|
Record |
Links |
|
Author |
Kirsanova, M.A.; De Sloovere, D.; Karakulina, O.M.; Hadermann, J.; Van Bael, M.K.; Hardy, A.; Abakumov, A.M. |
|
|
Title |
Toward unlocking the Mn3+/Mn2+ redox pair in alluaudite-type Na2+2zMn2-z(SO4)3-x(SeO4)x cathodes for sodium-ion batteries |
Type |
A1 Journal article |
|
Year |
2019 |
Publication |
Journal of solid state chemistry |
Abbreviated Journal |
J Solid State Chem |
|
|
Volume |
277 |
Issue |
277 |
Pages |
804-810 |
|
|
Keywords |
A1 Journal article; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
In polyanion cathodes, the inductive effect alters the potential of a M(n+1)+/Mn+ redox couple (M – transition metal) according to the electronegativity of the X cation in the polyanion groups (XO4m+). To manipulate the operating potential, we synthesized a series of mixed sulfate-selenate alluaudites, with structure formulas Na2+2zMn2-z(SO4)(3-x)(SeO4)(x) and Na2.81Ni1.60(SO4)(1.43)(SeO4)(1.57). Their crystal structure was determined from powder X-ray diffraction data, revealing that the Mn-based alluaudites form solid solutions with the same crystal structure for x = 0.75; 1.125 and 1.5. Na2.81Ni1.60(SO4)(1.43)(SeO4)(1.57) is isostructural to the Mn-based alluaudites. Although the Na2+2zMn2-z(SO4)(3-x)(SeO4)(x) compound with the highest selenium content demonstrates a reversible discharge capacity of 60 mAh g(-1), only a small part of this electrochemical activity can be ascribed to the Mn3+/Mn2+ redox couple. The redox potential of the Mn3+/Mn2+ pair in Na2+2zMn2-z(SO4)(3-)x(SeO4)(x) decreases with increasing values of x, in agreement with the lower electronegativity of Se compared to that of S. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000481726300103 |
Publication Date |
2019-07-24 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-4596 |
ISBN |
|
Additional Links |
UA library record; WoS full record |
|
|
Impact Factor |
2.299 |
Times cited |
|
Open Access |
|
|
|
Notes |
; The authors thank the Russian Foundation for Basic Research for financial support (grant 17-03-00370), in addition to Research Foundation-Flanders (project No G040116). ; |
Approved |
Most recent IF: 2.299 |
|
|
Call Number |
UA @ admin @ c:irua:162852 |
Serial |
5401 |
|
Permanent link to this record |