toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, J.; Zhao, C.; Yang, Y.; Li, C.; Hollenkamp, T.; Burke, N.; Hu, Z.-Y.; Van Tendeloo, G.; Chen, W. pdf  doi
openurl 
  Title Synthesis of monodispersed CoMoO4 nanoclusters on the ordered mesoporous carbons for environment-friendly supercapacitors Type A1 Journal article
  Year 2019 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 810 Issue 810 Pages 151841  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Binary metal oxides with superior charge capacity and electrochemical activity have gained great interests. In this work, monodispersed CoMoO4 nanoclusters on the ordered mesoporous carbons were fabricated by a facile self-developed impregnation method. The synthesized hybrids possess improved wettability, high specific surface area (> 700m(2)/g) and regular mesoporous channels (similar to 4 nm), resulting in improved electrochemical performance for supercapacitors. These well-dispersed CoMoO4 nanoclusters exhibit a significant specific capacitance up to 367 F/g in the aqueous KNO3 electrolyte and good reversibility with a cycling efficiency of 99.8%. It is proposed that the mesoporous structure can facilitate the diffusion of electrolyte ions and then accelerate the electrochemical utilization of CoMoO4 nanoclusters. The results demonstrate that the produced binary metal oxide nanoclusters with excellent capacitance and good retention can be used as promising electrodes for the environment-friendly supercapacitors. (C) 2019 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486596000030 Publication Date 2019-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 6 Open Access (down)  
  Notes ; Financial support by the National Key R&D Program of China (2016YB0303900) and the Fundamental Research Funds for the Central Universities (WUT: 2019III012GX) are gratefully acknowledged. The authors extend their appreciation to the support by CSIRO. ; Approved Most recent IF: 3.133  
  Call Number UA @ admin @ c:irua:162759 Serial 5398  
Permanent link to this record
 

 
Author Piorra, A.; Hrkac, V.; Wolff, N.; Zamponi, C.; Duppel, V.; Hadermann, J.; Kienle, L.; Quandt, E. pdf  url
doi  openurl
  Title (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 thin films prepared by PLD : relaxor properties and complex microstructure Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue 24 Pages 244103  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ferroelectric lead-free thin films of the composition (Ba0.85Ca0.15)(Ti0.9Zr0.1)O-3 (BCZT) were deposited by pulsed laser deposition on Pt/TiO2/SiO2/Si substrates using a ceramic BCZT target prepared by a conventional solid state reaction. The target material itself shows a piezoelectric coefficient of d(33)=640pm/V. The (111) textured thin films possess a thickness of up to 1.1 mu m and exhibit a clamped piezoelectric response f of up to 190pm/V, a dielectric coefficient of (r)=2000 at room temperature, and a pronounced relaxor behavior. As indicated by transmission electron microscopy, the thin films are composed of longitudinal micrometersized columns with similar to 100nm lateral dimension that are separated at twin- and antiphase boundaries. The superposition phenomena according to this columnar growth were simulated based on suitable supercells. The major structural component is described as a tetragonal distorted variant of the perovskite parent type; however, frequently coherently intergrown nanodomains were observed indicating a much more complex structure that is characterized by a 7-layer modulation along the growth direction of the films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000474439600002 Publication Date 2019-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited Open Access (down)  
  Notes ; The authors want to thank Dr. Martina Luysberg and Dr. Lothar Houben from the Ernst Ruska Centre in Julich for discussion and CS-corrected microscopy. Funding of this work via the DFG (No. CRC1261) “Magnetoelectric Sensors: From Composite Materials to Biomagnetic Diagnostics” and the PAK902 is gratefully acknowledged. ; Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:161310 Serial 5399  
Permanent link to this record
 

 
Author Retuerto, M.; Calle-Vallejo, F.; Pascual, L.; Lumbeeck, G.; Fernandez-Diaz, M.T.; Croft, M.; Gopalakrishnan, J.; Pena, M.A.; Hadermann, J.; Greenblatt, M.; Rojas, S. pdf  doi
openurl 
  Title La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity Type A1 Journal article
  Year 2019 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 11 Issue 24 Pages 21454-21464  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Perovskites (ABO(3)) with transition metals in active B sites are considered alternative catalysts for the water oxidation to oxygen through the oxygen evolution reaction (OER) and for the oxygen reduction through the oxygen reduction reaction (ORR) back to water. We have synthesized a double perovskite (A(2)BB'O-6) with different cations in A, B, and B' sites, namely, ((La15Sr0.5)-Sr-.)(A)(Ni0.5Mn0.5)(B)(Ni0.5Ru0.5)(B)O-6 (LSNMR), which displays an outstanding OER/ORR bifunctional performance. The composition and structure of the oxide has been determined by powder X-ray diffraction, powder neutron diffraction, and transmission electron microscopy to be monoclinic with the space group P2(1)/n and with cationic ordering between the ions in the B and B' sites. X-ray absorption near-edge spectroscopy suggests that LSNMR presents a configuration of similar to Ni2+, similar to Mn4+, and similar to Ru5+. This bifunctional catalyst is endowed with high ORR and OER activities in alkaline media, with a remarkable bifunctional index value of similar to 0.83 V (the difference between the potentials measured at -1 mA cm(-2) for the ORR and +10 mA cm(-2) for the OER). The ORR onset potential (E-onset) of 0.94 V is among the best reported to date in alkaline media for ORR-active perovskites. The ORR mass activity of LSNMR is 1.1 A g(-1) at 0.9 V and 7.3 A g(-1) at 0.8 V. Furthermore, LSNMR is stable in a wide potential window down to 0.05 V. The OER potential to achieve a current density of 10 mA cm(-2) is 1.66 V. Density functional theory calculations demonstrate that the high ORR/OER activity of LSNMR is related to the presence of active Mn sites for the ORR- and Ru-active sites for the OER by virtue of the high symmetry of the respective reaction steps on those sites. In addition, the material is stable to ORR cycling and also considerably stable to OER cycling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472683300019 Publication Date 2019-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.504 Times cited 12 Open Access (down)  
  Notes ; This work was supported by the ENE2016-77055-C3-3-R project from the Spanish Ministry of Economy and Competitiveness (MINECO) and PIE 201480E122 from CSIC. M.R. thanks MINECO's Juan de la Cierva program for a grant (FPDI-2013-17582). F.C.-V. thanks the Spanish MEC for a Ramon y Cajal research contract (RYC-2015-18996). M.G. acknowledges the support from NSF-DMR-1507252 grant, NJ, USA. ; Approved Most recent IF: 7.504  
  Call Number UA @ admin @ c:irua:161320 Serial 5400  
Permanent link to this record
 

 
Author Kirsanova, M.A.; De Sloovere, D.; Karakulina, O.M.; Hadermann, J.; Van Bael, M.K.; Hardy, A.; Abakumov, A.M. pdf  url
doi  openurl
  Title Toward unlocking the Mn3+/Mn2+ redox pair in alluaudite-type Na2+2zMn2-z(SO4)3-x(SeO4)x cathodes for sodium-ion batteries Type A1 Journal article
  Year 2019 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 277 Issue 277 Pages 804-810  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In polyanion cathodes, the inductive effect alters the potential of a M(n+1)+/Mn+ redox couple (M – transition metal) according to the electronegativity of the X cation in the polyanion groups (XO4m+). To manipulate the operating potential, we synthesized a series of mixed sulfate-selenate alluaudites, with structure formulas Na2+2zMn2-z(SO4)(3-x)(SeO4)(x) and Na2.81Ni1.60(SO4)(1.43)(SeO4)(1.57). Their crystal structure was determined from powder X-ray diffraction data, revealing that the Mn-based alluaudites form solid solutions with the same crystal structure for x = 0.75; 1.125 and 1.5. Na2.81Ni1.60(SO4)(1.43)(SeO4)(1.57) is isostructural to the Mn-based alluaudites. Although the Na2+2zMn2-z(SO4)(3-x)(SeO4)(x) compound with the highest selenium content demonstrates a reversible discharge capacity of 60 mAh g(-1), only a small part of this electrochemical activity can be ascribed to the Mn3+/Mn2+ redox couple. The redox potential of the Mn3+/Mn2+ pair in Na2+2zMn2-z(SO4)(3-)x(SeO4)(x) decreases with increasing values of x, in agreement with the lower electronegativity of Se compared to that of S.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000481726300103 Publication Date 2019-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.299 Times cited Open Access (down)  
  Notes ; The authors thank the Russian Foundation for Basic Research for financial support (grant 17-03-00370), in addition to Research Foundation-Flanders (project No G040116). ; Approved Most recent IF: 2.299  
  Call Number UA @ admin @ c:irua:162852 Serial 5401  
Permanent link to this record
 

 
Author Liu, P.; Wu, T.; Madsen, J.; Schiotz, J.; Wagner, J.B.; Hansen, T.W. pdf  doi
openurl 
  Title Transformations of supported gold nanoparticles observed by in situ electron microscopy Type A1 Journal article
  Year 2019 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 11 Issue 24 Pages 11885-11891  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Oxide supported metal nanoparticles play an important role in heterogeneous catalysis. However, understanding the metal/oxide interface and their evolution under reaction conditions remains challenging. Herein, we investigate the interface between Au nanoparticles and a CeO2 substrate by environmental transmission electron microscopy with atomic resolution. We find that the Au nanoparticles have two preferential epitaxial relationships with the substrate, i.e. Type I (111)[-110]CeO2//(111)[-110]Au and Type II (111)[-110]CeO2//(111)[1-10]Au orientation relationships, where Type I is preferred. In situ observations in the presence of O-2 show that the gas can stimulate the supported Au nanoparticles to transform between these two orientations even at room temperature. Moreover, when increasing the temperature to 973 K, the transformation of an Au nanoparticle between the two orientation states and a non-crystalline state in the presence of O-2 is also observed. DFT calculations of the binding between Au and CeO2 in the two relationships are strongly influenced by the presence of oxygen vacancies. For a given position of a vacancy, there is a significant energy difference between the energy of the two types. However, for some positions, Type I is preferred, and for others, Type II, but the most favourable position of the vacancy for the two types has a very similar energy. This is consistent with the observation of both types of adhesion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472559800049 Publication Date 2019-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 1 Open Access (down)  
  Notes ; ; Approved Most recent IF: 7.367  
  Call Number UA @ admin @ c:irua:161313 Serial 5402  
Permanent link to this record
 

 
Author Fedotov, S.S.; Aksyonov, D.A.; Samarin, A.S.; Karakulina, O.M.; Hadermann, J.; Stevenson, K.J.; Khasanova, N.R.; Abakumov, A.M.; Antipov, E., V pdf  url
doi  openurl
  Title Tuning the crystal structure of A2CoPO4F(A=Li,Na) fluoride-phosphates : a new layered polymorph of LiNaCoPO4F Type A1 Journal article
  Year 2019 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume 2019 Issue 2019 Pages 4365-4372  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Co-containing fluoride-phosphates are of interest in sense of delivering high electrode potentials and attractive specific energy values as positive electrode materials for rechargeable batteries. In this paper we report on a new Co-based fluoride-phosphate, LiNaCoPO4F, with a layered structure (2D), which was Rietveld-refined based on X-ray powder diffraction data [P2(1)/c, a = 6.83881(4) angstrom, b = 11.23323(5) angstrom, c = 5.07654(2) angstrom, beta = 90.3517(5) degrees, V = 389.982(3) angstrom(3)] and validated by electron diffraction and high-resolution scanning transmission electron microscopy. The differential scanning calorimetry measurements revealed that 2D-LiNaCoPO4F forms in a narrow temperature range of 520-530 degrees C and irreversibly converts to the known 3D-LiNaCoPO4F modification (Pnma) above 530 degrees C. The non-carbon-coated 2D-LiNaCoPO4F shows reversible electrochemical activity in Li-ion cell in the potential range of 3.0-4.9 V vs. Li/Li+ with an average potential of approximate to 4.5 V and in Na-ion cell in the range of 3.0-4.5 V vs. Na/Na+ exhibiting a plateau profile centered around 4.2 V, in agreement with the calculated potentials by density functional theory. The energy barriers for both Li+ and Na+ migration in 2D-LiNaCoPO4F amount to 0.15 eV along the [001] direction rendering 2D-LiNaCoPO4F as a viable electrode material for high-power Li- and Na-ion rechargeable batteries. The discovery and stabilization of the 2D-LiNaCoPO4F polymorph indicates that temperature influence on the synthesis of A(2)MPO(4)F fluoride-phosphates needs more careful examination with perspective to unveil new structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000484135500001 Publication Date 2019-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited Open Access (down)  
  Notes ; This work is supported by the Russian Science Foundation (grant 17-73-30006). The authors greatly thank Dr. D. Rupasov for TG-DSC experiments, B. D. Shmykov and A. I. Manoilov for assistance with sample preparation, the Skoltech Center for Energy Science and Technology and the Moscow State University Program of Development up to 2020. J. Hadermann and O. M. Karakulina acknowledge support from the FWO under grant G040116N. ; Approved Most recent IF: 2.444  
  Call Number UA @ admin @ c:irua:162857 Serial 5403  
Permanent link to this record
 

 
Author Vermang, B.; Brammertz, G.; Meuris, M.; Schnabel, T.; Ahlswede, E.; Choubrac, L.; Harel, S.; Cardinaud, C.; Arzel, L.; Barreau, N.; van Deelen, J.; Bolt, P.-J.; Bras, P.; Ren, Y.; Jaremalm, E.; Khelifi, S.; Yang, S.; Lauwaert, J.; Batuk, M.; Hadermann, J.; Kozina, X.; Handick, E.; Hartmann, C.; Gerlach, D.; Matsuda, A.; Ueda, S.; Chikyow, T.; Felix, R.; Zhang, Y.; Wilks, R.G.; Baer, M. pdf  doi
openurl 
  Title Wide band gap kesterite absorbers for thin film solar cells: potential and challenges for their deployment in tandem devices Type A1 Journal article
  Year 2019 Publication Sustainable Energy & Fuels Abbreviated Journal  
  Volume 3 Issue 9 Pages 2246-2259  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work reports on developments in the field of wide band gap Cu2ZnXY4 (with X = Sn, Si or Ge, and Y = S, Se) kesterite thin film solar cells. An overview on recent developments and the current understanding of wide band gap kesterite absorber layers, alternative buffer layers, and suitable transparent back contacts is presented. Cu2ZnGe(S,Se)(4) absorbers with absorber band gaps up to 1.7 eV have been successfully developed and integrated into solar cells. Combining a CdS buffer layer prepared by an optimized chemical bath deposition process with a 1.36 eV band gap absorber resulted in a record Cu2ZnGeSe4 cell efficiency of 7.6%, while the highest open-circuit voltage of 730 mV could be obtained for a 1.54 eV band gap absorber and a Zn(O,S) buffer layer. Employing InZnOx or TiO2 protective top layers on SnO2:In transparent back contacts yields 85-90% of the solar cell performance of reference cells (with Mo back contact). These advances show the potential as well as the challenges of wide band gap kesterites for future applications in high-efficiency and low-cost tandem photovoltaic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000482057500004 Publication Date 2019-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access (down)  
  Notes ; This project has received funding from the European Union's Horizon 2020 Research and Innovation Program under grant agreement No. 640868. The synchrotron radiation experiments were performed at the SPring-8 beamline BL15XU with the approval of the NIMS Synchrotron X-ray Station (Proposals 2016A4600, 2016B4601, and 2017A4600) and at BESSY II with the approval of HZB. B. Vermang has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme (grant agreement no. 715027). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:161785 Serial 5404  
Permanent link to this record
 

 
Author Yao, X. url  openurl
  Title An advanced TEM study on quantification of Ni4Ti3 precipitates in low temperature aged Ni-Ti shape memory alloy Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 149 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (down)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:164987 Serial 6284  
Permanent link to this record
 

 
Author Callaert, C. url  openurl
  Title Characterization of defects, modulations and surface layers in topological insulators and structurally related compounds Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 180 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (down)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165867 Serial 6288  
Permanent link to this record
 

 
Author Wang, Z.; Wang, Y.B.; Yin, J.; Tovari, E.; Yang, Y.; Lin, L.; Holwill, M.; Birkbeck, J.; Perello, D.J.; Xu, S.; Zultak, J.; Gorbachev, R.V.; Kretinin, A.V.; Taniguchi, T.; Watanabe, K.; Morozov, S.V.; Andelkovic, M.; Milovanović, S.P.; Covaci, L.; Peeters, F.M.; Mishchenko, A.; Geim, A.K.; Novoselov, K.S.; Fal'ko, V.I.; Knothe, A.; Woods, C.R. url  doi
openurl 
  Title Composite super-moiré lattices in double-aligned graphene heterostructures = Composite super-moire lattices in double-aligned graphene heterostructures Type A1 Journal article
  Year 2019 Publication Science Advances Abbreviated Journal  
  Volume 5 Issue 12 Pages eaay8897  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract When two-dimensional (2D) atomic crystals are brought into close proximity to form a van der Waals heterostructure, neighbouring crystals may influence each other's properties. Of particular interest is when the two crystals closely match and a moire pattern forms, resulting in modified electronic and excitonic spectra, crystal reconstruction, and more. Thus, moire patterns are a viable tool for controlling the properties of 2D materials. However, the difference in periodicity of the two crystals limits the reconstruction and, thus, is a barrier to the low-energy regime. Here, we present a route to spectrum reconstruction at all energies. By using graphene which is aligned to two hexagonal boron nitride layers, one can make electrons scatter in the differential moire pattern which results in spectral changes at arbitrarily low energies. Further, we demonstrate that the strength of this potential relies crucially on the atomic reconstruction of graphene within the differential moire super cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000505069600089 Publication Date 2019-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 71 Open Access (down)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165754 Serial 6289  
Permanent link to this record
 

 
Author Sandfeld, S.; Samaee, V.; Idrissi, H.; Groten, J.; Pardoen, T.; Schwaiger, R.; Schryvers, D. url  doi
openurl 
  Title Datasets for the analysis of dislocations at grain boundaries and during vein formation in cyclically deformed Ni micropillars Type A1 Journal article
  Year 2019 Publication Data in Brief Abbreviated Journal  
  Volume 27 Issue 27 Pages 104724  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The dataset together with the corresponding Python scripts and Jupyter notebooks presented in this article are supplementary data for the work presented in Samaee et al., 2019 [1]. The data itself consists of two parts: the simulation data that was used in [1] to analyze the effect of a particular grain boundary on curved dislocations and the precession electron diffraction (PED) strain maps together with post-processed data for analyzing details of the observed dislocation vein structures. Additionally, the complete stress tensor components, which are not shown in [1], have also been included. The data sets are accompanied by Python code explaining the file formats and showing how to post-process the data. (c) 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000501988200181 Publication Date 2019-11-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-3409 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access (down)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165092 Serial 6292  
Permanent link to this record
 

 
Author Weng, Y.; Ding, L.; Zhang, Z.; Jia, Z.; Wen, B.; Liu, Y.; Muraishi, S.; Li, Y.; Liu, Q. pdf  doi
openurl 
  Title Effect of Ag addition on the precipitation evolution and interfacial segregation for Al-Mg-Si alloy Type A1 Journal article
  Year 2019 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 180 Issue 180 Pages 301-316  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The effect of Ag addition on the precipitation evolution and interfacial segregation for Al-Mg-Si alloys was systematically investigated by atomic resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atom probe tomography (APT) and density functional theory (DFT) calculation. At the early aging stage, Ag atoms could enter clusters and refine the distribution of these clusters. Then, Ag atoms preferentially segregate at the GP zone/alpha-Al and beta ''/alpha-Al interfaces at the peak aging stage by the replacement of Al atoms in FCC matrix. With prolonging aging time, Ag atoms generally incorporate into the interior of beta '' precipitate, facilitating the formation of QP lattice (a hexagonal network of Si atomic columns) and the local symmetry substructures, Ag sub-unit (1) and Ag sub-unit (2). At the over-aged stage, the Ag sub-unit (1) and Ag sub-unit (2) could transform to the beta'(Ag) (i.e. beta'(Ag1) and beta'(Ag2).) and Q'(Ag) unit cells, respectively. All the precipitates at the over-aging stage have a composite and disordered structure due to the coexistence of different unit cells (beta'(Ag1), beta'(Ag2), Q'(Ag) and beta') and the non-periodic arrangement of Ag atoms within the precipitate. In the equilibrium stage, the incorporated Ag atoms in the precipitates release into the alpha-Al matrix as solute atoms or form Ag particles. In general, Ag atoms undergo a process of “segregate at the precipitate/matrix interface -> incorporate into the interior of precipitate -> release into the alpha-Al matrix” during the precipitation for Al-Mg-Si-Ag alloys. Besides, Ag segregation is found at the interfaces of almost all metastable phases (including GP zone, beta '', beta'/beta'(Ag) phase) in Al-Mg-Si-Ag alloys. The Ag segregation at the beta'/alpha-Al interface could increase the length/diameter ratio of beta' phase and thus promote the additional strengthening potential of these alloys. These findings provide a new route for precipitation hardening by promoting the nucleation and morphology evolution of precipitates. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000495519100028 Publication Date 2019-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited Open Access (down)  
  Notes Approved Most recent IF: 5.301  
  Call Number UA @ admin @ c:irua:164641 Serial 6295  
Permanent link to this record
 

 
Author Susi, T.; Madsen, J.; Ludacka, U.; Mortensen, J.J.; Pennycook, T.J.; Lee, Z.; Kotakoski, J.; Kaiser, U.; Meyer, J.C. doi  openurl
  Title Efficient first principles simulation of electron scattering factors for transmission electron microscopy Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 197 Issue 197 Pages 16-22  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron microscopy is a powerful tool for studying the properties of materials down to their atomic structure. In many cases, the quantitative interpretation of images requires simulations based on atomistic structure models. These typically use the independent atom approximation that neglects bonding effects, which may, however, be measurable and of physical interest. Since all electrons and the nuclear cores contribute to the scattering potential, simulations that go beyond this approximation have relied on computationally highly demanding all-electron calculations. Here, we describe a new method to generate ab initio electrostatic potentials when describing the core electrons by projector functions. Combined with an interface to quantitative image simulations, this implementation enables an easy and fast means to model electron scattering. We compare simulated transmission electron microscopy images and diffraction patterns to experimental data, showing an accuracy equivalent to earlier all-electron calculations at a much lower computational cost.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456311700003 Publication Date 2018-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 3 Open Access (down)  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:165938 Serial 6296  
Permanent link to this record
 

 
Author Pennycook, T.J.; Martinez, G.T.; Nellist, P.D.; Meyer, J.C. doi  openurl
  Title High dose efficiency atomic resolution imaging via electron ptychography Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 196 Issue 196 Pages 131-135  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Radiation damage places a fundamental limitation on the ability of microscopy to resolve many types of materials at high resolution. Here we evaluate the dose efficiency of phase contrast imaging with electron ptychography. The method is found to be far more resilient to temporal incoherence than conventional and spherical aberration optimized phase contrast imaging, resulting in significantly greater clarity at a given dose. This robustness is explained by the presence of achromatic lines in the four dimensional ptychographic dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451180800018 Publication Date 2018-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 1 Open Access (down)  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:165939 Serial 6301  
Permanent link to this record
 

 
Author Wu, Y.; Chen, G.; Yu, J.; Wang, D.; Ma, C.; Li, C.; Pennycook, S.J.; Yan, Y.; Wei, S.-H. pdf  doi
openurl 
  Title Hole-induced spontaneous mutual annihilation of dislocation pairs Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume 10 Issue 23 Pages 7421-7425  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Dislocations are always observed during crystal growth, and it is usually desirable to reduce the dislocation density in high-quality crystals. Here, the annihilation process of the 30 degrees Shockley partial dislocation pairs in CdTe is studied by first-principles calculations. We found that the dislocations can glide relatively easily due to the weak local bonding. Our systematic study of the slipping mechanism of the dislocations suggests that the energy barrier for the annihilation process is low. Band structure calculations reveal that the band bending caused by the charge transfer between the two dislocation cores depends on the core-core distance. A simple linear model is proposed to describe the mechanism of formation of the dislocation pair. More importantly, we demonstrate that hole injection can affect the core structure, increase the mobility, and eventually trigger a spontaneous mutual annihilation, which could be employed as a possible facile way to reduce the dislocation density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000501622700017 Publication Date 2019-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.353 Times cited Open Access (down)  
  Notes Approved Most recent IF: 9.353  
  Call Number UA @ admin @ c:irua:165068 Serial 6302  
Permanent link to this record
 

 
Author Morozov, V.A.; Posokhova, S.M.; Deyneko, D., V; Savina, A.A.; Morozov, A., V; Tyablikov, O.A.; Redkin, B.S.; Spassky, D.A.; Hadermann, J.; Lazoryak, B., I doi  openurl
  Title Influence of annealing conditions on the structure and luminescence properties of KGd1-xEux(MoO4)2(0\leq x\leq1) Type A1 Journal article
  Year 2019 Publication CrystEngComm Abbreviated Journal Crystengcomm  
  Volume 21 Issue 42 Pages 6460-6471  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This study describes the influence of annealing temperature on the structure and luminescence properties of KGd1-xEux(MoO4)(2) (0 <= x <= 1). Compounds with the general formula (A ', A '')(n)[(W, Mo)O-4](m) are investigated as luminescent materials for photonic applications such as phosphor-converted LEDs (light-emitting diodes). Herein, the KGd0.8Eu0.2(MoO4)(2) light-rose crystal was grown by the Czochralski technique. Moreover, three polymorphs of KGd1-xEux(MoO4)(2) were present in the 923-1223 K range of annealing temperatures under ambient pressure: a triclinic alpha-phase, a disproportionately modulated monoclinic beta-phase and an orthorhombic gamma-phase with a KY(MoO4)(2)-type structure. The different behaviors of KGd(MoO4)(2) and KEu(MoO4)(2) were revealed by DSC studies. The number and the character of phase transitions for KGd1-xEux(MoO4)(2) depended on the elemental composition. The formation of a continuous range of solid solutions with the triclinic alpha-KEu(MoO4)(2)-type structure and ordering of K+ and Eu3+/Gd3+ cations were observed only for alpha-KGd1-xEux(MoO4)(2) (0 <= x <= 1) prepared at 923 K. The structures of gamma-KGd1-xEux(MoO4)(2) (x = 0 and 0.2) were studied using electron diffraction and refined using the powder X-ray diffraction data. The luminescence properties of KGd1-xEux(MoO4)(2) prepared at different annealing temperatures were studied and related to their different structures. The maxima of the D-5(0) -> F-7(2) integral emission intensities were found under excitation at lambda(ex) = 300 nm and lambda(ex) = 395 nm for triclinic scheelite-type alpha-KGd0.6Eu0.4(MoO4)(2) and monoclinic scheelite-type beta-KGd0.4Eu0.6(MoO4)(2) prepared at 1173 K, respectively. The latter shows the brightest red light emission among the KGd1-xEux(MoO4)(2) phosphors. The maximum and integral emission intensity of beta-KGd0.4Eu0.6(MoO4)(2) in the D-5(0) -> F-7(2) transition region is similar to 20% higher than that of the commercially used red phosphor Gd2O2S:Eu3+. Thus, beta-KGd0.4Eu0.6(MoO4)(2) is very attractive for application as a near-UV convertible red-emitting phosphor for LEDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000493072200015 Publication Date 2019-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8033 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.474 Times cited Open Access (down)  
  Notes Approved Most recent IF: 3.474  
  Call Number UA @ admin @ c:irua:164603 Serial 6304  
Permanent link to this record
 

 
Author Pourbabak, S. url  openurl
  Title Influence of nano and microstructural features and defects in finegrained NiTi on the thermal and mechanical reversibility of the martensitic transformation Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 166 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (down)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:165919 Serial 6305  
Permanent link to this record
 

 
Author Du, K.; Zhang, M.; Dai, C.; Zhou, Z.N.; Xie, Y.W.; Ren, Z.H.; Tian, H.; Chen, L.Q.; Van Tendeloo, G.; Zhang, Z. url  doi
openurl 
  Title Manipulating topological transformations of polar structures through real-time observation of the dynamic polarization evolution Type A1 Journal article
  Year 2019 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 10 Issue 10 Pages 4864  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Topological structures based on controllable ferroelectric or ferromagnetic domain configurations offer the opportunity to develop microelectronic devices such as high-density memories. Despite the increasing experimental and theoretical insights into various domain structures (such as polar spirals, polar wave, polar vortex) over the past decade, manipulating the topological transformations of polar structures and comprehensively understanding its underlying mechanism remains lacking. By conducting an in-situ non-contact bias technique, here we systematically investigate the real-time topological transformations of polar structures in PbTiO3/SrTiO3 multilayers at an atomic level. The procedure of vortex pair splitting and the transformation from polar vortex to polar wave and out-of-plane polarization are observed step by step. Furthermore, the redistribution of charge in various topological structures has been demonstrated under an external bias. This provides new insights for the symbiosis of polar and charge and offers an opportunity for a new generation of microelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000492835100002 Publication Date 2019-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access (down)  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ admin @ c:irua:164681 Serial 6307  
Permanent link to this record
 

 
Author Lumbeeck, G. url  openurl
  Title Mechanisms of nano-plasticity in as-deposited and hydrided nanocrystalline Pd and Ni thin films Type Doctoral thesis
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 130 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (down)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:164918 Serial 6309  
Permanent link to this record
 

 
Author Sirotina, A.P.; Callaert, C.; Volykhov, A.A.; Frolov, A.S.; Sanchez-Barriga, J.; Knop-Gericke, A.; Hadermann, J.; Yashina, L.V. pdf  doi
openurl 
  Title Mechanistic studies of gas reactions with multicomponent solids : what can we learn by combining NAP XPS and atomic resolution STEM/EDX? Type A1 Journal article
  Year 2019 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 123 Issue 43 Pages 26201-26210  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Rapid development of experimental techniques has enabled real time studies of solid gas reactions at the level reaching the atomic scale. In the present paper, we focus on a combination of atomic resolution STEM/EDX, which visualizes the reaction zone, and near ambient pressure (NAP) XPS, which collects information for a surface layer of variable thickness under reaction conditions. We compare the behavior of two affined topological insulators, Bi2Te3 and Sb2Te3. We used a simple reaction with molecular oxygen occurring at 298 K, which is of practical importance to avoid material degradation. Despite certain limitations, a combination of in situ XPS and ex situ cross-sectional STEM/EDX allowed us to obtain a self-consistent picture of the solid gas reaction mechanism for oxidation of Sb2Te3 and Bi2Te3 crystals, which includes component redistribution between the oxide and the subsurface layer and Te segregation with formation of a thin ordered layer at the interface. The process is multistep in case of both compounds. At the very beginning of the oxidation process the reactivity is determined by the energy benefit of the corresponding element oxygen bond formation. Further in the oxidation process, the behavior of these two compounds becomes similar and features component redistribution between the oxide and the subsurface layer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000493865700019 Publication Date 2019-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access (down)  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:164664 Serial 6310  
Permanent link to this record
 

 
Author Leuthner, G.T.; Hummel, S.; Mangler, C.; Pennycook, T.J.; Susi, T.; Meyer, J.C.; Kotakoski, J. pdf  doi
openurl 
  Title Scanning transmission electron microscopy under controlled low-pressure atmospheres Type A1 Journal article
  Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 203 Issue 203 Pages 76-81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy (TEM) is carried out in vacuum to minimize the interaction of the imaging electrons with gas molecules while passing through the microscope column. Nevertheless, in typical devices, the pressure remains at 10(-7) mbar or above, providing a large number of gas molecules for the electron beam to crack, which can lead to structural changes in the sample. Here, we describe experiments carried out in a modified scanning TEM (STEM) instrument, based on the Nion UltraSTEM 100. In this instrument, the base pressure at the sample is around 2 x 10(-10 )mbar, and can be varied up to 10(-6) mbar through introduction of gases directly into the objective area while maintaining atomic resolution imaging conditions. We show that air leaked into the microscope column during the experiment is efficient in cleaning graphene samples from contamination, but ineffective in damaging the pristine lattice. Our experiments also show that exposure to O(2 )and H2O lead to a similar result, oxygen providing an etching effect nearly twice as efficient as water, presumably due to the two 0 atoms per molecule. H(2 )and N-2 environments have no influence on etching. These results show that the residual gas environment in typical TEM instruments can have a large influence on the observations, and show that chemical etching of carbon-based structures can be effectively carried out with oxygen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000465021000010 Publication Date 2019-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 4 Open Access (down)  
  Notes Approved Most recent IF: 2.843  
  Call Number UA @ admin @ c:irua:165937 Serial 6321  
Permanent link to this record
 

 
Author Pittarello, L.; Mckibbin, S.; Yamaguchi, A.; Ji, G.; Schryvers, D.; Debaille, V.; Claeys, P. pdf  doi
openurl 
  Title Two generations of exsolution lamellae in pyroxene from Asuka 09545 : Clues to the thermal evolution of silicates in mesosiderite Type A1 Journal article
  Year 2019 Publication The American mineralogist Abbreviated Journal Am Mineral  
  Volume 104 Issue 11 Pages 1663-1672  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Mesosiderite meteorites consist of a mixture of crustal basaltic or gabbroic material and metal. Their formation process is still debated due to their unexpected combination of crust and core materials, possibly derived from the same planetesimal parent body, and lacking an intervening mantle component. Mesosiderites have experienced an extremely slow cooling rate from ca. 550 degrees C, as recorded in the metal (0.25-0.5 degrees C/Ma). Here we present a detailed investigation of exsolution features in pyroxene from the Antarctic mesosiderite Asuka (A) 09545. Geothermobarometry calculations, lattice parameters, lamellae orientation, and the presence of clinoenstatite as the host were used in an attempt to constrain the evolution of pyroxene from 1150 to 570 degrees C and the formation of two generations of exsolution lamellae. After pigeonite crystallization at ca. 1150 degrees C, the first exsolution process generated the thick augite lamellae along (100) in the temperature interval 1000-900 degrees C. By further cooling, a second order of exsolution lamellae formed within augite along (001), consisting of monoclinic low-Ca pyroxene, equilibrated in the temperature range 900-800 degrees C. The last process, occurring in the 600-500 degrees C temperature range, was likely the inversion of high to low pigeonite in the host crystal, lacking evidence for nucleation of orthopyroxene. The formation of two generations of exsolution lamellae, as well as of likely metastable pigeonite, suggest non-equilibrium conditions. Cooling was sufficiently slow to allow the formation of the lamellae, their preservation, and the transition from high to low pigeonite. In addition, the preservation of such fine-grained lamellae limits long-lasting, impact reheating to a peak temperature lower than 570 degrees C. These features, including the presence of monoclinic low-Ca pyroxene as the host, are reported in only a few mesosiderites. This suggests a possibly different origin and thermal history from most mesosiderites and that the crystallography (i.e., space group) of low-Ca pyroxene could be used as parameter to distinguish mesosiderite populations based on their cooling history.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000494707400014 Publication Date 2019-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-004x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.021 Times cited Open Access (down)  
  Notes Approved Most recent IF: 2.021  
  Call Number UA @ admin @ c:irua:164645 Serial 6331  
Permanent link to this record
 

 
Author Hendrickx, M. url  openurl
  Title Study of the effect of cation substitution on the local structure and the properties of perovskites and Li-ion battery cathode materials Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 208 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (down)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:173128 Serial 6618  
Permanent link to this record
 

 
Author Milagres de Oliveira, T. url  openurl
  Title Three-dimensional characterisation of nanomaterials : from model-like systems to real nanostructures Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 230 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (down)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:170020 Serial 6627  
Permanent link to this record
 

 
Author Vanrompay, H. url  openurl
  Title Toward fast and dose efficient electron tomography Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 207 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (down)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169852 Serial 6632  
Permanent link to this record
 

 
Author Skorikov, A. openurl 
  Title Fast approaches for investigating 3D elemental distribution in nanomaterials Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 143 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (down)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178855 Serial 6795  
Permanent link to this record
 

 
Author Pedrazo Tardajos, A. openurl 
  Title Advanced graphene supports for 3D in situ transmission electron microscopy Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 247 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy (TEM) is an ideal tool to investigate nanomaterials. The information from TEM experiments allows us to link the structure and composition of nanomaterials to their intrinsic physical properties. However, despite the significant evolution of the TEM field during the last two decades, major progress is still possible through the development of optimal TEM techniques and supports. The results presented in this thesis focus on the optimization of sample supports and their application. Among the different options, graphene has previously been reported as useful sample support for electron microscopy due to its unparalleled properties, for example, it is the thinnest known support and provides a protective effect to the sample under investigation. Unfortunately, commercial graphene grids show poor quality, in terms of intactness and cleanness, inhibiting their wide application within the field. Therefore, this thesis focuses on the application of optimized graphene TEM grids, obtained by transferring high quality graphene using an advanced procedure. This improvement on the transfer has enabled the visualization of materials with low contrast and high sensitivity towards the electron beam, such as surface ligands capping gold nanoparticles or metal halide perovskites. Furthermore, the implemented protocol is not only of interest for conventional TEM grids but also a major benefit for in situ TEM studies, where the sample is investigated in real time under certain stimuli. Hence, the same graphene transfer technology can be also applied to advanced in situ MEMS holders dedicated for both heating and gas experiments, where the thickness and insulating nature of the silicon nitride (Si3N4) support may hamper some applications. By engineering periodic arrays of holes in their Si3N4 membrane by focused ion beam, onto which the graphene is transferred, it has been possible to get proof-of-concept 3D in situ investigations of heat-induced morphological and compositional transformations of complex nanosystems. As an example, it has enabled the investigation of the possible phase-transition of metal halide perovskites upon heating using 2D and 3D structural characterization. Moreover, it has allowed the study of in situ three-dimensional nanoparticle dynamics during gas phase catalysis as well as the first steps that would lead towards the design and creation of the first Graphene Gas Cell. Consequently, implementation of the advanced graphene transfer technology described in this thesis is envisaged to impact a broad range of future experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (down)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181143 Serial 6836  
Permanent link to this record
 

 
Author Du, K. url  openurl
  Title In situ TEM study on the manipulation of ferroelectrics Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 91 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The strong correlated oxide systems attract a lot of attentions of scientists recently, the coexistence and interplay between various degrees of freedom, such as charge, spin and orbital, has been demonstrated to induce some fancy physical properties and phenomenon, including metal-insulator transition, high temperature superconductivity, colossal magnetoresistance. As a part of the strong correlated oxide systems, the ferroelectrics is abundant in both physical properties and application. First, if the electric dipole continuously rotating around a stable core then a topological structure is produced. If people could manipulate the topological structure and simultaneously observe the structure evolution, with external field applied on the topological structure, then it is very likely for such kind of ferroelectrics to be the next generation of storage, for it is reported to need low power input and produce high density of storage. In the other hand, in solids, charge polarity can one-to-one correspond to spin polarity phenomenologically, such as ferroelectricity and ferromagnetism, antiferroelectricity and antiferromagnetism, but ferrielectricity and ferrimagnetism kept telling a disparate story in microscopic level. The claimed “ferrielectrics” in existing research is equivalent to ferroelectric ones, thus the findings of such a real irreducible solids would complete the last piece of the ferroelectrics family. While solving the above two questions remain challengeable: the size of topological structure is small (typically below 10 nm), general characterization methods are insufficient for such high demand on space resolution, not to mention manipulating and observing its dynamic behavior at an atomic level. Here, employing the spherical aberration corrected electron microscope, we applied external field (heating and bias) on ferroelectrics. Combined with high-end characterization methods including the high-angle annular dark field (HAADF-STEM) image, Electron Energy Loss Spectroscopy (EELS) and integrated differential phase contrast (iDPC), the dynamic evolution of ferroelectrics are observed and analyzed. The main findings of this paper could be concluded as listed here: (1) PbTiO3(001)// SrTiO3(001) is grown on DyScO3 and SrRuO3 by pusled laser deposition, the atomical EDS mapping results reveal that the interface between PTO and STO is atomically sharp. Increasing the thickness of PTO from 1 uc to 21 uc, the topological structure wihtin PTO layer would transform from a/c domain to wave, vortex and finally flux closure domain. The geometric phase analysis results (GPA) reveal that above topological structures are corresponding to various strain. (2) Combined with in-situ biasing holder, the electric bias was applied on polar vortex, and it evolved from vortex (0 V) to polar wave (2 V) and finally polar down (5 V). EELS analysis was performed and we find that negative charge is gathered at vortex core, which turns the Ti4+ to Ti3+ there. The oxygen vacancy at negative polarization surface and the negative charge at the positive polarization surface realized the polarization screening of polar down domain. (3) Through the atomic inspection and analysis on lattice structure of BaFe2Se3, the near ladders within single unit are found to be different in degree of tetramerization, thus leading to a residual polarization along the a-axis. The further in-situ heating and biasing experiment was conducted on BaFe2Se3, and the strong and weak ladders are proved to be independent for their behavior under external field. This findings distinguishes ferrielectrics from ferroelectrics in solids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (down)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179310 Serial 6842  
Permanent link to this record
 

 
Author Prabhakara, V. url  openurl
  Title Strain measurement for semiconductor applications with Raman spectroscopy and Transmission electron microscopy Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 149 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Scaling down the size of transistors has been a trend for several decades which has led to improved transistor performance, increased transistor density and hence the overall computation power of IC chips. The trend slowed in recent years due to reliability and power consumption issues at the nanoscale. Hence strain is introduced into transistor channels that has beneficial effects on improving the mobility of charge carriers, providing an alternative pathway for enhancing transistor performance. Therefore, monitoring strain is vital for the semiconductor industry. With the recent trend of decreasing device dimensions (FinFETS ~ 10-20nm) and strain modulation being used throughout, industry needs a reliable and fast method as quality control or defect characterisation. Such a universal strain measurement method does not exist, and one relies on a combination of quantitative in-line methods and complex off-line approaches. In this thesis, I investigated TEM and Raman spectroscopy-based methodologies for strain measurement. In terms of TEM methodologies, advancements are made for the STEM moiré imaging, targeting strain spatial resolution enhancement. I introduce advanced quadrature demodulation and phase stepping interferometry applied to STEM moiré that greatly enhances the spatial resolution while providing enhanced field of view and sensitivity for strain measurement. We introduce ways to reduce scan distortions in strain maps using an alternative scan strategy called “Block scanning” and the non-linear regression applied for strain extraction. Prospects for 3D strain analysis using high-resolution tomography is also investigated which gives direct access for the full second order strain tensors calculation. Finally, we compare strain measurements from TEM techniques with inline techniques like Raman spectroscopy. Raman stress measurement involves sensitive identification of the TO and LO phonon peaks. Raman spectrum of strained Ge transistor channel consists of strongly overlapping peaks within the spectral resolution of the spectrometer. Hence, the process of deconvolution of the two peaks is rather challenging. Hence, we explore new polarisation geometries like radially polarised incoming light which was shown to ease the deconvolution problem resulting in improved precision for Raman stress–strain measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access (down)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182261 Serial 6847  
Permanent link to this record
 

 
Author Zhang, Z.; Bourgeois, L.; Zhang, Y.; Rosalie, J.M.; Medhekar, N. url  doi
openurl 
  Title Advanced imaging and simulations of precipitate interfaces in aluminium alloys and their role in phase transformations Type P1 Proceeding
  Year 2020 Publication MATEC web of conferences T2 – 17th International Conference on Aluminium Alloys (ICAA), October 26-29, 2020 Abbreviated Journal  
  Volume Issue Pages 09003  
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Precipitation is accompanied by the formation and migration of heterophase interfaces. Using the combined approach of advanced imaging and atomistic simulations, we studied the precipitate-matrix interfaces in various aluminium alloy systems, aiming to resolve their detailed atomic structures and illuminate their role in phase transformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000652552200053 Publication Date 2020-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 326 Series Issue Edition  
  ISSN 2261-236x; 2274-7214 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access (down)  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179147 Serial 6851  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: