toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kuo, C.-T.; Lin, S.-C.; Ghiringhelli, G.; Peng, Y.; De Luca, G.M.; Di Castro, D.; Betto, D.; Gehlmann, M.; Wijnands, T.; Huijben, M.; Meyer-Ilse, J.; Gullikson, E.; Kortright, J.B.; Vailionis, A.; Gauquelin, N.; Verbeeck, J.; Gerber, T.; Balestrino, G.; Brookes, N.B.; Braicovich, L.; Fadley, C.S. url  doi
openurl 
  Title Depth-resolved resonant inelastic x-ray scattering at a superconductor/half-metallic-ferromagnet interface through standing wave excitation Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 23 Pages 235146  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We demonstrate that combining standing wave (SW) excitation with resonant inelastic x-ray scattering (RIXS) can lead to depth resolution and interface sensitivity for studying orbital and magnetic excitations in correlated oxide heterostructures. SW-RIXS has been applied to multilayer heterostructures consisting of a superconductor La1.85Sr0.15CuO4 (LSCO) and a half-metallic ferromagnet La0.67Sr0.33MnO3 (LSMO). Easily observable SW effects on the RIXS excitations were found in these LSCO/LSMO multilayers. In addition, we observe different depth distribution of the RIXS excitations. The magnetic excitations are found to arise from the LSCO/LSMO interfaces, and there is also a suggestion that one of the dd excitations comes from the interfaces. SW-RIXS measurements of correlated-oxide and other multilayer heterostructures should provide unique layer-resolved insights concerning their orbital and magnetic excitations, as well as a challenge for RIXS theory to specifically deal with interface effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454160800004 Publication Date 2018-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes J.V. and N.G. acknowledge ˝ funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 3.836  
  Call Number (down) UA @ admin @ c:irua:156784 Serial 5363  
Permanent link to this record
 

 
Author Li, L.L.; Partoens, B.; Xu, W.; Peeters, F.M. pdf  url
doi  openurl
  Title Electric-field modulation of linear dichroism and Faraday rotation in few-layer phosphorene Type A1 Journal article
  Year 2019 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 6 Issue 1 Pages 015032  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electro-optical modulators, which use an electric voltage (or an electric field) to modulate a beam of light, are essential elements in present-day telecommunication devices. Using a self-consistent tight-binding approach combined with the standard Kubo formula, we show that the optical conductivity and the linear dichroism of few-layer phosphorene can be modulated by a perpendicular electric field. We find that the field-induced charge screening plays a significant role in modulating the optical conductivity and the linear dichroism. Distinct absorption peaks are induced in the conductivity spectrum due to the strong quantum confinement along the out-of-plane direction and to the field-induced forbidden-to-allowed transitions. The field modulation of the linear dichroism becomes more pronounced with increasing number of phosphorene layers. We also show that the Faraday rotation is present in few-layer phosphorene even in the absence of an external magnetic field. This optical Hall effect is induced by the reduced lattice symmetry of few-layer phosphorene. The Faraday rotation is greatly influenced by the field-induced charge screening and is strongly dependent on the strength of perpendicular electric field and on the number of phosphorene layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454321100002 Publication Date 2018-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 23 Open Access  
  Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl) and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 6.937  
  Call Number (down) UA @ admin @ c:irua:156776 Serial 5207  
Permanent link to this record
 

 
Author Mohammed, M.; Verhulst, A.S.; Verreck, D.; Van de Put, M.L.; Magnus, W.; Sorée, B.; Groeseneken, G. pdf  doi
openurl 
  Title Phonon-assisted tunneling in direct-bandgap semiconductors Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue 1 Pages 015701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In tunnel field-effect transistors, trap-assisted tunneling (TAT) is one of the probable causes for degraded subthreshold swing. The accurate quantum-mechanical (QM) assessment of TAT currents also requires a QM treatment of phonon-assisted tunneling (PAT) currents. Therefore, we present a multi-band PAT current formalism within the framework of the quantum transmitting boundary method. An envelope function approximation is used to construct the electron-phonon coupling terms corresponding to local Frohlich-based phonon-assisted inter-band tunneling in direct-bandgap III-V semiconductors. The PAT current density is studied in up to 100 nm long and 20 nm wide p-n diodes with the 2- and 15-band material description of our formalism. We observe an inefficient electron-phonon coupling across the tunneling junction. We further demonstrate the dependence of PAT currents on the device length, for our non-self-consistent formalism which neglects changes in the electron distribution function caused by the electron-phonon coupling. Finally, we discuss the differences in doping dependence between direct band-to-band tunneling and PAT current. Published under license by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455350200021 Publication Date 2019-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 2 Open Access  
  Notes ; This work was supported by Imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068  
  Call Number (down) UA @ admin @ c:irua:156735 Serial 5224  
Permanent link to this record
 

 
Author Dharma-Wardana, M.W.C.; Neilson, D.; Peeters, F.M. url  doi
openurl 
  Title Correlation functions in electron-electron and electron-hole double quantum wells : temperature, density, and barrier-width dependence Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 3 Pages 035303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The classical-map hypernetted-chain (CHNC) scheme, developed for treating fermion fluids at strong coupling and at finite temperatures, is applied to electron-electron and electron-hole double quantum wells. The pair-distribution functions and the local field factors needed in linear-response theory are determined for a range of temperatures, carrier densities, and barrier widths typical for experimental double-quantum-well systems in GaAs-GaAlAs. For electron-hole double quantum wells, a large enhancement in the pair-distribution functions is found for small carrier separations. The CHNC equations for electron-hole systems no longer hold at low densities where bound-state formation occurs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455163800004 Publication Date 2019-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes ; This work was partially supported by the Flemish Science Foundation (FWO-Vl). M.W.C.D.-W. acknowledges with thanks the hospitality and stimulating atmosphere of the Condensed Matter Theory group at the University of Antwerp. ; Approved Most recent IF: 3.836  
  Call Number (down) UA @ admin @ c:irua:156734 Serial 5201  
Permanent link to this record
 

 
Author Das, S.; Rata, A.D.; Maznichenko, I., V; Agrestini, I.S.; Pippel, E.; Gauquelin, N.; Verbeeck, J.; Chen, K.; Valvidares, S.M.; Vasili, H.B.; Herrero-Martin, J.; Pellegrin, E.; Nenkov, K.; Herklotz, A.; Ernst, A.; Mertig, I.; Hu, Z.; Doerr, K. url  doi
openurl 
  Title Low-field switching of noncollinear spin texture at La0.7Sr0.3MnO3-SrRuO3interfaces Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 2 Pages 024416  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Interfaces of ferroic oxides can show complex magnetic textures which have strong impact on spintronics devices. This has been demonstrated recently for interfaces with insulating antiferromagnets such as BiFeO3. Here, noncollinear spin textures which can be switched in very low magnetic field are reported for conducting ferromagnetic bilayers of La0.7Sr0.3MnO3-SrRuO3 (LSMO-SRO). The magnetic order and switching are fundamentally different for bilayers coherently grown in reversed stacking sequence. The SRO top layer forms a persistent exchange spring which is antiferromagnetically coupled to LSMO and drives switching in low fields of a few milliteslas. Density functional theory reveals the crucial impact of the interface termination on the strength of Mn-Ru exchange coupling across the interface. The observation of an exchange spring agrees with ultrastrong coupling for the MnO2/SrO termination. Our results demonstrate low-field switching of noncollinear spin textures at an interface between conducting oxides, opening a pathway for manipulating and utilizing electron transport phenomena in controlled spin textures at oxide interfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455821400005 Publication Date 2019-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 19 Open Access OpenAccess  
  Notes ; The research in Halle was supported by Deutsche Forschungsgemeinschaft (DFG), SFB 762 Functional Oxide Interfaces (Projects No. A9 and No. B1). K.C. benefited from support of the DFG (Project 600575). Discussions with M. Trassin, M. Ziese, H. M. Christen, E.-J. Guo, F. Grcondciel, M. Bibes, and H. N. Lee are gratefully acknowledged. N. G. and J. V. acknowledge funding under the GOA project “Solarpaint” of the University of Antwerp. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. ; Approved Most recent IF: 3.836  
  Call Number (down) UA @ admin @ c:irua:156717 Serial 5255  
Permanent link to this record
 

 
Author Dabral, A.; Lu, A.K.A.; Chiappe, D.; Houssa, M.; Pourtois, G. pdf  doi
openurl 
  Title A systematic study of various 2D materials in the light of defect formation and oxidation Type A1 Journal article
  Year 2019 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 21 Issue 3 Pages 1089-1099  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The thermodynamic aspects of various 2D materials are explored using Density Functional Theory (DFT). Various metal chalcogenides (MX2, M = metal, chalcogen X = S, Se, Te) are investigated with respect to their interaction and stability under different ambient conditions met in the integration process of a transistor device. Their interaction with high- dielectrics is also addressed, in order to assess their possible integration in Complementary Metal Oxide Semiconductor (CMOS) field effect transistors. 2D materials show promise for high performance nanoelectronic devices, but the presence of defects (vacancies, grain boundaries,...) can significantly impact their electronic properties. To assess the impact of defects, their enthalpies of formation and their signature levels in the density of states have been studied. We find, consistently with literature reports, that chalcogen vacancies are the most likely source of defects. It is shown that while pristine 2D materials are in general stable whenever set in contact with different ambient atmospheres, the presence of defective sites affects the electronic properties of the 2D materials to varying degrees. We observe that all the 2D materials studied in the present work show strong reactivity towards radical oxygen plasma treatments while reactivity towards other common gas phase chemical such as O-2 and H2O and groups present at the high- surface varies significantly between species. While energy band-gaps, effective masses and contact resistivities are key criteria in selection of 2D materials for scaled CMOS and tunneling based devices, the phase and ambient stabilities might also play a very important role in the development of reliable nanoelectronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456147000009 Publication Date 2018-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 1 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.123  
  Call Number (down) UA @ admin @ c:irua:156715 Serial 5267  
Permanent link to this record
 

 
Author Rivera-Julio, J.; Gonzalez-Garcia, A.; Gonzalez-Hernandez, R.; Lopez-Perez, W.; Peeters, F.M.; Hernandez-Nieves, A.D. pdf  doi
openurl 
  Title Vibrational properties of germanane and fluorinated germanene in the chair, boat, and zigzag-line configurations Type A1 Journal article
  Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 31 Issue 7 Pages 075301  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic and vibrational properties of germanane and fluorinated germanene are studied within density functional theory (DFT) and density functional perturbation theory frameworks. Different structural configurations of germanane and fluorinated germanene are investigated. The energy difference between the different configurations are consistently smaller than the energy of thermal fluctuations for all the analyzed DFT functionals LDA, GGA, and hybrid functionals, which implies that, in principle, it is possible to find these different configurations in different regions of the sample as minority phases or local defects. We calculate the Raman and infrared spectra for these configurations by using ab initio calculations and compare it with available experimental spectra for germanane. Our results show the presence of minority phases compatible with the configurations analyzed in this work. As these low energy configurations are metastable the present work shows that the synthesis of these energy competing phases is feasible by selectively changing the synthesis conditions, which is an opportunity to expand in this way the availability of new two-dimensional compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454925400001 Publication Date 2018-11-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 9 Open Access  
  Notes ; We acknowledge financial support from PICT-2016-1087 from ANPCyT, PIP 2014-2016 00402 from CONICET and the Argentina-Belgium colaboration program SECYT-FWO FW/ 14/04. This work was also supported by Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712-Convocatoria para proyectos de investigacion en ciencias basicas ano 2015, Cod: 121571250192, Contrato 110-216. ; Approved Most recent IF: 2.649  
  Call Number (down) UA @ admin @ c:irua:156708 Serial 5238  
Permanent link to this record
 

 
Author Kosov, A.D.; Dubrinina, T.V.; Borisova, N.E.; Ivanov, A.V.; Drozdov, K.A.; Trashin, S.A.; De Wael, K.; Kotova, M.S.; Tomilova, L.G. pdf  url
doi  openurl
  Title Novel phenyl-substituted pyrazinoporphyrazine complexes of rare-earth elements : optimized synthetic protocols and physicochemical properties Type A1 Journal article
  Year 2019 Publication New journal of chemistry Abbreviated Journal New J Chem  
  Volume 43 Issue 7 Pages 3153-3161  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Novel synthetic protocols based on both template and multi-step methods were developed for phenyl-substituted pyrazinoporphyrazine complexes of rare-earth elements (Y, Eu, Gd, Dy, Er and Lu). p-Hydroquinone was employed as a reaction medium and as a reducing agent in the process of porphyrazine macrocycle formation. Both thermal and microwave irradiation techniques were successfully applied for activation of the template macrocyclization process. An alternative multi-step approach involving the initial stage of free-base ligand formation was realized for the lutetium compound. The target complexes were identified by high-resolution mass spectrometry, infrared spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Electrochemical behavior in solution and UV-vis absorbance in solutions and films were studied as well. Shifts in the position of the Q band and oxidationreduction potentials in comparison with corresponding phthalocyanine analogues were noticed. Using the IR absorption spectra recorded in the temperature range of 170300 K, the position of the Fermi level of −4.7 ± 0.1 eV and a characteristic energy diagram were obtained for the erbium complex.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000459944500035 Publication Date 2019-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.269 Times cited 1 Open Access  
  Notes ; We are grateful for main financial support from the Russian Foundation for Basic Research (Grant No. 16-33-60005 and 18-33-00519). Investigation of optical properties was supported by the Russian Science Foundation (Grant 17-13-01197). Electrochemical investigations were supported by ERA.Net RUS Plus Plasmon Electrolight and FWO funding (RFBR No. 18-53-76006 ERA). We also thank the Council under the President of the Russian Federation for State Support of Young Scientists and Leading Scientific Schools (Grants MK-3115.2018.3) and partial support from the framework of the State Assignment of 2019 (Theme 45.5 Creation of compounds with given physicochemical properties). Investigation of electrophysical properties was supported by the RFBR (Grant 16-07-00961). K. A. Drozdov and M. S. Kotova thank Prof. L. I. Ryabova for productive discussion of the electrophysical data. ; Approved Most recent IF: 3.269  
  Call Number (down) UA @ admin @ c:irua:156555 Serial 5750  
Permanent link to this record
 

 
Author Naberezhnyi, D.; Rumyantseva, M.; Filatova, D.; Batuk, M.; Hadermann, J.; Baranchikov, A.; Khmelevsky, N.; Aksenenko, A.; Konstantinova, E.; Gaskov, A. url  doi
openurl 
  Title Effects of Ag additive in low temperature CO detection with In2O3 based gas sensors Type A1 Journal article
  Year 2018 Publication Nanomaterials Abbreviated Journal  
  Volume 8 Issue 10 Pages 801  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanocomposites In2O3/Ag obtained by ultraviolet (UV) photoreduction and impregnation methods were studied as materials for CO sensors operating in the temperature range 25-250 degrees C. Nanocrystalline In2O3 and In2O3/Ag nanocomposites were characterized by X-ray diffraction (XRD), single-point Brunauer-Emmet-Teller (BET) method, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) with energy dispersive X-ray (EDX) mapping. The active surface sites were investigated using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR) spectroscopy and thermo-programmed reduction with hydrogen (TPR-H-2) method. Sensor measurements in the presence of 15 ppm CO demonstrated that UV treatment leads to a complete loss of In2O3 sensor sensitivity, while In2O3/Ag-UV nanocomposite synthesized by UV photoreduction demonstrates an increased sensor signal to CO at T < 200 degrees C. The observed high sensor response of the In2O3/Ag-UV nanocomposite at room temperature may be due to the realization of an additional mechanism of CO oxidation with participation of surface hydroxyl groups associated via hydrogen bonds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451174100057 Publication Date 2018-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-4991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:156335 Serial 7842  
Permanent link to this record
 

 
Author Cotte, M.; Genty-Vincent, A.; Janssens, K.; Susini, J. url  doi
openurl 
  Title Applications of synchrotron X-ray nano-probes in the field of cultural heritage Type A1 Journal article
  Year 2018 Publication Comptes rendus : physique Abbreviated Journal Cr Phys  
  Volume 19 Issue 7 Pages 575-588  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Synchrotron-based techniques are increasingly used in the field of cultural heritage, and this review focuses notably on the application of nano-beams to access high-spatial-resolution information on fragments sampled in historical or model artworks. Depending on the targeted information, various nano-analytical techniques can be applied, providing both identification and localization of the various components. More precisely, nano-X-ray fluorescence probes elements, nano-X-ray diffraction identify crystalline phases, and nano X-ray absorption spectroscopy is sensitive to speciation. Furthermore, computed tomography-based techniques can provide useful information about the morphology and in particular the porosity of materials. (C) 2018 Academie des sciences. Published by Elsevier Masson SAS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451631400006 Publication Date 2018-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1631-0705; 1878-1535 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 3 Open Access  
  Notes ; ; Approved Most recent IF: 2.048  
  Call Number (down) UA @ admin @ c:irua:156320 Serial 5476  
Permanent link to this record
 

 
Author Verreck, D.; Verhulst, A.S.; Van de Put, M.L.; Sorée, B.; Magnus, W.; Collaert, N.; Mocuta, A.; Groeseneken, G. pdf  doi
openurl 
  Title Self-consistent procedure including envelope function normalization for full-zone Schrodinger-Poisson problems with transmitting boundary conditions Type A1 Journal article
  Year 2018 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 124 Issue 20 Pages 204501  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the quantum mechanical simulation of exploratory semiconductor devices, continuum methods based on a k.p/envelope function model have the potential to significantly reduce the computational burden compared to prevalent atomistic methods. However, full-zone k.p/envelope function simulation approaches are scarce and existing implementations are not self-consistent with the calculation of the electrostatic potential due to the lack of a stable procedure and a proper normalization of the multi-band envelope functions. Here, we therefore present a self-consistent procedure based on a full-zone spectral k.p/envelope function band structure model. First, we develop a proper normalization for the multi-band envelope functions in the presence of transmitting boundary conditions. This enables the calculation of the free carrier densities. Next, we construct a procedure to obtain self-consistency of the carrier densities with the electrostatic potential. This procedure is stabilized with an adaptive scheme that relies on the solution of Poisson's equation in the Gummel form, combined with successive underrelaxation. Finally, we apply our procedure to homostructure In0.53Ga0.47As tunnel field-effect transistors (TFETs) and staggered heterostructure GaAs0.5Sb0.5/In0.53Ga0.47As TFETs and show the importance of self-consistency on the device predictions for scaled dimensions. Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451743900015 Publication Date 2018-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 1 Open Access  
  Notes ; This work was supported by imec's Industrial Affiliation Program. ; Approved Most recent IF: 2.068  
  Call Number (down) UA @ admin @ c:irua:156291 Serial 5228  
Permanent link to this record
 

 
Author Bottari, F.; Moretto, L.M.; Ugo, P. pdf  doi
openurl 
  Title Impedimetric sensing of the immuno-enzymatic reaction of gliadin with a collagen-modified electrode Type A1 Journal article
  Year 2018 Publication Electrochemistry communications Abbreviated Journal  
  Volume 97 Issue Pages 51-55  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This paper presents a previously unexplored biosensing strategy for detecting gliadin which exploits the crosslinking of gliadin with collagen, catalyzed by transglutaminase at the interfacial electron transfer rate, on a modified electrode. The process is monitored by electrochemical impedance spectroscopy using a glassy carbon electrode coated with a collagen layer. To validate the specificity of the response as well as to eliminate possible interferences from other proteins, such as soy protein or casein, the captured gliadin is further reacted with a specific anti-gliadin antibody. Changes in charge transfer resistance, measured from the Nyquist plots, scale linearly with the gliadin concentration in the range 5-20 mg/L, a range suitable for testing the gliadin concentration in gluten-free food commodities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451326800011 Publication Date 2018-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:156285 Serial 8067  
Permanent link to this record
 

 
Author Abakumov, M.A.; Semkina, A.S.; Skorikov, A.S.; Vishnevskiy, D.A.; Ivanova, A.V.; Mironova, E.; Davydova, G.A.; Majouga, A.G.; Chekhonin, V.P. pdf  doi
openurl 
  Title Toxicity of iron oxide nanoparticles : size and coating effects Type A1 Journal article
  Year 2018 Publication Journal of biochemical and molecular toxicology Abbreviated Journal  
  Volume 32 Issue 12 Pages e22225  
  Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)  
  Abstract Toxicological research of novel nanomaterials is a major developmental step of their clinical approval. Since iron oxide magnetic nanoparticles have a great potential in cancer treatment and diagnostics, the investigation of their toxic properties is very topical. In this paper we synthesized bovine serum albumin-coated iron oxide nanoparticles with different sizes and their polyethylene glycol derivative. To prove high biocompatibility of obtained nanoparticles the number of in vitro toxicological tests on human fibroblasts and U251 glioblastoma cells was performed. It was shown that albumin nanoparticles' coating provides a stable and biocompatible shell and prevents cytotoxicity of magnetite core. On long exposure times (48 hours), cytotoxicity of iron oxide nanoparticles takes place due to free radical production, but this toxic effect may be neutralized by using polyethylene glycol modification.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452532300008 Publication Date 2018-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1095-6670 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:156269 Serial 8684  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M. url  doi
openurl 
  Title Excitonic complexes in anisotropic atomically thin two-dimensional materials : black phosphorus and TiS3 Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 23 Pages 235401  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of anisotropy in the energy spectrum on the binding energy and structural properties of excitons, trions, and biexcitons is investigated. To this end we employ the stochastic variational method with a correlated Gaussian basis. We present results for the binding energy of different excitonic complexes in black phosphorus (bP) and TiS3 and compare them with recent results in the literature when available, for which we find good agreement. The binding energies of excitonic complexes in bP are larger than those in TiS3. We calculate the different average interparticle distances in bP and TiS3 and show that excitonic complexes in bP are strongly anisotropic whereas in TiS3 they are almost isotropic, even though the constituent particles have an anisotropic energy spectrum. This is also confirmed by the correlation functions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452003400009 Publication Date 2018-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836  
  Call Number (down) UA @ admin @ c:irua:156247 Serial 5211  
Permanent link to this record
 

 
Author Tong, Y.; Fu, M.; Bladt, E.; Huang, H.; Richter, A.F.; Wang, K.; Mueller-Buschbaum, P.; Bals, S.; Tamarat, P.; Lounis, B.; Feldmann, J.; Polavarapu, L. pdf  url
doi  openurl
  Title Chemical cutting of perovskite nanowires into single-photon emissive low-aspect-ratio CsPbX3(X = Cl, Br, I) nanorods Type A1 Journal article
  Year 2018 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 57 Issue 57 Pages 16094-16098  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Post-synthetic shape-transformation processes provide access to colloidal nanocrystal morphologies that are unattainable by direct synthetic routes. Herein, we report our finding about the ligand-induced fragmentation of CsPbBr3 perovskite nanowires (NWs) into low aspect-ratio CsPbX3 (X = Cl, Br and I) nanorods (NRs) during halide ion exchange reaction with PbX2-ligand solution. The shape transformation of NWs-to-NRs resulted in an increase of photoluminescence efficiency owing to a decrease of nonradiative decay rates. Importantly, we found that the perovskite NRs exhibit single photon emission as revealed by photon antibunching measurements, while it is not detected in parent NWs. This work not only reports on the quantum light emission of low aspect ratio perovskite NRs, but also expands our current understanding of shape-dependent optical properties of perovskite nanocrystals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452235600024 Publication Date 2018-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 70 Open Access OpenAccess  
  Notes ; This work was supported by the Bavarian State Ministry of Science, Research, and Arts through the grant “Solar Technologies go Hybrid (SolTech)”, by the China Scholarship Council (Y.T. and K.W.), by the Horizon 2020 research and innovation program under the Marie Skodowska-Curie Grant Agreement COMPASS No. 691185 and by LMU Munich's Institutional Strategy LMU excellent (L.P., J.F.). M.F., P.T. and B.L. acknowledge the financial support from the French National Agency for Research, the French Excellence Initiative (Idex Bordeaux, LAPHIA Program) and the Institut Universitaire de France. E.B. and S.B. acknowledge the financial support from the European Research Council Starting Grant # 335078-COLOURATOMS. L.P. thank the EU Infrastructure Project EUSMI (European Union's Horizon 2020, grant No 731019). ; Approved Most recent IF: 11.994  
  Call Number (down) UA @ admin @ c:irua:156246 Serial 5283  
Permanent link to this record
 

 
Author Sanchez-Barriga, J.; Aguilera, I.; Yashina, L., V; Tsukanova, D.Y.; Freyse, F.; Chaika, A.N.; Callaert, C.; Abakumov, A.M.; Hadermann, J.; Varykhalov, A.; Rienks, E.D.L.; Bihlmayer, G.; Blugel, S.; Rader, O. url  doi
openurl 
  Title Anomalous behavior of the electronic structure of (Bi1-xInx)2Se3across the quantum phase transition from topological to trivial insulator Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal  
  Volume 98 Issue 23 Pages 235110  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Using spin- and angle-resolved photoemission spectroscopy and relativistic many-body calculations, we investigate the evolution of the electronic structure of (Bi1-xInx)(2)Se-3)(2)Se-3 bulk single crystals around the critical point of the trivial to topological insulator quantum-phase transition. By increasing x, we observe how a surface gap opens at the Dirac point of the initially gapless topological surface state of Bi2Se3, leading to the existence of massive fermions. The surface gap monotonically increases for a wide range of x values across the topological and trivial sides of the quantum-phase transition. By means of photon-energy-dependent measurements, we demonstrate that the gapped surface state survives the inversion of the bulk bands which occurs at a critical point near x = 0.055. The surface state exhibits a nonzero in-plane spin polarization which decays exponentially with increasing x, and which persists in both the topological and trivial insulator phases. Our calculations reveal qualitative agreement with the experimental results all across the quantum-phase transition upon the systematic variation of the spin-orbit coupling strength. A non-time-reversal symmetry-breaking mechanism of bulk-mediated scattering processes that increase with decreasing spin-orbit coupling strength is proposed as explanation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452322800003 Publication Date 2018-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:156240 Serial 7462  
Permanent link to this record
 

 
Author De Sloovere, D.; Safari, M.; Elen, K.; D'Haen, J.; Drozhzhin, O.A.; Abakumov, A.M.; Simenas, M.; Banys, J.; Bekaert, J.; Partoens, B.; Van Bael, M.K.; Hardy, A. pdf  doi
openurl 
  Title Reduced Na2+xTi4O9 composite : a durable anode for sodium-ion batteries Type A1 Journal article
  Year 2018 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 30 Issue 23 Pages 8521-8527  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Sodium-ion batteries (SIBs) are potential cost-effective solutions for stationary energy storage applications. Unavailability of suitable anode materials, however, is one of the important barriers to the maturity of SIBs. Here, we report a Na2+xTi4O9/C composite as a promising anode candidate for SIBs with high capacity and cycling stability. This anode is characterized by a capacity of 124 mAh g(-1) (plus 11 mAh g(-1) contributed by carbon black), an average discharge potential of 0.9 V vs Na/Na+, a good rate capability and a high stability (89% capacity retention after 250 cycles at a rate of 1 degrees C). The mechanisms of sodium insertion/deinsertion and of the formation of Na2+xTi4O9/C are investigated with the aid of various ex/in situ characterization techniques. The in situ formed carbon is necessary for the formation of the reduced sodium titanate. This synthesis method may enable the convenient synthesis of other composites of crystalline phases with amorphous carbon.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453489300014 Publication Date 2018-11-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 7 Open Access  
  Notes ; This work was supported by the FWO (Research Foundation Flanders, project G040116). O.A.D. and A.M.A. are grateful to the Russian Science Foundation for financial support (Grant 17-73-30006). The authors acknowledge Pieter Samyn for Raman spectroscopy, Fulya Ulu Okudur for preliminary TEM, Bart Ruttens for XRD, Hilde Pellaers for SEM, Tom Haeldermans for elemental analysis, and Karen Leyssen and Vera Meynen for physisorption measurements. ; Approved Most recent IF: 9.466  
  Call Number (down) UA @ admin @ c:irua:156235 Serial 5227  
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Zarenia, M.; Vazifehshenas, T.; Peeters, F.M. url  doi
openurl 
  Title Anisotropic charge density wave in electron-hole double monolayers : applied to phosphorene Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 98 Issue 24 Pages 245115  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The possibility of an inhomogeneous charge density wave phase is investigated in a system of two coupled electron and hole monolayers separated by a hexagonal boron nitride insulating layer. The charge-density-wave state is induced through the assumption of negative compressibility of electron/hole gases in a Coulomb drag configuration between the electron and hole sheets. Under equilibrium conditions, we derive analytical expressions for the density oscillation along the zigzag and armchair directions. We find that the density modulation not only depends on the sign of the compressibility but also on the anisotropy of the low-energy bands. Our results are applicable to any two-dimensional system with anisotropic parabolic bands, characterized by different effective masses. For equal effective masses, i.e., isotropic energy bands, our results agree with Hroblak et al. [Phys. Rev. B 96, 075422 (2017)]. Our numerical results are applied to phosphorene.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452995600001 Publication Date 2018-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.836 Times cited Open Access  
  Notes ; This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government and Iran Science Elites Federation. ; Approved Most recent IF: 3.836  
  Call Number (down) UA @ admin @ c:irua:156233 Serial 5195  
Permanent link to this record
 

 
Author Badalov, S.V.; Yagmurcukardes, M.; Peeters, F.M.; Sahin, H. url  doi
openurl 
  Title Enhanced stability of single-layer w-Gallenene through hydrogenation Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 49 Pages 28302-28309  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using density functional theory based first-principles calculations, the effect of surface hydrogenation on the structural, dynamical, electronic, and mechanical properties of monolayer washboard-gallenene (w-gallenene) is investigated. It is found that the dynamically stabilized strained monolayer of w-gallenene has a metallic nonmagnetic ground state. Both one-sided and two-sided hydrogenations of w-gallenene suppress its dynamical instability even when unstrained. Unlike one-sided hydrogenated monolayer w-gallenene (os-w-gallenene), two-sided hydrogenated monolayer w-gallenene (ts-w-gallenene) possesses the same crystal structure as w-gallenene. Electronic band structure calculations reveal that monolayers of hydrogenated derivatives of w-gallenene exhibit also metallic nonmagnetic ground state. Moreover, the linear-elastic constants, in-plane stiffness and Poisson ratio, are enhanced by hydrogenation, which is opposite to the behavior of other hydrogenated monolayer crystals. Furthermore, monolayer w-gallenene and ts-w-gallenene remain dynamically stable up to relatively higher biaxial strains as compared to borophene. With its enhanced dynamical stability, robust metallic character, and enhanced linear-elastic properties, hydrogenated monolayer w-gallenene is a potential candidate for nanodevice applications as a two-dimensional flexible metal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453488300053 Publication Date 2018-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 20 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges support from Turkish Academy of Sciences under the GEBIP program. This work was supported by FLAG-ERA project TRANS-2D-TMD. This work is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship (M.Y.). ; Approved Most recent IF: 4.536  
  Call Number (down) UA @ admin @ c:irua:156229 Serial 5210  
Permanent link to this record
 

 
Author Marikutsa, A.; Yang, L.; Rumyantseva, M.; Batuk, M.; Hadermann, J.; Gaskov, A. pdf  url
doi  openurl
  Title Sensitivity of nanocrystalline tungsten oxide to CO and ammonia gas determined by surface catalysts Type A1 Journal article
  Year 2018 Publication Sensors and actuators : B : chemical Abbreviated Journal  
  Volume 277 Issue Pages 336-346  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline tungsten oxide with variable particle size and surface area was synthesized by aqueous deposition and heat treatment for use in resistive gas sensors. Surface modification with 1 wt.% Pd and Ru was performed by impregnation to improve the sensitivity to CO and ammonia. Acid and oxidation surface sites were evaluated by temperature-programmed techniques using probe molecules. The surface acidity dropped with increasing particle size, and was weakly affected by additives. Lower crystallinity of WO3 and the presence of Ru species favoured temperature-programmed reduction of the materials. Modifying WO3 increased its sensitivity, to CO at ambient condition for modification by Pd and to NH3 at elevated temperature for Ru modification. An in situ infrared study of the gas – solid interaction showed that the catalytic additives change the interaction route of tungsten oxide with the target gases and make the reception of detected molecules independent of the semiconductor oxide matrix.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453066700042 Publication Date 2018-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:156219 Serial 8513  
Permanent link to this record
 

 
Author Sleegers, N.; van Nuijs, A.L.N.; van den Berg, M.; De Wael, K. url  doi
openurl 
  Title Cephalosporin antibiotics : electrochemical fingerprints and core structure reactions investigated by LC-MSMS Type A1 Journal article
  Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 91 Issue 3 Pages 2035-2041  
  Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract Electrochemistry and exploiting electrochemical fingerprints is a potent approach to address newly emerging surveillance needs, for instance for antibiotics. However, a comprehensive insight in the electrochemical oxidation behaviour and mechanism is re-quired for this sensing strategy. To address the lack in knowledge of the voltammetric behaviour of the cephalosporins antibiotics, a selection of cephalosporin antibiotics and two main intermediates were subjected to an electrochemical study of their redox behaviour by means of pulsed voltammetric techniques and small-scale electrolysis combined with HPLC-MS/MS analyses. Sur-prisingly, the detected oxidation products did not fit the earlier suggested oxidation of the sulfur group to the corresponding sul-foxide. The influence of different side chains, both at the three and the seven position of the β-lactam core structure on the elec-trochemical fingerprint were investigated. Additional oxidation signals at lower potentials were elucidated and linked to different side chains. These signals were further exploited to allow simultaneous detection of different cephalosporins in one voltammetric sweep. These fundamental insights can become the building blocks for an new on-site screening method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458220300055 Publication Date 2019-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 6 Open Access  
  Notes ; The authors acknowledge financial support from the Fund for Scientific Research (FWO) Flanders, Grant 1S 37658 17N. ; Approved Most recent IF: 6.32  
  Call Number (down) UA @ admin @ c:irua:156046 Serial 5497  
Permanent link to this record
 

 
Author Sui, Y.; Muys, M.; Vermeir, P.; D'Adamo, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Light regime and growth phase affect the microalgal production of protein quantity and quality with Dunaliella salina Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 275 Issue Pages 145-152  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The microalga Dunaliella salina has been widely studied for carotenogenesis, yet its protein production for human nutrition has rarely been reported. This study unveils the effects of growth phase and light regime on protein and essential amino acid (EAA) levels in D. salina. Cultivation under 24-h continuous light was compared to 12-h/12-h light/dark cycle. The essential amino acid index (EAAI) of D. salina showed accumulating trends up to 1.53 in the stationary phase, surpassing FAO/WHO standard for human nutrition. Light/dark conditions inferred a higher light-usage efficiency, yielding 597% higher protein and 1828% higher EAA mass on light energy throughout the growth, accompanied by 138% faster growth during the light phase of the light/dark cycle, compared to continuous light. The findings revealed D. salina to be especially suitable for high-quality protein production, particularly grown under light/dark conditions, with nitrogen limitation as possible trigger, and harvested in the stationary phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456405000018 Publication Date 2018-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:155981 Serial 8173  
Permanent link to this record
 

 
Author Muys, M.; Sui, Y.; Schwaiger, B.; Lesueur, C.; Vandenheuvel, D.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 275 Issue Pages 247-257  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Microalgal biomass production is a resource-efficient answer to the exponentially increasing demand for protein, yet variability in biomass quality is largely unexplored. Nutritional value and safety were determined for Chlorella and Spirulina biomass from different producers, production batches and the same production batch. Chlorella presented a similar protein content (47 ± 8%) compared to Spirulina (48 ± 4%). However, protein quality, expressed as essential amino acid index, and digestibility were lower for Chlorella (1.1 ± 0.1 and 51 ± 9%, respectively) compared to Spirulina (1.3 ± 0.1 and 61 ± 4%, respectively). Generally, variability was lower between batches and within a batch. Heavy metals, pesticides, mycotoxins, antibiotics and nitrate did not violate regulatory limits, while polycyclic aromatic hydrocarbon levels exceeded the norm for some samples, indicating the need for continuous monitoring. This first systematic screening of commercial microalgal biomass revealed a high nutritional variability, necessitating further optimization of cultivation and post-processing conditions. Based on price and quality, Spirulina was preferred above Chlorella.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456405000030 Publication Date 2018-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:155979 Serial 8040  
Permanent link to this record
 

 
Author Ranieri, P.; Shrivastav, R.; Wang, M.; Lin, A.; Fridman, G.; Fridman, A.A.; Han, L.-H.; Miller, V. pdf  doi
openurl 
  Title Nanosecond-pulsed dielectric barrier dischargeinduced antitumor effects propagate through depth of tissue via intracellular signaling Type A1 Journal article
  Year 2017 Publication Plasma medicine Abbreviated Journal  
  Volume 7 Issue 3 Pages 283-297  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Studies using xenograft mouse models have shown that plasma applied to the skin overlying tumors results in tumor shrinkage. Plasma is considered a nonpenetrating treatment; however, these studies demonstrate plasma effects that occur beyond the postulated depth of physical penetration of plasma components. The present study examines the propagation of plasma effects through a tissue model using three-dimensional, cell-laden extracellular matrices (ECMs). These ECMs are used as barriers against direct plasma penetration. By placing them onto a monolayer of target cancer cells to create an in-vitro analog to in-vivo studies, we distinguished between cellular effects from direct plasma exposure and cellular effects due to cell-to-cell signaling stimulated by plasma. We show that nanosecond-pulsed dielectric barrier discharge plasma treatment applied atop an acellular barrier impedes the externalization of calreticulin (CRT) in the target cells. In contrast, when a barrier is populated with cells, CRT externalization is restored. Thus, we demonstrate that plasma components stimulate signaling among cells embedded in the barrier to transfer plasma effects to the target cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2017-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:155658 Serial 8293  
Permanent link to this record
 

 
Author Sankaran, K.J.; Deshmukh, S.; Korneychuk, S.; Yeh, C.-J.; Thomas, J.P.; Drijkoningen, S.; Pobedinskas, P.; Van Bael, M.K.; Verbeeck, J.; Leou, K.-C.; Leung, K.-T.; Roy, S.S.; Lin, I.-N.; Haenen, K. pdf  doi
openurl 
  Title Fabrication, microstructure, and enhanced thermionic electron emission properties of vertically aligned nitrogen-doped nanocrystalline diamond nanorods Type A1 Journal article
  Year 2018 Publication MRS communications Abbreviated Journal Mrs Commun  
  Volume 8 Issue 3 Pages 1311-1320  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Vertically aligned nitrogen-doped nanocrystalline diamond nanorods are fabricated from nitrogen-doped nanocrystalline diamond films using reactive ion etching in oxygen plasma. These nanorods show enhanced thermionic electron emission (TEE) characteristics, viz.. a high current density of 12.0 mA/cm(2) and a work function value of 4.5 eV with an applied voltage of 3 Vat 923 K. The enhanced TEE characteristics of these nanorods are ascribed to the induction of nanographitic phases at the grain boundaries and the field penetration effect through the local field enhancement from nanorods owing to a high aspect ratio and an excellent field enhancement factor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000448887900089 Publication Date 2018-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2159-6859; 2159-6867 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.01 Times cited 1 Open Access  
  Notes The authors thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. The Hercules Foundation Flanders is acknowledged for financial support of the Raman equipment. The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S.K. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. K.J. Sankaran and P. Pobedinskas are Postdoctoral Fellows of FWO. Approved Most recent IF: 3.01  
  Call Number (down) UA @ admin @ c:irua:155521 Serial 5364  
Permanent link to this record
 

 
Author Li, L.; Kong, X.; Peeters, F.M. pdf  doi
openurl 
  Title New nanoporous graphyne monolayer as nodal line semimetal : double Dirac points with an ultrahigh Fermi velocity Type A1 Journal article
  Year 2019 Publication Carbon Abbreviated Journal Carbon  
  Volume 141 Issue 141 Pages 712-718  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) carbon materials play an important role in nanomaterials. We propose a new carbon monolayer, named hexagonal-4,4,4-graphyne (H-4,H-4,H-4-graphyne), which is a nanoporous structure composed of rectangular carbon rings and triple bonds of carbon. Using first-principles calculations, we systematically studied the structure, stability, and band structure of this new material. We found that its total energy is lower than that of experimentally synthesized beta-graphdiyne and it is stable at least up to 1500 K. In contrast to the single Dirac point band structure of other 2D carbon monolayers, the band structure of H-4,H-4,H-4-graphyne exhibits double Dirac points along the high-symmetry points and the corresponding Fermi velocities (1.04-1.27 x 10(6) m/s) are asymmetric and higher than that of graphene. The origin of these double Dirac points is traced back to the nodal line states, which can be well explained by a tight-binding model. The H-4,H-4,H-4-graphyne forms a moire superstructure when placed on top of a hexagonal boron nitride substrate. These properties make H-4,H-4,H-4-graphyne a promising semimetal material for applications in high-speed electronic devices. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000450312600072 Publication Date 2018-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.337 Times cited 43 Open Access  
  Notes ; This work was supported by the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), and the FLAG-ERA project TRANS2DTMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government -department EWI. ; Approved Most recent IF: 6.337  
  Call Number (down) UA @ admin @ c:irua:155364 Serial 5222  
Permanent link to this record
 

 
Author Leliaert, J.; Gypens, P.; Milošević, M.V.; Van Waeyenberge, B.; Mulkers, J. pdf  url
doi  openurl
  Title Coupling of the skyrmion velocity to its breathing mode in periodically notched nanotracks Type A1 Journal article
  Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 52 Issue 2 Pages 024003  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A thorough understanding of the skyrmion motion through nanotracks is a prerequisite to realize the full potential of spintronic applications like the skyrmion racetrack memory. One of the challenges is to place the data, i.e. skyrmions, on discrete fixed positions, e.g. below a read or write head. In the domain-wall racetrack memory, one proposed solution to this problem was patterning the nanotrack with notches. Following this approach, this paper reports on the skyrmion mobility through a nanotrack with periodic notches (constrictions) made using variations in the chiral Dzyaloshinskii-Moriya interaction. We observe that such notches induce a coupling between the mobility and the skyrmion breathing mode, which manifests itself as velocity-dependent oscillations of the skyrmion diameter and plateaus in which the velocity is independent of the driving force. Despite the fact that domain walls are far more rigid objects than skyrmions, we were able to perform an analogous study and, surprisingly, found even larger plateaus of constant velocity. For both systems it is straightforward to tune the velocity at these plateaus by changing the design of the notched nanotrack geometry, e.g. by varying the distance between the notches. Therefore, the notch-induced coupling between the excited modes and the mobility could offer a strategy to stabilize the velocity against unwanted perturbations in racetrack-like applications. In the last part of the paper we focus on the low-current mobility regimes, whose very rich dynamics at nonzero temperatures are very similar to the operating principle of recently developed probabilistic logic devices. This proves that the mobility of nanomagnetic structures through a periodically modulated track is not only interesting from a fundamental point of view, but has a future in many spintronic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000449169100001 Publication Date 2018-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 10 Open Access  
  Notes ; This work is supported by Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) through Project No. G098917N. JL acknowledges his postdoctoral fellowships by the Ghent University special research fund (BOF) and FWO-Vlaanderen. The authors gratefully acknowledge the support of NVIDIA Corporation through donation of Titan Xp and Titan V GPU cards used for this research. ; Approved Most recent IF: 2.588  
  Call Number (down) UA @ admin @ c:irua:155359 Serial 5202  
Permanent link to this record
 

 
Author De Vrieze, J.; Colica, G.; Pintucci, C.; Sarli, J.; Pedizzi, C.; Willeghems, G.; Bral, A.; Varga, S.; Prat, D.; Peng, L.; Spiller, M.; Buysse, J.; Colsen, J.; Benito, O.; Carballa, M.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Resource recovery from pig manure via an integrated approach : a technical and economic assessment for full-scale applications Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 272 Issue Pages 582-593  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Intensive livestock farming cannot be uncoupled from the massive production of manure, requiring adequate management to avoid environmental damage. The high carbon, nitrogen and phosphorus content of pig manure enables targeted resource recovery. Here, fifteen integrated scenarios for recovery of water, nutrients and energy are compared in terms of technical feasibility and economic viability. The recovery of refined nutrients with a higher market value and quality, i.e., (NH4)2SO4 for N and struvite for P, coincided with higher net costs, compared to basic composting. The inclusion of anaerobic digestion promoted nutrient recovery efficiency, and enabled energy recovery through electricity production. Co-digestion of the manure with carbon-rich waste streams increased electricity production, but did not result in lower process costs. Overall, key drivers for the selection of the optimal manure treatment scenario will include the market demand for more refined (vs. separated or concentrated) products, and the need for renewable electricity production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451625700071 Publication Date 2018-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:155236 Serial 8476  
Permanent link to this record
 

 
Author Martínez-Dueñas, E.J.R.; de Jong van Coevorden, C.M.; Stukach, O.V.; Panokin, N.V.; Gielis, J.; Caratelli, D. url  doi
openurl 
  Title Electromagnetic modeling and design of a novel class of complementary split‐ring resonators Type A1 Journal article
  Year 2019 Publication International journal of RF and microwave computer-aided engineering Abbreviated Journal  
  Volume 29 Issue 4 Pages e21582  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This research study reports the assessment of complementary split ring resonators based on Gielis transformation as basic elements for the design of high‐performance microwave components in printed technology. From the electromagnetic simulation of said structures, suitable equivalent circuit models are extracted and analyzed. Physical prototypes are fabricated and tested for design validation. The obtained results confirm that the adoption of supershaped geometries enables the synthesis of very compact scalable microwave filters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460308500020 Publication Date 2018-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1096-4290 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:155021 Serial 7867  
Permanent link to this record
 

 
Author Blommaerts, N.; Dingenen, F.; Middelkoop, V.; Savelkouls, J.; Goemans, M.; Tytgat, T.; Verbruggen, S.W.; Lenaerts, S. pdf  url
doi  openurl
  Title Ultrafast screening of commercial sorbent materials for VOC adsorption using real-time FTIR spectroscopy Type A1 Journal article
  Year 2018 Publication Separation and purification technology Abbreviated Journal Sep Purif Technol  
  Volume 207 Issue 207 Pages 284-290  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Recovery of valuable volatile organic compounds (VOCs) from waste streams is of great industrial importance. Adsorption on zeolites offers an economically and environmentally friendly alternative to conventional activated carbon. When evaluating the suitability of a given zeolite for a particular adsorption application, its adsorption capacity has to be determined. This is traditionally achieved using gas chromatography as an analysis tool, yielding only a few discrete sampling points that constitute the adsorption profile. Meanwhile, only low flow rates and low concentrations of volatile organics can be used, rendering the procedure troublesome and time consuming. Herein, we propose a tool for the fast screening of a large amount of zeolites using on-line and quasi real-time Fourier Transform Infrared Spectroscopy (FTIR). The technique was used to determine the adsorption capacity of three different commercial zeolites and two silica gels, for five industrially relevant VOCs: acetone; methanol; isohexane; isopentane; and toluene. A series of rapid measurements of the individual adsorption capacities were carried out to obtain a detailed overview of the versatility of the proposed method for the characterization of multi-component and multi-sorption bed systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445987500032 Publication Date 2018-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1383-5866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.359 Times cited 5 Open Access  
  Notes ; We would like to thank Vlaams Agenschap Innoveren & Ondernemen (VLAIO) for financial support. The authors would also like to thank Kureha GmbH, Germany for kindly supplying us with their BAC (R) (bead-shaped activated carbon) samples. ; Approved Most recent IF: 3.359  
  Call Number (down) UA @ admin @ c:irua:154694 Serial 6000  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: