cones is further explained by tight-binding models. The semimetallic properties of ODB-h and ODB-z are sensitive to compression due to the self-absorption effect, but quite robust against the tensile strain. These outstanding properties make oxidized dumbbell silicene a promising material for quantum computing and high-speed electronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000616114900001 Publication Date 2021-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 2 Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.786  
  Call Number UA @ admin @ c:irua:176575 Serial 6741  
Permanent link to this record
 

 
Author Boschker, H.T.S.; Cook, P.L.M.; Polerecky, L.; Eachambadi, R.T.; Lozano, H.; Hidalgo-Martinez, S.; Khalenkow, D.; Spampinato, V.; Claes, N.; Kundu, P.; Wang, D.; Bals, S.; Sand, K.K.; Cavezza, F.; Hauffman, T.; Bjerg, J.T.; Skirtach, A.G.; Kochan, K.; McKee, M.; Wood, B.; Bedolla, D.; Gianoncelli, A.; Geerlings, N.M.J.; Van Gerven, N.; Remaut, H.; Geelhoed, J.S.; Millan-Solsona, R.; Fumagalli, L.; Nielsen, L.P.; Franquet, A.; Manca, J.V.; Gomila, G.; Meysman, F.J.R. url  doi
openurl 
  Title Efficient long-range conduction in cable bacteria through nickel protein wires Type A1 Journal article
  Year 2021 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 12 Issue 1 Pages 3996  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000669944900006 Publication Date 2021-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 23 Open Access (up) OpenAccess  
  Notes The authors thank Marlies Neiemeisland for assistance with Raman microscopy, Michiel Kienhuis for assistance with NanoSIMS analysis, Peter Hildebrandt and Diego Millo for helping with the interpretation of the Raman spectra, IONTOF for the Orbitrap Hybrid- SIMS analysis, and Rene Fabregas for helping with finite-element numerical modeling for SDM. H.T.S.B. and F.J.R.M. were financially supported by the Netherlands Organization for Scientific Research (VICI grant 016.VICI.170.072). Research Foundation Flanders supported F.J.R.M., J.V.M., and R.T.E. through FWO grant G031416N, and F.J.R.M. and J.S.G. through FWO grant G038819N. N.M.J.G. is the recipient of a Ph.D. scholarship for teachers from NWO in the Netherlands (grant 023.005.049). The NanoSIMS facility at Utrecht University was financed through a large infrastructure grant by the Netherlands Organization for Scientific Research (NWO, grant no. 175.010.2009.011) and through a Research Infrastructure Fund by the Utrecht University Board. A.G.S. is supported by the Special Research Fund (BOF) of Ghent University (BOF14/IOP/003, BAS094-18, 01IO3618) and FWO (G043219). The ToF-SIMS was funded by FWO Hercules grant (ZW/13/07) to J.V.M. and A.F. H.L., R.M.S., and G.G. were funded by the European Union H2020 Framework Programme (MSCA-ITN-2016) under grant agreement n 721874.EU, the Spanish Agencia Estatal de Investigación and EU FEDER under grant agreements TEC2016-79156-P and TEC2015-72751-EXP, the Generalitat de Catalunya through 2017-SGR1079 grant and CERCA Program. G.G. was recipient of an ICREA Academia Award, and H.L. of a FPI fellowship (BES-2015-074799) from the Agencia Estatal de Investigación/Fondo Social Europeo. L.F. received funding from the European Research Council (grant agreement No. 819417) under the European Union’s Horizon 2020 research and innovation programme. Approved Most recent IF: 12.124  
  Call Number EMAT @ emat @c:irua:179813 Serial 6803  
Permanent link to this record
 

 
Author Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S.K.; Bladt, E.; Kshirsagar, A.S.; Wang, Z.; Yin, J.; Wang, Y.; Quan, L.N.; Yan, F.; Gao, M.; Li, X.; Shamsi, J.; Debnath, T.; Cao, M.; Scheel, M.A.; Kumar, S.; Steele, J.A.; Gerhard, M.; Chouhan, L.; Xu, K.; Wu, X.-gang; Li, Y.; Zhang, Y.; Dutta, A.; Han, C.; Vincon, I.; Rogach, A.L.; Nag, A.; Samanta, A.; Korgel, B.A.; Shih, C.-J.; Gamelin, D.R.; Son, D.H.; Zeng, H.; Zhong, H.; Sun, H.; Demir, H.V.; Scheblykin, I.G.; Mora-Sero, I.; Stolarczyk, J.K.; Zhang, J.Z.; Feldmann, J.; Hofkens, J.; Luther, J.M.; Perez-Prieto, J.; Li, L.; Manna, L.; Bodnarchuk, M., I; Kovalenko, M., V; Roeffaers, M.B.J.; Pradhan, N.; Mohammed, O.F.; Bakr, O.M.; Yang, P.; Muller-Buschbaum, P.; Kamat, P., V; Bao, Q.; Zhang, Q.; Krahne, R.; Galian, R.E.; Stranks, S.D.; Bals, S.; Biju, V.; Tisdale, W.A.; Yan, Y.; Hoye, R.L.Z.; Polavarapu, L. pdf  url
doi  openurl
  Title State of the art and prospects for Halide Perovskite Nanocrystals Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 15 Issue 7 Pages 10775-10981  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000679406500006 Publication Date 2021-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 538 Open Access (up) OpenAccess  
  Notes E.D. and J.H. acknowledge financial support from the Research FoundationFlanders (FWO Grant Nos. S002019N, G.0B39.15, G.0B49.15, G.0962.13, G098319N, and ZW15_09-GOH6316), the Research Foundation Flanders postdoctoral fellowships to J.A.S. and E.D. (FWO Grant Nos. 12Y7218N and 12O3719N, respectively), Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:180553 Serial 6846  
Permanent link to this record
 

 
Author Dong, H.M.; Tao, Z.H.; Duan, Y.F.; Li, L.L.; Huang, F.; Peeters, F.M. url  doi
openurl 
  Title Substrate dependent terahertz magneto-optical properties of monolayer WS2 Type A1 Journal article
  Year 2021 Publication Optics Letters Abbreviated Journal Opt Lett  
  Volume 46 Issue 19 Pages 4892-4895  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Terahertz (THz) magneto-optical (MO) properties of monolayer (ML) tungsten disulfide (WS2), placed on different substrates and subjected to external magnetic fields, are studied using THz time-domain spectroscopy (TDS). We find that the THz MO conductivity exhibits a nearly linear response in a weak magnetic field, while a distinctly nonlinear/oscillating behavior is found in strong magnetic fields owing to strong substrate-induced random impurity scattering and interactions. The THz MO response of ML WS2 depends sensitively on the choice of the substrates, which we trace back to electronic localization and the impact of the substrates on the Landau level (LL) spectrum. Our results provide an in-depth understanding of the THz MO properties of ML WS2/substrate systems, especially the effect of substrates, which can be utilized to realize atomically thin THz MO nano-devices. (C) 2021 Optical Society of America  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000702746400048 Publication Date 2021-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-9592 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.416 Times cited 2 Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.416  
  Call Number UA @ admin @ c:irua:182526 Serial 7023  
Permanent link to this record
 

 
Author Cui, Z.; Meng, S.; Yi, Y.; Jafarzadeh, A.; Li, S.; Neyts, E.C.; Hao, Y.; Li, L.; Zhang, X.; Wang, X.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-catalytic methanol synthesis from CO₂ hydrogenation over a supported Cu cluster catalyst : insights into the reaction mechanism Type A1 Journal article
  Year 2022 Publication Acs Catalysis Abbreviated Journal Acs Catal  
  Volume 12 Issue 2 Pages 1326-1337  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-catalytic CO, hydrogenation for methanol production is gaining increasing interest, but our understanding of its reaction mechanism remains primitive. We present a combined experimental/computational study on plasma-catalytic CO, hydrogenation to CH3OH over a size-selected Cu/gamma-Al2O3 catalyst. Our experiments demonstrate a synergistic effect between the Cu/gamma-Al2O3 catalyst and the CO2/H-2 plasma, achieving a CO2 conversion of 10% at 4 wt % Cu loading and a CH3OH selectivity near 50% further rising to 65% with H2O addition (for a H2O/CO2 ratio of 1). Furthermore, the energy consumption for CH3OH production was more than 20 times lower than with plasma only. We carried out density functional theory calculations over a Cu-13/gamma-Al2O3 model, which reveal that the interfacial sites of the Cu-13 cluster and gamma-Al2O3 support show a bifunctional effect: they not only activate the CO2 molecules but also strongly adsorb key intermediates to promote their hydrogenation further. Reactive plasma species can regulate the catalyst surface reactions via the Eley-Rideal (E-R) mechanism, which accelerates the hydrogenation process and promotes the generation of the key intermediates. H2O can promote the CH3OH desorption by competitive adsorption over the Cu-13/gamma-Al2O3 surface. This study provides new insights into CO2 hydrogenation through plasma catalysis, and it provides inspiration for the conversion of some other small molecules (CH4, N-2, CO, etc.) by plasma catalysis using supported-metal clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000742735600001 Publication Date 2022-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.9 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 12.9  
  Call Number UA @ admin @ c:irua:186416 Serial 7192  
Permanent link to this record
 

 
Author Cui, Z.; Zhou, C.; Jafarzadeh, A.; Meng, S.; Yi, Y.; Wang, Y.; Zhang, X.; Hao, Y.; Li, L.; Bogaerts, A. url  doi
openurl 
  Title SF₆ catalytic degradation in a γ-Al₂O₃ packed bed plasma system : a combined experimental and theoretical study Type A1 Journal article
  Year 2022 Publication High voltage Abbreviated Journal  
  Volume Issue Pages 1-11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Effective abatement of the greenhouse gas sulphur hexafluoride (SF6) waste is of great importance for the environment protection. This work investigates the size effect and the surface properties of gamma-Al2O3 pellets on SF6 degradation in a packed bed dielectric barrier discharge (PB-DBD) system. Experimental results show that decreasing the packing size improves the filamentary discharges and promotes the ignition and the maintenance of plasma, enhancing the degradation performance at low input powers. However, too small packing pellets decrease the gas residence time and reduce the degradation efficiency, especially for the input power beyond 80 W. Besides, lowering the packing size promotes the generation of SO2, while reduces the yields of S-O-F products, corresponding to a better degradation. After the discharge, the pellet surface becomes smoother with the appearance of S and F elements. Density functional theory calculations show that SF6 is likely to be adsorbed at the Al-III site over the gamma-Al2O3(110) surface, and it is much more easily to decompose than in the gas phase. The fluorine gaseous products can decompose and stably adsorb on the pellet surface to change the surface element composition. This work provides a better understanding of SF6 degradation in a PB-DBD system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000827312700001 Publication Date 2022-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-7264 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.4 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4.4  
  Call Number UA @ admin @ c:irua:189603 Serial 7208  
Permanent link to this record
 

 
Author Yu, Y.; Xie, X.; Liu, X.; Li, J.; Peeters, F.M.; Li, L. url  doi
openurl 
  Title Two-dimensional semimetal states in transition metal trichlorides : a first-principles study Type A1 Journal article
  Year 2022 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 121 Issue 11 Pages 112405-112407  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The two-dimensional (2D) transition metal trihalide (TMX3, X = Cl, Br, I) family has attracted considerable attention in recent years due to the realization of CrCl3, CrBr3, and CrI3 monolayers. Up to now, the main focus of the theoretically predicted TMX3 monolayers has been on the Chern insulator states, which can realize the quantum anomalous Hall effect. Here, using first-principles calculations, we theoretically demonstrate that the stable OsCl3 monolayer has a ferromagnetic ground state and a spin-polarized Dirac point without spin-orbit coupling (SOC), which disappears in the band structure of a Janus OsBr1.5Cl1.5 monolayer. We find that OsCl3 exhibits in-plane magnetization when SOC is included. By manipulating the magnetization direction along the C-2 symmetry axis of the OsCl3 structure, a gapless half-Dirac semimetal state with SOC can be achieved, which is different from the gapped Chern insulator state. Both semimetal states of OsCl3 monolayer without and with SOC exhibit a linear half-Dirac point (twofold degenerate) with high Fermi velocities. The achievement of the 2D semimetal state with SOC is expected to be found in other TMX3 monolayers, and we confirm it in a TiCl3 monolayer. This provides a different perspective to study the band structure with SOC of the 2D TMX3 family.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000863219400003 Publication Date 2022-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited 4 Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4  
  Call Number UA @ admin @ c:irua:191541 Serial 7223  
Permanent link to this record
 

 
Author Cui, Z.; Hao, Y.; Jafarzadeh, A.; Li, S.; Bogaerts, A.; Li, L. pdf  url
doi  openurl
  Title The adsorption and decomposition of SF6 over defective and hydroxylated MgO surfaces: A DFT study Type A1 Journal article
  Year 2023 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 36 Issue Pages 102602  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma degradation is one of the most effective methods for the abatement of greenhouse gas sulfur hexafluoride

(SF6). To evaluate the potential of MgO as a catalyst in plasma degradation, we investigate the catalytic properties

of MgO on SF6 adsorption and activation by density functional theory (DFT) where the O-defective and

hydroxylated surfaces are considered as two typical plasma-generated surfaces. Our results show that perfect

MgO (001) and (111) surfaces cannot interact with SF6 and only physical adsorption happens. In case of Odefective

MgO surfaces, the O vacancy is the most stable adsorption site. SF6 undergoes a decomposition to SF5

and F over the O-defective MgO (001) surface and undergoes an elongation of the bottom S-F bond over the Odefective

(111) surface. Besides, SF6 shows a physically adsorption at the stepsite of the MgO (001) surface,

accompanied by small changes in its bond angle and length. Furthermore, SF6 is found to be physically and

chemically adsorbed over 0.5 and 1.0 ML (monolayer) H-covered O-terminated MgO (111) surfaces, respectively.

The SF6 molecule undergoes a self-decomposition on the 1.0 ML hydroxylated surface via a surface bonding

process. This study shows that defective and hydroxylated MgO surfaces have the surface capacities for SF6

activation, which shows that MgO has potential as packing material in SF6 waste treatment in packed-bed

plasmas.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000916285000001 Publication Date 2022-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.2 Times cited Open Access (up) OpenAccess  
  Notes National Natural Science Foundation of China, 52207155 ; Fonds Wetenschappelijk Onderzoek; Vlaams Supercomputer Centrum; Vlaamse regering; Approved Most recent IF: 6.2; 2023 IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:194364 Serial 7244  
Permanent link to this record
 

 
Author Han, S.; Tang, C.S.; Li, L.; Liu, Y.; Liu, H.; Gou, J.; Wu, J.; Zhou, D.; Yang, P.; Diao, C.; Ji, J.; Bao, J.; Zhang, L.; Zhao, M.; Milošević, M.V.; Guo, Y.; Tian, L.; Breese, M.B.H.; Cao, G.; Cai, C.; Wee, A.T.S.; Yin, X. pdf  url
doi  openurl
  Title Orbital-hybridization-driven charge density wave transition in CsV₃Sb₅ kagome superconductor Type A1 Journal article
  Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume Issue Pages 1-9  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Owing to its inherent non-trivial geometry, the unique structural motif of the recently discovered kagome topological superconductor AV(3)Sb(5) (A = K, Rb, Cs) is an ideal host of diverse topologically non-trivial phenomena, including giant anomalous Hall conductivity, topological charge order, charge density wave (CDW), and unconventional superconductivity. Despite possessing a normal-state CDW order in the form of topological chiral charge order and diverse superconducting gaps structures, it remains unclear how fundamental atomic-level properties and many-body effects including Fermi surface nesting, electron-phonon coupling, and orbital hybridization contribute to these symmetry-breaking phenomena. Here, the direct participation of the V3d-Sb5p orbital hybridization in mediating the CDW phase transition in CsV3Sb5 is reported. The combination of temperature-dependent X-ray absorption and first-principles studies clearly indicates the inverse Star-of-David structure as the preferred reconstruction in the low-temperature CDW phase. The results highlight the critical role that Sb orbitals play and establish orbital hybridization as the direct mediator of the CDW states and structural transition dynamics in kagome unconventional superconductors. This is a significant step toward the fundamental understanding and control of the emerging correlated phases from the kagome lattice through the orbital interactions and provides promising approaches to novel regimes in unconventional orders and topology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000903664200001 Publication Date 2022-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.4 Times cited 1 Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 29.4  
  Call Number UA @ admin @ c:irua:193500 Serial 7328  
Permanent link to this record
 

 
Author Benedoue, S.; Benedet, M.; Gasparotto, A.; Gauquelin, N.; Orekhov, A.; Verbeeck, J.; Seraglia, R.; Pagot, G.; Rizzi, G.A.; Balzano, V.; Gavioli, L.; Noto, V.D.; Barreca, D.; Maccato, C. url  doi
openurl 
  Title Insights into the Photoelectrocatalytic Behavior of gCN-Based Anode Materials Supported on Ni Foams Type A1 Journal article
  Year 2023 Publication Nanomaterials Abbreviated Journal Nanomaterials-Basel  
  Volume 13 Issue 6 Pages 1035  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Graphitic carbon nitride (gCN) is a promising n-type semiconductor widely investigated for photo-assisted water splitting, but less studied for the (photo)electrochemical degradation of aqueous organic pollutants. In these fields, attractive perspectives for advancements are offered by a proper engineering of the material properties, e.g., by depositing gCN onto conductive and porous scaffolds, tailoring its nanoscale morphology, and functionalizing it with suitable cocatalysts. The present study reports on a simple and easily controllable synthesis of gCN flakes on Ni foam substrates by electrophoretic deposition (EPD), and on their eventual decoration with Co-based cocatalysts [CoO, CoFe2O4, cobalt phosphate (CoPi)] via radio frequency (RF)-sputtering or electrodeposition. After examining the influence of processing conditions on the material characteristics, the developed systems are comparatively investigated as (photo)anodes for water splitting and photoelectrocatalysts for the degradation of a recalcitrant water pollutant [potassium hydrogen phthalate (KHP)]. The obtained results highlight that while gCN decoration with Co-based cocatalysts boosts water splitting performances, bare gCN as such is more efficient in KHP abatement, due to the occurrence of a different reaction mechanism. The related insights, provided by a multi-technique characterization, may provide valuable guidelines for the implementation of active nanomaterials in environmental remediation and sustainable solar-to-chemical energy conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000960297000001 Publication Date 2023-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.3 Times cited 3 Open Access (up) OpenAccess  
  Notes The present work was financially supported by CNR (Progetti di Ricerca @CNR—avviso 2020—ASSIST), Padova University (P-DiSC#04BIRD2020-UNIPD EUREKA, DOR 2020–2022), AMGA Foundation (NYMPHEA project), INSTM Consortium (INSTM21PDGASPAROTTO—NANOMAT, INSTM21PDBARMAC—ATENA) and the European Union’s Horizon 2020 research and innovation program under grant agreement No. 823717—ESTEEM3. The FWO-Hercules fund G0H4316N ‘Direct electron detector for soft matter TEM’ is also acknowledged. Many thanks are also due to Dr. Riccardo Lorenzin for his support to experimental activities.; esteem3reported; esteem3TA Approved Most recent IF: 5.3; 2023 IF: 3.553  
  Call Number EMAT @ emat @c:irua:196115 Serial 7378  
Permanent link to this record
 

 
Author Cui, Z.; Zhou, C.; Jafarzadeh, A.; Zhang, X.; Hao, Y.; Li, L.; Bogaerts, A. pdf  url
doi  openurl
  Title SF₆ degradation in γ-Al₂O₃ packed DBD system : effects of hydration, reactive gases and plasma-induced surface charges Type A1 Journal article
  Year 2023 Publication Plasma chemistry and plasma processing Abbreviated Journal  
  Volume 43 Issue Pages 635-656  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Packed-bed DBD (PB-DBD) plasmas hold promise for effective degradation of greenhouse gases like SF6. In this work, we conducted a combined experimental and theoretical study to investigate the effect of the packing surface structure and the plasma surface discharge on the SF6 degradation in a gamma-Al2O3 packing DBD system. Experimental results show that both the hydration effect of the surface (upon moisture) and the presence of excessive reactive gases in the plasma can significantly reduce the SF6 degradation, but they hardly change the discharge behavior. DFT results show that the pre-adsorption of species such as H, OH, H2O and O-2 can occupy the active sites (Al-III site) which negatively impacts the SF6 adsorption. H2O molecules pre-adsorbed at neighboring sites can promote the activation of SF6 molecules and lower the reaction barrier for the S-F bond-breaking process. Surface-induced charges and local external electric fields caused by the plasma can both improve the SF6 adsorption and enhance the elongation of the S-F bonds. Our results indicate that both the surface structure of the packing material and the plasma surface discharge are crucial for SF6 degradation performance, and the packing beads should be kept dry during the degradation. This work helps to understand the underlying mechanisms of SF6 degradation in a PB-DBD system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000966639200001 Publication Date 2023-04-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.6 Times cited Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 3.6; 2023 IF: 2.355  
  Call Number UA @ admin @ c:irua:196033 Serial 8516  
Permanent link to this record
 

 
Author Li, L.L.; Gillen, R.; Palummo, M.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Strain tunable interlayer and intralayer excitons in vertically stacked MoSe₂/WSe₂ heterobilayers Type A1 Journal article
  Year 2023 Publication Applied physics letters Abbreviated Journal  
  Volume 123 Issue 3 Pages 033102-33106  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently, interlayer and intralayer excitons in transition metal dichalcogenide heterobilayers have been studied both experimentally and theoretically. In spite of a growing interest, these layer-resolved excitons in the presence of external stimuli, such as strain, remain not fully understood. Here, using density-functional theory calculations with many-body effects, we explore the excitonic properties of vertically stacked MoSe2/WSe2 heterobilayer in the presence of in-plane biaxial strain of up to 5%. We calculate the strain dependence of exciton absorption spectrum, oscillator strength, wave function, and binding energy by solving the Bethe-Salpeter equation on top of the standard GW approach. We identify the interlayer and intralayer excitons by analyzing their electron-hole weights and spatial wave functions. We show that with the increase in strain magnitude, the absorption spectrum of the interlayer and intralayer excitons is red-shifted and re-ordered, and the binding energies of these layer-resolved excitons decrease monotonically and almost linearly. We derive the sensitivity of exciton binding energy to the applied strain and find that the intralayer excitons are more sensitive to strain than the interlayer excitons. For instance, a sensitivity of -7.9 meV/% is derived for the intra-MoSe2-layer excitons, which is followed by -7.4 meV/% for the intra-WSe2-layer excitons, and by -4.2 meV/% for the interlayer excitons. Our results indicate that interlayer and intralayer excitons in vertically stacked MoSe2/WSe2 heterobilayer are efficiently tunable by in-plane biaxial strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001033604700003 Publication Date 2023-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4 Times cited 2 Open Access (up) OpenAccess  
  Notes Approved Most recent IF: 4; 2023 IF: 3.411  
  Call Number UA @ admin @ c:irua:198382 Serial 8823  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: