toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Bal, K.M.; Neyts, E.C.
  Title Extending and validating bubble nucleation rate predictions in a Lennard-Jones fluid with enhanced sampling methods and transition state theory Type A1 Journal article
  Year 2022 Publication Journal Of Chemical Physics Abbreviated Journal J Chem Phys
  Volume 157 Issue 18 Pages 184113-10
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We calculate bubble nucleation rates in a Lennard-Jones fluid through explicit molecular dynamics simulations. Our approach-based on a recent free energy method (dubbed reweighted Jarzynski sampling), transition state theory, and a simple recrossing correction-allows us to probe a fairly wide range of rates in several superheated and cavitation regimes in a consistent manner. Rate predictions from this approach bridge disparate independent literature studies on the same model system. As such, we find that rate predictions based on classical nucleation theory, direct brute force molecular dynamics simulations, and seeding are consistent with our approach and one another. Published rates derived from forward flux sampling simulations are, however, found to be outliers. This study serves two purposes: First, we validate the reliability of common modeling techniques and extrapolation approaches on a paradigmatic problem in materials science and chemical physics. Second, we further test our highly generic recipe for rate calculations, and establish its applicability to nucleation processes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000885260600002 Publication Date 2022-11-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.4 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.4
  Call Number (up) UA @ admin @ c:irua:192076 Serial 7266
Permanent link to this record
 

 
Author Javdani, Z.; Hassani, N.; Faraji, F.; Zhou, R.; Sun, C.; Radha, B.; Neyts, E.; Peeters, F.M.; Neek-Amal, M.
  Title Clogging and unclogging of hydrocarbon-contaminated nanochannels Type A1 Journal article
  Year 2022 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
  Volume 13 Issue 49 Pages 11454-11463
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The recent advantages of the fabrication of artificial nanochannels enabled new research on the molecular transport, permeance, and selectivity of various gases and molecules. However, the physisorption/chemisorption of the unwanted molecules (usually hydrocarbons) inside nanochannels results in the alteration of the functionality of the nanochannels. We investigated contamination due to hydrocarbon molecules, nanochannels made of graphene, hexagonal boron nitride, BC2N, and molybdenum disulfide using molecular dynamics simulations. We found that for a certain size of nanochannel (i.e., h = 0.7 nm), as a result of the anomalous hydrophilic nature of nanochannels made of graphene, the hydrocarbons are fully adsorbed in the nanochannel, giving rise to full uptake. An increasing temperature plays an important role in unclogging, while pressure does not have a significant role. The results of our pioneering work contribute to a better understanding and highlight the important factors in alleviating the contamination and unclogging of nanochannels, which are in good agreement with the results of recent experiments.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000893147700001 Publication Date 2022-12-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record
  Impact Factor 5.7 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 5.7
  Call Number (up) UA @ admin @ c:irua:192815 Serial 7263
Permanent link to this record
 

 
Author Faraji, F.; Neek-Amal, M.; Neyts, E.C.; Peeters, F.M.
  Title Cation-controlled permeation of charged polymers through nanocapillaries Type A1 Journal article
  Year 2023 Publication Physical review E Abbreviated Journal Phys Rev E
  Volume 107 Issue 3 Pages 034501-34510
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Molecular dynamics simulations are used to study the effects of different cations on the permeation of charged polymers through flat capillaries with heights below 2 nm. Interestingly, we found that, despite being monovalent, Li+ , Na+ , and K+ cations have different effects on polymer permeation, which consequently affects their transmission speed throughout those capillaries. We attribute this phenomenon to the interplay of the cations' hydration free energies and the hydrodynamic drag in front of the polymer when it enters the capillary. Different alkali cations exhibit different surface versus bulk preferences in small clusters of water under the influence of an external electric field. This paper presents a tool to control the speed of charged polymers in confined spaces using cations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000955986000006 Publication Date 2023-03-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2470-0053 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.4 Times cited 1 Open Access Not_Open_Access
  Notes Approved Most recent IF: 2.4; 2023 IF: 2.366
  Call Number (up) UA @ admin @ c:irua:196089 Serial 7586
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmenev, R.A.; Neyts, E.C.; Koptyug, A.V.; Volkova, A.P.; Surmeneva, M.A.
  Title Combined first-principles and experimental study on the microstructure and mechanical characteristics of the multicomponent additive-manufactured Ti-35Nb-7Zr-5Ta alloy Type A1 Journal article
  Year 2023 Publication ACS Omega Abbreviated Journal
  Volume 8 Issue 30 Pages 27519-27533
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract New & beta;-stabilizedTi-based alloys are highly promising forbone implants, thanks in part to their low elasticity. The natureof this elasticity, however, is as yet unknown. We here present combinedfirst-principles DFT calculations and experiments on the microstructure,structural stability, mechanical characteristics, and electronic structureto elucidate this origin. Our results suggest that the studied & beta;Ti-35Nb-7Zr-5Ta wt % (TNZT) alloy manufacturedby the electron-beam powder bed fusion (E-PBF) method has homogeneousmechanical properties (H = 2.01 & PLUSMN; 0.22 GPa and E = 69.48 & PLUSMN; 0.03 GPa) along the building direction,which is dictated by the crystallographic texture and microstructuremorphologies. The analysis of the structural and electronic properties,as the main factors dominating the chemical bonding mechanism, indicatesthat TNZT has a mixture of strong metallic and weak covalent bonding.Our calculations demonstrate that the softening in the Cauchy pressure(C & PRIME; = 98.00 GPa) and elastic constant C ̅ ( 44 ) = 23.84 GPa is the originof the low elasticity of TNZT. Moreover, the nature of this softeningphenomenon can be related to the weakness of the second and thirdneighbor bonds in comparison with the first neighbor bonds in theTNZT. Thus, the obtained results indicate that a carefully designedTNZT alloy can be an excellent candidate for the manufacturing oforthopedic internal fixation devices. In addition, the current findingscan be used as guidance not only for predicting the mechanical propertiesbut also the nature of elastic characteristics of the newly developedalloys with yet unknown properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001031269000001 Publication Date 2023-07-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.1 Times cited Open Access
  Notes Approved Most recent IF: 4.1; 2023 IF: NA
  Call Number (up) UA @ admin @ c:irua:198313 Serial 9011
Permanent link to this record
 

 
Author Cassimon, J.; Kovács, A.; Neyts, E.; Cornet, I.; Billen, P.
  Title Deacetylation of mannosylerythritol lipids in hydrophobic natural deep eutectic solvents Type A1 Journal article
  Year 2023 Publication European journal of organic chemistry Abbreviated Journal
  Volume 27 Issue 5 Pages e202300934-10
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
  Abstract Mannosylerythritol lipids (MELs) are a promising group of biosurfactants due to their high fermentation yield, selfassembly and biological activity. During fermentation by Pseudozyma aphidis, a mixture of MELs with different levels of acylation is formed, of which the fully deacetylated form is the most valuable. In order to reduce the environmental impact of deacetylation, an enzymatic process using natural deep eutectic solvents (NADES) has been developed. We tested the deacetylation of a purified MELs mixture with immobilized Candida antarctica lipase B enzyme and 2-ethylhexanol as co-substrate in 140 h reactions with different NADES. We identified hydrophobic NADES systems with similar yields and kinetics as in pure 2-ethylhexanol solvent. Our results indicate that deacetylation of MELs mixtures in NADES as a solvent is possible with yields comparable to pure co-substrate and that hydrophobic NADES without carboxylic acid compounds facilitate the reaction to the greatest extent.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2023-12-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1434-193x; 1099-0690 ISBN Additional Links UA library record
  Impact Factor 2.8 Times cited Open Access
  Notes Approved Most recent IF: 2.8; 2023 IF: 2.834
  Call Number (up) UA @ admin @ c:irua:201382 Serial 9017
Permanent link to this record
 

 
Author Khalilov, U.; Uljayev, U.; Mehmonov, K.; Nematollahi, P.; Yusupov, M.; Neyts, E.C.; Neyts, E.C.
  Title Can endohedral transition metals enhance hydrogen storage in carbon nanotubes? Type A1 Journal article
  Year 2024 Publication International journal of hydrogen energy Abbreviated Journal
  Volume 55 Issue Pages 640-610
  Keywords A1 Journal article; Engineering sciences. Technology; Modelling and Simulation in Chemistry (MOSAIC); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The safe and efficient use of hydrogen energy, which is in high demand worldwide today, requires efficient hydrogen storage. Despite significant advances in hydrogen storage using carbon-based nanomaterials, including carbon nanotubes (CNTs), efforts to substantially increase the storage capacity remain less effective. In this work, we demonstrate the effect of endohedral transition metal atoms on the hydrogen storage capacity of CNTs using reactive molecular dynamics simulations. We find that an increase in the volume fraction of endohedral nickel atoms leads to an increase in the concentration of physisorbed hydrogen molecules around single-walled CNTs (SWNTs) by approximately 1.6 times compared to pure SWNTs. The obtained results provide insight into the underlying mechanisms of how endohedral transition metal atoms enhance the hydrogen storage ability of SWNTs under nearly ambient conditions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001142427400001 Publication Date 2023-11-24
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.2 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 7.2; 2024 IF: 3.582
  Call Number (up) UA @ admin @ c:irua:202315 Serial 9006
Permanent link to this record
 

 
Author Kovács, A.; Janssens, N.; Mielants, M.; Cornet, I.; Neyts, E.C.; Billen, P.
  Title Biocatalyzed vinyl laurate transesterification in natural deep eutectic solvents Type A1 Journal article
  Year 2023 Publication Waste and biomass valorization Abbreviated Journal
  Volume Issue Pages 1-12
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
  Abstract Purpose Natural deep eutectic solvents (NADES) represent a green alternative to conventional organic solvents as reaction medium, offering more benign properties. To efficiently design NADES for biocatalysis, a better understanding of their effect on these reactions is needed. We hypothesize that this effect can be described by separately considering (1) the solvent interactions with the substrates, (2) the solvent viscosities and (3) the enzyme stability in NADES. Methods We investigated the effect of substrate solvation and viscosity on the reaction rate; and the stability of the enzyme in NADES. To this end, we monitored the conversion over time of the transesterification of vinyl laurate with 1- butanol by the lipase enzyme Candida antarctica B in NADES of different compounds and molar ratios. Results The initial reaction rate is higher in most NADES ( varying between 1.14 and 15.07 mu mol min(-1) mg(-1)) than in the reference n-hexane (4.0 mu mol min(-1) mg(-1))), but no clear relationship between viscosity and initial reaction rate was found. The increased reaction rate is most likely related to the solvation of the substrate due to a change in the activation energy of the reaction or a change in the conformation of the substrate. The enzyme retained part of its activity after the first 2 h of reaction (on average 20 % of the substrate reacted in the 2-24 h period). Enzyme incubation in ethylene glycol-based NADES resulted in a reduced reaction rate ( 15.07 vs. 3.34 mu mol min(-1) mg(-1)), but this may also be due to slow dissolution of the substrate. Conclusions The effect of viscosity seems to be marginal next to the effect of solvation and possible enzyme-NADES interaction. The enzyme retains some of its activity during the 24-hour measurements, but the enzyme incubation experiments did not yield accurate, comparable values. [GRAPHICS] .
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001117290800003 Publication Date 2023-12-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1877-2641; 1877-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.2 Times cited Open Access
  Notes Approved Most recent IF: 3.2; 2023 IF: 1.337
  Call Number (up) UA @ admin @ c:irua:202709 Serial 9005
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Peeters, F.M.
  Title Reduction-enhanced water flux through layered graphene oxide (GO) membranes stabilized with H3O+ and OH- ions Type A1 Journal article
  Year 2024 Publication Physical chemistry, chemical physics Abbreviated Journal
  Volume 26 Issue 13 Pages 10265-10272
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Modelling and Simulation in Chemistry (MOSAIC)
  Abstract Graphene oxide (GO) is one of the most promising candidates for next generation of atomically thin membranes. Nevertheless, one of the major issues for real world application of GO membranes is their undesirable swelling in an aqueous environment. Recently, we demonstrated that generation of H3O+ and OH- ions (e.g., with an external electric field) in the interlayer gallery could impart aqueous stability to the layered GO membranes (A. Gogoi, ACS Appl. Mater. Interfaces, 2022, 14, 34946). This, however, compromises the water flux through the membrane. In this study, we report on reducing the GO nanosheets as a solution to this issue. With the reduction of the GO nanosheets, the water flux through the layered GO membrane initially increases and then decreases again beyond a certain degree of reduction. Here, two key factors are at play. Firstly, the instability of the H-bond network between water molecules and the GO nanosheets, which increases the water flux. Secondly, the pore size reduction in the interlayer gallery of the membranes, which decreases the water flux. We also observe a significant improvement in the salt rejection of the membranes, due to the dissociation of water molecules in the interlayer gallery. In particular, for the case of 10% water dissociation, the water flux through the membranes can be enhanced without altering its selectivity. This is an encouraging observation as it breaks the traditional tradeoff between water flux and salt rejection of a membrane.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001186465400001 Publication Date 2024-03-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.3 Times cited Open Access
  Notes Approved Most recent IF: 3.3; 2024 IF: 4.123
  Call Number (up) UA @ admin @ c:irua:204792 Serial 9168
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
  Title Capillary Condensation of Water in Graphene Nanocapillaries Type A1 Journal Article
  Year 2024 Publication Nano Letters Abbreviated Journal Nano Lett.
  Volume 24 Issue 18 Pages 5625-5630
  Keywords A1 Journal Article; CMT
  Abstract Recent experiments have revealed that the macroscopic Kelvin equation remains surprisingly accurate even for nanoscale capillaries. This phenomenon was so far explained by the oscillatory behavior of the solid−liquid interfacial free energy. We here demonstrate thermodynamic and capillarity inconsistencies with this explanation. After revising the Kelvin equation, we ascribe its validity at nanoscale confinement to the effect of disjoining pressure.

To substantiate our hypothesis, we employed molecular dynamics simulations to evaluate interfacial heat transfer and wetting properties. Our assessments unveil a breakdown in a previously established proportionality between the work of adhesion and the Kapitza conductance at capillary heights below 1.3 nm, where the dominance of the work of adhesion shifts primarily from energy to entropy. Alternatively, the peak density of the initial water layer can effectively probe the work of adhesion. Unlike under bulk conditions, high confinement renders the work of adhesion entropically unfavorable.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2024-05-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links
  Impact Factor 10.8 Times cited Open Access
  Notes This work was supported by Research Foundation-Flanders (FWO, project No. G099219N). The computational resources used in this work were provided by the HPC core facility CalcUA of the University of Antwerp, and the Flemish Supercomputer Center (VSC), funded by FWO and the Flemish Government. Approved Most recent IF: 10.8; 2024 IF: 12.712
  Call Number (up) UA @ lucian @ Serial 9123
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Khalilov, U.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A.
  Title Atomic-scale simulations of reactive oxygen plasma species interacting with bacterial cell walls Type A1 Journal article
  Year 2012 Publication New journal of physics Abbreviated Journal New J Phys
  Volume 14 Issue 9 Pages 093043
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In recent years there has been growing interest in the use of low-temperature atmospheric pressure plasmas for biomedical applications. Currently, however, there is very little fundamental knowledge regarding the relevant interaction mechanisms of plasma species with living cells. In this paper, we investigate the interaction of important plasma species, such as O3, O2 and O atoms, with bacterial peptidoglycan (or murein) by means of reactive molecular dynamics simulations. Specifically, we use the peptidoglycan structure to model the gram-positive bacterium Staphylococcus aureus murein. Peptidoglycan is the outer protective barrier in bacteria and can therefore interact directly with plasma species. Our results demonstrate that among the species mentioned above, O3 molecules and especially O atoms can break important bonds of the peptidoglycan structure (i.e. CO, CN and CC bonds), which subsequently leads to the destruction of the bacterial cell wall. This study is important for gaining a fundamental insight into the chemical damaging mechanisms of the bacterial peptidoglycan structure on the atomic scale.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000309393400001 Publication Date 2012-09-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.786 Times cited 47 Open Access
  Notes Approved Most recent IF: 3.786; 2012 IF: 4.063
  Call Number (up) UA @ lucian @ c:irua:101014 Serial 189
Permanent link to this record
 

 
Author Mortet, V.; Zhang, L.; Eckert, M.; D'Haen, J.; Soltani, A.; Moreau, M.; Troadec, D.; Neyts, E.; De Jaeger, J.C.; Verbeeck, J.; Bogaerts, A.; Van Tendeloo, G.; Haenen, K.; Wagner, P.
  Title Grain size tuning of nanocrystalline chemical vapor deposited diamond by continuous electrical bias growth : experimental and theoretical study Type A1 Journal article
  Year 2012 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
  Volume 209 Issue 9 Pages 1675-1682
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this work, a detailed structural and spectroscopic study of nanocrystalline diamond (NCD) thin films grown by a continuous bias assisted CVD growth technique is reported. This technique allows the tuning of grain size and phase purity in the deposited material. The crystalline properties of the films are characterized by SEM, TEM, EELS, and Raman spectroscopy. A clear improvement of the crystalline structure of the nanograined diamond film is observed for low negative bias voltages, while high bias voltages lead to thin films consisting of diamond grains of only ∼10 nm nanometer in size, showing remarkable similarities with so-called ultrananocrystalline diamond. These layers arecharacterized by an increasing amount of sp2-bonded carbon content of the matrix in which the diamond grains are embedded. Classical molecular dynamics simulations support the observed experimental data, giving insight in the underlying mechanism for the observed increase in deposition rate with bias voltage. Furthermore, a high atomic concentration of hydrogen has been determined in these films. Finally, Raman scattering analyses confirm that the Raman line observed at ∼1150 cm−1 cannot be attributed to trans-poly-acetylene, which continues to be reported in literature, reassigning it to a deformation mode of CHx bonds in NCD.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000308942100009 Publication Date 2012-09-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.775 Times cited 31 Open Access
  Notes M.E. and E.N. acknowledge financial support from, respectively, the Institute for Promotion of Innovation through Science and Technology in Flanders (IWT), and the Research Foundation-Flanders (FWO). J.V. gratefully acknowledges financial support from the GOA project “XANES meets ELNES” of the research fund of the University of Antwerp. Calculation support was provided by the University of Antwerp through the core facility CALCUA. G.V.T. acknowledges the ERC grant COUNTATOMS. The work was also financially supported by the joint UAUHasseltMethusalem “NANO” network, the Research Programs G.0068.07 and G.0555.10N of the Research Foundation-Flanders (FWO), the IAP-P6/42 project “Quantum Effects in Clusters and Nanowires”, and by the EU FP7 through the Integrated Infrastructure Initiative “ESMI” (No. 262348), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). Approved Most recent IF: 1.775; 2012 IF: 1.469
  Call Number (up) UA @ lucian @ c:irua:101516UA @ admin @ c:irua:101516 Serial 1364
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C.
  Title Plasma species interacting with nickel surfaces : toward an atomic scale understanding of plasma-catalysis Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 116 Issue 39 Pages 20958-20965
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The adsorption probability and reaction behavior of CHx plasma species on various nickel catalyst surfaces is investigated by means of reactive molecular dynamics (MD) simulations using the ReaxFF potential. Such catalysts are used in the reforming of hydrocarbons and in the growth of carbon nanotubes, and further insight in the underlying mechanisms of these processes is needed to increase their applicability. Single and consecutive impacts of CHx radicals (x={1,2,3}) were performed on four different Ni surfaces, at a temperature of 400 K. The adsorption probability is shown to be related to the number of free electrons, i.e. a higher number leads to more adsorptions, and the steric hindrance caused by the hydrogen atoms bonded to the impacting CHx species. Furthermore, some of the CH bonds break after adsorption, which generally leads to diffusion of the hydrogen atom over the surface. Additionally, these adsorbed H-atoms can be used in reactions to form new molecules, such as CH4 and C2Hx, although this is dependent on the precise morphology of the surface. New molecules are also formed by subtraction of H-atoms from adsorbed radicals, leading to occasional formation of H2 and C2Hx molecules.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000309375700040 Publication Date 2012-09-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 37 Open Access
  Notes Approved Most recent IF: 4.536; 2012 IF: 4.814
  Call Number (up) UA @ lucian @ c:irua:101522 Serial 2640
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; van Duin, A.C.T.; Neyts, E.C.
  Title On the c-Si\mid a-SiO2 interface in hyperthermal Si oxidation at room temperature Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 116 Issue 41 Pages 21856-21863
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The exact structure and properties of the Si vertical bar SiO2 interface are very important in microelectronics and photovoltaic devices such as metal-oxide-semiconductor field-effect transistors (MOSFETs) and solar cells. Whereas Si vertical bar SiO2 structures are traditionally produced by thermal oxidation, hyperthermal oxidation shows a number of promising advantages. However, the Si vertical bar SiO2 interface induced in hyperthermal Si oxidation has not been properly investigated yet. Therefore, in this work, the interface morphology and interfacial stresses during hyperthermal oxidation at room temperature are studied using reactive molecular dynamics simulations based on the ReaxFF potential. Interface thickness and roughness, as well as the bond length and bond angle distributions in the interface are discussed and compared with other models developed for the interfaces induced by traditional thermal oxidation. The formation of a compressive stress is observed. This compressive stress, which at the interface amounts about 2 GPa, significantly slows down the inward silica growth. This value is close to the experimental value in the Si vertical bar SiO2 interface obtained in traditional thermal oxidation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000309902100026 Publication Date 2012-09-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 27 Open Access
  Notes Approved Most recent IF: 4.536; 2012 IF: 4.814
  Call Number (up) UA @ lucian @ c:irua:102167 Serial 2458
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C.
  Title Reactive molecular dynamics simulations on SiO2-coated ultra-small Si-nanowires Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 5 Issue 2 Pages 719-725
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The application of coreshell SiSiO2 nanowires as nanoelectronic devices strongly depends on their structure, which is difficult to tune precisely. In this work, we investigate the formation of the coreshell nanowires at the atomic scale, by reactive molecular dynamics simulations. The occurrence of two temperature-dependent oxidation mechanisms of ultra-small diameter Si-NWs is demonstrated. We found that control over the Si-core radius and the SiOx (x ≤ 2) oxide shell is possible by tuning the growth temperature and the initial Si-NW diameter. Two different structures were obtained, i.e., ultrathin SiO2 silica nanowires at high temperature and Si core|ultrathin SiO2 silica nanowires at low temperature. The transition temperature is found to linearly decrease with the nanowire curvature. Finally, the interfacial stress is found to be responsible for self-limiting oxidation, depending on both the initial Si-NW radius and the oxide growth temperature. These novel insights allow us to gain control over the exact morphology and structure of the wires, as is needed for their application in nanoelectronics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000313426200036 Publication Date 2012-11-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 17 Open Access
  Notes Approved Most recent IF: 7.367; 2013 IF: 6.739
  Call Number (up) UA @ lucian @ c:irua:102584 Serial 2824
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
  Title Combining molecular dynamics with Monte Carlo simulations : implementations and applications Type A1 Journal article
  Year 2013 Publication Theoretical chemistry accounts : theory, computation, and modeling Abbreviated Journal Theor Chem Acc
  Volume 132 Issue 2 Pages 1320-12
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this contribution, we present an overview of the various techniques for combining atomistic molecular dynamics with Monte Carlo simulations, mainly in the context of condensed matter systems, as well as a brief summary of the main accelerated dynamics techniques. Special attention is given to the force bias Monte Carlo technique and its combination with molecular dynamics, in view of promising recent developments, including a definable timescale. Various examples of the application of combined molecular dynamics / Monte Carlo simulations are given, in order to demonstrate the enhanced simulation efficiency with respect to either pure molecular dynamics or Monte Carlo.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000318294700010 Publication Date 2012-12-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1432-881X;1432-2234; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.89 Times cited 27 Open Access
  Notes Approved Most recent IF: 1.89; 2013 IF: 2.143
  Call Number (up) UA @ lucian @ c:irua:104725 Serial 404
Permanent link to this record
 

 
Author Bogaerts, A.; Aerts, R.; Snoeckx, R.; Somers, W.; Van Gaens, W.; Yusupov, M.; Neyts, E.
  Title Modeling of plasma and plasma-surface interactions for medical, environmental and nano applications Type A1 Journal article
  Year 2012 Publication Journal of physics : conference series Abbreviated Journal
  Volume 399 Issue Pages 012011
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In this paper, an overview is given of modeling investigations carried out in our research group for a better understanding of plasmas used for medical, environmental and nano applications. The focus is both on modeling the plasma chemistry and the plasma-surface interactions. The plasma chemistry provides the densities and fluxes of the important plasma species. This information can be used as input when modeling the plasma-surface interactions. The combination of plasma simulations and plasma – surface interaction simulations provides a more comprehensive understanding of the underlying processes for these applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000312261700011 Publication Date 2012-11-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1742-6588;1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 7 Open Access
  Notes Approved Most recent IF: NA
  Call Number (up) UA @ lucian @ c:irua:104727 Serial 2130
Permanent link to this record
 

 
Author Neyts, E.C.; Ostrikov, K.; Han, Z.J.; Kumar, S.; van Duin, A.C.T.; Bogaerts, A.
  Title Defect healing and enhanced nucleation of carbon nanotubes by low-energy ion bombardment Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 110 Issue 6 Pages 065501-65505
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Structural defects inevitably appear during the nucleation event that determines the structure and properties of single-walled carbon nanotubes. By combining ion bombardment experiments with atomistic simulations we reveal that ion bombardment in a suitable energy range allows these defects to be healed resulting in an enhanced nucleation of the carbon nanotube cap. The enhanced growth of the nanotube cap is explained by a nonthermal ion-induced graphene network restructuring mechanism.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000314687300022 Publication Date 2013-02-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited 50 Open Access
  Notes Approved Most recent IF: 8.462; 2013 IF: 7.728
  Call Number (up) UA @ lucian @ c:irua:105306 Serial 616
Permanent link to this record
 

 
Author Yusupov, M.; Bogaerts, A.; Huygh, S.; Snoeckx, R.; van Duin, A.C.T.; Neyts, E.C.
  Title Plasma-induced destruction of bacterial cell wall components : a reactive molecular dynamics simulation Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 117 Issue 11 Pages 5993-5998
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Nonthermal atmospheric pressure plasmas are gaining increasing attention for biomedical applications. However, very little fundamental information on the interaction mechanisms between the plasma species and biological cells is currently available. We investigate the interaction of important plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, with bacterial peptidoglycan by means of reactive molecular dynamics simulations, aiming for a better understanding of plasma disinfection. Our results show that OH, O, O3, and H2O2 can break structurally important bonds of peptidoglycan (i.e., CO, CN, or CC bonds), which consequently leads to the destruction of the bacterial cell wall. The mechanisms behind these breakups are, however, dependent on the impinging plasma species, and this also determines the effectiveness of the cell wall destruction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000316773000056 Publication Date 2013-02-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 59 Open Access
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835
  Call Number (up) UA @ lucian @ c:irua:107154 Serial 2636
Permanent link to this record
 

 
Author Neyts, E.; Mao, M.; Eckert, M.; Bogaerts, A.
  Title Modeling aspects of plasma-enhanced chemical vapor deposition of carbon-based materials Type H1 Book chapter
  Year 2012 Publication Abbreviated Journal
  Volume Issue Pages 245-290
  Keywords H1 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher CRC Press Place of Publication Boca Raton, Fla Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN 978-1-4398-6676-4 Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number (up) UA @ lucian @ c:irua:107843 Serial 2109
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; Huygh, S.; van Duin, A.C.T.; Neyts, E.C.; Bogaerts, A.
  Title New mechanism for oxidation of native silicon oxide Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 117 Issue 19 Pages 9819-9825
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Continued miniaturization of metal-oxide-semiconductor field-effect transistors (MOSFETs) requires an ever-decreasing thickness of the gate oxide. The structure of ultrathin silicon oxide films, however, critically depends on the oxidation mechanism. Using reactive atomistic simulations, we here demonstrate how the oxidation mechanism in hyperthermal oxidation of such structures may be controlled by the oxidation temperature and the oxidant energy. Specifically, we study the interaction of hyperthermal oxygen with energies of 15 eV with thin SiOx (x ≤ 2) films with a native oxide thickness of about 10 Å. We analyze the oxygen penetration depth probability and compare with results of the hyperthermal oxidation of a bare Si(100){2 × 1} (c-Si) surface. The temperature-dependent oxidation mechanisms are discussed in detail. Our results demonstrate that, at low (i.e., room) temperature, the penetrated oxygen mostly resides in the oxide region rather than at the SiOx|c-Si interface. However, at higher temperatures, starting at around 700 K, oxygen atoms are found to penetrate and to diffuse through the oxide layer followed by reaction at the c-Si boundary. We demonstrate that hyperthermal oxidation resembles thermal oxidation, which can be described by the DealGrove model at high temperatures. Furthermore, defect creation mechanisms that occur during the oxidation process are also analyzed. This study is useful for the fabrication of ultrathin silicon oxide gate oxides for metal-oxide-semiconductor devices as it links parameters that can be straightforwardly controlled in experiment (oxygen temperature, velocity) with the silicon oxide structure.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000319649100032 Publication Date 2013-04-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 24 Open Access
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835
  Call Number (up) UA @ lucian @ c:irua:107989 Serial 2321
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A.
  Title Modeling the growth of SWNTs and graphene on the atomic scale Type A1 Journal article
  Year 2012 Publication ECS transactions Abbreviated Journal
  Volume 45 Issue 4 Pages 73-78
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The possibility of application of nanomaterials is determined by our ability to control the properties of the materials, which are ultimately determined by their structure and hence their growth processes. We employ hybrid molecular dynamics / Monte Carlo (MD/MC) simulations to explore the growth of SWNTs and graphene on nickel as a catalyst, with the specific goal of unraveling the growth mechanisms. While the general observations are in agreement with the literature, we find a number of interesting phenomena to be operative which are crucial for the growth, and which are not accessible by MD simulations alone due to the associated time scale. Specifically, we observe metal mediated healing and restructuring processes to take place, reorganizing the carbon network during the initial nucleation step. In the case of carbon nanotube growth, this leads to the growth of tubes with a determinable chirality. In the case of graphene formation, we find that graphene is only formed at temperatures above 700 K. These results are of importance for understanding the growth mechanisms of these carbon nanomaterials on the fundamental level.
  Address
  Corporate Author Thesis
  Publisher Electrochemical Society Place of Publication Pennington Editor
  Language Wos 000316890000008 Publication Date 2012-04-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1938-6737;1938-5862; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 2 Open Access
  Notes Approved Most recent IF: NA
  Call Number (up) UA @ lucian @ c:irua:108535 Serial 2144
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Huygh, S.; Bal, K.M.; Neyts, E.C.
  Title Temperature influence on the reactivity of plasma species on a nickel catalyst surface : an atomic scale study Type A1 Journal article
  Year 2013 Publication Catalysis today Abbreviated Journal Catal Today
  Volume 211 Issue Pages 131-136
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract In recent years, the potential use of hydrogen as a clean energy source has gained considerable attention. Especially H2 formation by Ni-catalyzed reforming of methane at elevated temperatures is an attractive process. However, a more fundamental knowledge at the atomic level is needed for a full comprehension of the reactions at the catalyst surface. In this contribution, we therefore investigate the H2 formation after CHx impacts on a Ni(1 1 1) surface in the temperature range 4001600 K, by means of reactive molecular dynamics (MD) simulations using the ReaxFF potential. While some H2 formation is already observed at the lower temperatures, substantial H2 formation is only obtained at elevated temperatures of 1400 K and above. At 1600 K, the H2 molecules are even the most frequently formed species. In direct correlation with the increasing dehydrogenation at elevated temperatures, an increased surface-to-subsurface C-diffusivity is observed as well. This study highlights the major importance of the temperature on the H2 formation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000320697800020 Publication Date 2013-03-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.636 Times cited 27 Open Access
  Notes Approved Most recent IF: 4.636; 2013 IF: 3.309
  Call Number (up) UA @ lucian @ c:irua:108675 Serial 3500
Permanent link to this record
 

 
Author Ostrikov, K.; Neyts, E.C.; Meyyappan, M.
  Title Plasma nanoscience : from nano-solids in plasmas to nano-plasmas in solids Type A1 Journal article
  Year 2013 Publication Advances in physics Abbreviated Journal Adv Phys
  Volume 62 Issue 2 Pages 113-224
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The unique plasma-specific features and physical phenomena in the organization of nanoscale soild-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter to nano-plasma effects and nano-plasmas of different states of matter.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000320913600001 Publication Date 2013-06-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0001-8732;1460-6976; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 21.818 Times cited 380 Open Access
  Notes Approved Most recent IF: 21.818; 2013 IF: 18.062
  Call Number (up) UA @ lucian @ c:irua:108723 Serial 2639
Permanent link to this record
 

 
Author Elliott, J.A.; Shibuta, Y.; Amara, H.; Bichara, C.; Neyts, E.C.
  Title Atomistic modelling of CVD synthesis of carbon nanotubes and graphene Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 5 Issue 15 Pages 6662-6676
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We discuss the synthesis of carbon nanotubes (CNTs) and graphene by catalytic chemical vapour deposition (CCVD) and plasma-enhanced CVD (PECVD), summarising the state-of-the-art understanding of mechanisms controlling their growth rate, chiral angle, number of layers (walls), diameter, length and quality (defects), before presenting a new model for 2D nucleation of a graphene sheet from amorphous carbon on a nickel surface. Although many groups have modelled this process using a variety of techniques, we ask whether there are any complementary ideas emerging from the different proposed growth mechanisms, and whether different modelling techniques can give the same answers for a given mechanism. Subsequently, by comparing the results of tight-binding, semi-empirical molecular orbital theory and reactive bond order force field calculations, we demonstrate that graphene on crystalline Ni(111) is thermodynamically stable with respect to the corresponding amorphous metal and carbon structures. Finally, we show in principle how a complementary heterogeneous nucleation step may play a key role in the transformation from amorphous carbon to graphene on the metal surface. We conclude that achieving the conditions under which this complementary crystallisation process can occur may be a promising method to gain better control over the growth processes of both graphene from flat metal surfaces and CNTs from catalyst nanoparticles.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000321675600003 Publication Date 2013-06-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 52 Open Access
  Notes Approved Most recent IF: 7.367; 2013 IF: 6.739
  Call Number (up) UA @ lucian @ c:irua:109231 Serial 200
Permanent link to this record
 

 
Author Neyts, E.C.; van Duin, A.C.T.; Bogaerts, A.
  Title Formation of single layer graphene on nickel under far-from-equilibrium high flux conditions Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 5 Issue 16 Pages 7250-7255
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We investigate the theoretical possibility of single layer graphene formation on a nickel surface at different substrate temperatures under far-from-equilibrium high precursor flux conditions, employing state-of-the-art hybrid reactive molecular dynamics/uniform acceptance force bias Monte Carlo simulations. It is predicted that under these conditions, the formation of a single layer graphene-like film may proceed through a combined depositionsegregation mechanism on a nickel substrate, rather than by pure surface segregation as is typically observed for metals with high carbon solubility. At 900 K and above, nearly continuous graphene layers are obtained. These simulations suggest that single layer graphene deposition is theoretically possible on Ni under high flux conditions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000322315600019 Publication Date 2013-04-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 25 Open Access
  Notes Approved Most recent IF: 7.367; 2013 IF: 6.739
  Call Number (up) UA @ lucian @ c:irua:109249 Serial 1264
Permanent link to this record
 

 
Author Van der Paal, J.; Aernouts, S.; van Duin, A.C.T.; Neyts, E.C.; Bogaerts, A.
  Title Interaction of O and OH radicals with a simple model system for lipids in the skin barrier : a reactive molecular dynamics investigation for plasma medicine Type A1 Journal article
  Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
  Volume 46 Issue 39 Pages 395201
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma medicine has been claimed to provide a novel route to heal wounds and regenerate skin, although very little is currently known about the elementary processes taking place. We carried out a series of ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of O and OH radicals with lipids, more specifically with α-linolenic acid as a model for the free fatty acids present in the upper skin layer. Our calculations predict that the O and OH radicals most typically abstract a H atom from the fatty acids, which can lead to the formation of a conjugated double bond, but also to the incorporation of alcohol or aldehyde groups, thereby increasing the hydrophilic character of the fatty acids and changing the general lipid composition of the skin. Within the limitations of the investigated model, no formation of possibly toxic products was observed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000324810400007 Publication Date 2013-09-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.588 Times cited 36 Open Access
  Notes Approved Most recent IF: 2.588; 2013 IF: 2.521
  Call Number (up) UA @ lucian @ c:irua:109904 Serial 1684
Permanent link to this record
 

 
Author Schoeters, B.; Neyts, E.C.; Khalilov, U.; Pourtois, G.; Partoens, B.
  Title Stability of Si epoxide defects in Si nanowires : a mixed reactive force field/DFT study Type A1 Journal article
  Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 15 Issue 36 Pages 15091-15097
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Modeling the oxidation process of silicon nanowires through reactive force field based molecular dynamics simulations suggests that the formation of Si epoxide defects occurs both at the Si/SiOx interface and at the nanowire surface, whereas for flat surfaces, this defect is experimentally observed to occur only at the interface as a result of stress. In this paper, we argue that the increasing curvature stabilizes the defect at the nanowire surface, as suggested by our density functional theory calculations. The latter can have important consequences for the opto-electronic properties of thin silicon nanowires, since the epoxide induces an electronic state within the band gap. Removing the epoxide defect by hydrogenation is expected to be possible but becomes increasingly difficult with a reduction of the diameter of the nanowires.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000323520600029 Publication Date 2013-07-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 3 Open Access
  Notes ; BS gratefully acknowledges financial support of the IWT, Institute for the Promotion of Innovation by Science and Technology in Flanders, via the SBO project “SilaSol”. This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish government and the Universiteit Antwerpen. ; Approved Most recent IF: 4.123; 2013 IF: 4.198
  Call Number (up) UA @ lucian @ c:irua:110793 Serial 3130
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Simon, P.; Berdiyorov, G.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A.
  Title Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine Type A1 Journal article
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
  Volume 47 Issue 2 Pages 025205-25209
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The application of atmospheric pressure plasmas in medicine is increasingly gaining attention in recent years, although very little is currently known about the plasma-induced processes occurring on the surface of living organisms. It is known that most bio-organisms, including bacteria, are coated by a liquid film surrounding them, and there might be many interactions between plasma species and the liquid layer before the plasma species reach the surface of the bio-organisms. Therefore, it is essential to study the behaviour of the reactive species in a liquid film, in order to determine whether these species can travel through this layer and reach the biomolecules, or whether new species are formed along the way. In this work, we investigate the interaction of reactive oxygen species (i.e. O, OH, HO2 and H2O2) with water, which is assumed as a simple model system for the liquid layer surrounding biomolecules. Our computational investigations show that OH, HO2 and H2O2 can travel deep into the liquid layer and are hence in principle able to reach the bio-organism. Furthermore, O, OH and HO2 radicals react with water molecules through hydrogen-abstraction reactions, whereas no H-abstraction reaction takes place in the case of H2O2. This study is important to gain insight into the fundamental operating mechanisms in plasma medicine, in general, and the interaction mechanisms of plasma species with a liquid film, in particular.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000329108000013 Publication Date 2013-12-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.588 Times cited 51 Open Access
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
  Call Number (up) UA @ lucian @ c:irua:112286 Serial 2823
Permanent link to this record
 

 
Author Shariat, M.; Hosseini, S.I.; Shokri, B.; Neyts, E.C.
  Title Plasma enhanced growth of single walled carbon nanotubes at low temperature : a reactive molecular dynamics simulation Type A1 Journal article
  Year 2013 Publication Carbon Abbreviated Journal Carbon
  Volume 65 Issue Pages 269-276
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Low-temperature growth of carbon nanotubes (CNTs) has been claimed to provide a route towards chiral-selective growth, enabling a host of applications. In this contribution, we employ reactive molecular dynamics simulations to demonstrate how plasma-based deposition allows such low-temperature growth. We first show how ion bombardment during the growth affects the carbon dissolution and precipitation process. We then continue to demonstrate how a narrow ion energy window allows CNT growth at 500 K. Finally, we also show how CNTs in contrast cannot be grown in thermal CVD at this low temperature, but only at high temperature, in agreement with experimental data. (C) 2013 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000326773200031 Publication Date 2013-08-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.337 Times cited 21 Open Access
  Notes Approved Most recent IF: 6.337; 2013 IF: 6.160
  Call Number (up) UA @ lucian @ c:irua:112697 Serial 2635
Permanent link to this record
 

 
Author Shariat, M.; Shokri, B.; Neyts, E.C.
  Title On the low-temperature growth mechanism of single walled carbon nanotubes in plasma enhanced chemical vapor deposition Type A1 Journal article
  Year 2013 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
  Volume 590 Issue Pages 131-135
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Despite significant progress in single walled carbon nanotube (SWCNT) production by plasma enhanced chemical vapor deposition (PECVD), the growth mechanism in this method is not clearly understood. We employ reactive molecular dynamics simulations to investigate how plasma-based deposition allows growth at low temperature. We first investigate the SWCNT growth mechanism at low and high temperatures under conditions similar to thermal CVD and PECVD. We then show how ion bombardment during the nucleation stage increases the carbon solubility in the catalyst at low temperature. Finally, we demonstrate how moderate energy ions sputter amorphous carbon allowing for SWCNT growth at 500 K. (C) 2013 Elsevier B. V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000327721000024 Publication Date 2013-10-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.815 Times cited 14 Open Access
  Notes Approved Most recent IF: 1.815; 2013 IF: 1.991
  Call Number (up) UA @ lucian @ c:irua:112775 Serial 2439
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: