toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lavor, I.R.; da Costa, D.R.; Covaci, L.; Milošević, M.V.; Peeters, F.M.; Chaves, A. url  doi
openurl 
  Title Zitterbewegung of moiré excitons in twisted MoS₂/WSe₂ heterobilayers Type A1 Journal article
  Year 2021 Publication Physical review letters Abbreviated Journal  
  Volume 127 Issue 10 Pages 106801  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The moire pattern observed in stacked noncommensurate crystal lattices, such as heterobilayers of transition metal dichalcogenides, produces a periodic modulation of their band gap. Excitons subjected to this potential landscape exhibit a band structure that gives rise to a quasiparticle dubbed the moire exciton. In the case of MoS2/WSe2 heterobilayers, the moire trapping potential has honeycomb symmetry and, consequently, the moire exciton band structure is the same as that of a Dirac-Weyl fermion, whose mass can be further tuned down to zero with a perpendicularly applied field. Here we show that, analogously to other Dirac-like particles, the moire exciton exhibits a trembling motion, also known as Zitterbewegung, whose long timescales are compatible with current experimental techniques for exciton dynamics. This promotes the study of the dynamics of moire excitons in van der Waals heterostructures as an advantageous solid-state platform to probe Zitterbewegung, broadly tunable by gating and interlayer twist angle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000692200800020 Publication Date 2021-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1079-7114 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 5 Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number (down) UA @ admin @ c:irua:181599 Serial 6896  
Permanent link to this record
 

 
Author Borkowski, R.; Straub, M.; Ou, Y.; Lefevre, Y.; Jelić, Ž.L.; Lanneer, W.; Kaneda, N.; Mahadevan, A.; Hueckstaedt, V.; van Veen, D.; Houtsma, V.; Coomans, W.; Bonk, R.; Maes, J. pdf  doi
openurl 
  Title FLCS-PON : a 100 Gbit/s flexible passive optical network: concepts and field trial Type A1 Journal article
  Year 2021 Publication Journal Of Lightwave Technology Abbreviated Journal J Lightwave Technol  
  Volume 39 Issue 16 Pages 5314-5324  
  Keywords A1 Journal article; Mass communications; Condensed Matter Theory (CMT)  
  Abstract We demonstrate concepts and results of a field trial for a flexible-rate passive optical network (FLCS-PON), which delivers bitrates up to 100 Gbit/s and allows for adaptations in the transmission method to match the users' channel conditions and optimize throughput. FLCS-PON builds on top of the hardware ecosystem that will be developed for ITU-T 50 Gbit/s PON and employs three new ingredients: optical network unit (ONU) grouping, flexible modulation format, and flexible forward error correction (FEC) code rate. Together, these techniques take advantage of the optical distribution network (ODN) statistics to realize a system capable of more than twofold throughput increase compared to the upcoming 50 Gbit/s PON, but still able to support a full array of deployed fiber edge cases, which are problematic for legacy PONs. In this paper we explain the concepts behind enabling techniques of FLCS-PON. We then report on a field trial over a deployed fiber infrastructure, using a system consisting of one FLCS-PON OLT and two ONUs. We report both pre- and post-forward-error-correction (post-FEC) performance of our system, demonstrating achievable net bitrate over an operator's fiber infrastructure. We realize a downlink transmission at double the speed of ITU-T 50 Gbit/s PON for ONUs exhibiting lower optical path loss (OPL), while simultaneously continue to support ONUs at high OPLs. We additionally realize a record-high 31.5 dB loss budget for 100 Gbit/s transmission using a direct-detection ONU with an optical preamplifier.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000692209800017 Publication Date 2021-08-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0733-8724 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.671 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.671  
  Call Number (down) UA @ admin @ c:irua:181586 Serial 6995  
Permanent link to this record
 

 
Author Sozen, Y.; Yagmurcukardes, M.; Sahin, H. doi  openurl
  Title Vibrational and optical identification of GeO₂ and GeO single layers : a first-principles study Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 37 Pages 21307-21315  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the present work, the identification of two hexagonal phases of germanium oxides (namely GeO2 and GeO) through the vibrational and optical properties is reported using density functional theory calculations. While structural optimizations show that single-layer GeO2 and GeO crystallize in 1T and buckled phases, phonon band dispersions reveal the dynamical stability of each structure. First-order off-resonant Raman spectral predictions demonstrate that each free-standing single-layer possesses characteristic peaks that are representative for the identification of the germanium oxide phase. On the other hand, electronic band dispersion analysis shows the insulating and large-gap semiconducting nature of single-layer GeO2 and GeO, respectively. Moreover, optical absorption, reflectance, and transmittance spectra obtained by means of G(0)W(0)-BSE calculations reveal the existence of tightly bound excitons in each phase, displaying strong optical absorption. Furthermore, the excitonic gaps are found to be at deep UV and visible portions of the spectrum, for GeO2 and GeO crystals, with energies of 6.24 and 3.10 eV, respectively. In addition, at the prominent excitonic resonances, single-layers display high reflectivity with a zero transmittance, which is another indication of the strong light-matter interaction inside the crystal medium.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000697364300001 Publication Date 2021-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.123  
  Call Number (down) UA @ admin @ c:irua:181571 Serial 7044  
Permanent link to this record
 

 
Author Al-Emam, E.; Beltran, V.; De Meyer, S.; Nuyts, G.; Wetemans, V.; De Wael, K.; Caen, J.; Janssens, K. url  doi
openurl 
  Title Removal of a past varnish treatment from a 19th-century Belgian wall painting by means of a solvent-loaded double network hydrogel Type A1 Journal article
  Year 2021 Publication Polymers Abbreviated Journal Polymers-Basel  
  Volume 13 Issue 16 Pages 2651-20  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract Polymeric materials have been used by painting conservator-restorers as consolidants and/or varnishes for wall paintings. The application of these materials is carried out when confronting loose paint layers or as a protective coating. However, these materials deteriorate and cause physiochemical alterations to the treated surface. In the past, the monumental neo-gothic wall painting 'The Last Judgment' in the chapel of Sint-Jan Berchmanscollege in Antwerp, Belgium was treated with a synthetic polymeric material. This varnish deteriorated significantly and turned brown, obscuring the paint layers. Given also that the varnish was applied to some parts of the wall painting and did not cover the entire surface, it was necessary to remove it in order to restore the original appearance of the wall painting. Previous attempts carried out by conservator-restorers made use of traditional cleaning methods, which led to damage of the fragile paint layers. Therefore, gel cleaning was proposed as a less invasive and more controllable method for gently softening and removing the varnish. The work started by identifying the paint stratigraphy and the deteriorated varnish via optical microscopy (OM), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. A polyvinyl alcohol-borax/agarose (PVA-B/AG) hydrogel loaded with a number of solvents/solvent mixtures was employed in a series of tests to select the most suitable hydrogel composite. By means of the hydrogel composite loaded with 10% propylene carbonate, it was possible to safely remove the brown varnish layer. The results were verified by visual examinations (under visible light 'VIS' and ultraviolet light 'UV') as well as OM and FTIR spectroscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000690248000001 Publication Date 2021-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4360 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.364 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.364  
  Call Number (down) UA @ admin @ c:irua:181567 Serial 8470  
Permanent link to this record
 

 
Author Salzmann, B.B.V.; Vliem, J.F.; Maaskant, D.N.; Post, L.C.; Li, C.; Bals, S.; Vanmaekelbergh, D. url  doi
openurl 
  Title From CdSe nanoplatelets to quantum rings by thermochemical edge reconfiguration Type A1 Journal article
  Year 2021 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 33 Issue 17 Pages 6853-6859  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The variation in the shape of colloidal semiconductor nanocrystals (NCs) remains intriguing. This interest goes beyond crystallography as the shape of the NC determines its energy levels and optoelectronic properties. While thermodynamic arguments point to a few or just a single shape(s), terminated by the most stable crystal facets, a remarkable variation in NC shape has been reported for many different compounds. For instance, for the well-studied case of CdSe, close-to-spherical quantum dots, rods, two-dimensional nanoplatelets, and quantum rings have been reported. Here, we report how two-dimensional CdSe nanoplatelets reshape into quantum rings. We monitor the reshaping in real time by combining atomically resolved structural characterization with optical absorption and photoluminescence spectroscopy. We observe that CdSe units leave the vertical sides of the edges and recrystallize on the top and bottom edges of the nanoplatelets, resulting in a thickening of the rims. The formation of a central hole, rendering the shape into a ring, only occurs at a more elevated temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000696553600024 Publication Date 2021-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 7 Open Access OpenAccess  
  Notes Hans Meeldijk is kindly acknowledged for helping with electron microscopy at Utrecht University. B.B.V.S. and D.V. acknowledge the Dutch NWO for financial support via the TOP-ECHO grant no. 715.016.002. D.V. acknowledges financial support from the European ERC Council, ERC Advanced grant 692691 “First Step”. D.V. and L.C.P. acknowledge the Dutch NWO for financial support via the TOP-ECHO grant nr. 718.015.002. S.B acknowledges financial support from the European ERC Council, ERC Consolidator grant 815128. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 731019 (EUSMI). Realnano; sygmaSB Approved Most recent IF: 9.466  
  Call Number (down) UA @ admin @ c:irua:181550 Serial 6839  
Permanent link to this record
 

 
Author Cunha, S.M.; de Costa, D.R.; Pereira Jr, J.M.; Costa Filho, R.N.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Band-gap formation and morphing in alpha-T-3 superlattices Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue 11 Pages 115409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrons in alpha-T-3 lattices behave as condensed-matter analogies of integer-spin Dirac fermions. The three atoms making up the unit cell bestow the energy spectrum with an additional energy band that is completely flat, providing unique electronic properties. The interatomic hopping term, alpha, is known to strongly affect the electronic spectrum of the two-dimensional (2D) lattice, allowing it to continuously morph from graphenelike responses to the behavior of fermions in a dice lattice. For pristine lattice structures the energy bands are gapless, but small deviations in the atomic equivalence of the three sublattices will introduce gaps in the spectrum. It is unknown how these affect transport and electronic properties such as the energy spectrum of superlattice minibands. Here we investigate the dependency of these properties on the parameter a accounting for different symmetry-breaking terms, and we show how it affects band-gap formation. Furthermore, we find that superlattices can force band gaps to close and shift in energy. Our results demonstrate that alpha-T-3 superlattices provide a versatile material for 2D band-gap engineering purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000696091600003 Publication Date 2021-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number (down) UA @ admin @ c:irua:181544 Serial 6972  
Permanent link to this record
 

 
Author Nematollahi, P.; Ma, H.; Schneider, W.F.; Neyts, E.C. pdf  url
doi  openurl
  Title DFT and microkinetic comparison of ru-doped porphyrin-like graphene and nanotubes toward catalytic formic acid decomposition and formation Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 34 Pages 18673-18683  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Immobilization of single metal atoms on a solid host opens numerous possibilities for catalyst designs. If that host is a two-dimensional sheet, sheet curvature becomes a design parameter potentially complementary to host and metal composition. Here, we use a combination of density functional theory calculations and microkinetic modeling to compare the mechanisms and kinetics of formic acid decomposition and formation, chosen for their relevance as a potential hydrogen storage medium, over single Ru atoms anchored to pyridinic nitrogen in a planar graphene flake (RuN4-G) and curved carbon nanotube (RuN4-CNT). Activation barriers are lowered and the predicted turnover frequencies are increased over RuN4-CNT relative to RuN4-CNT. The results highlight the potential of curvature control as a means to achieve high performance and robust catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000693413400013 Publication Date 2021-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.536  
  Call Number (down) UA @ admin @ c:irua:181538 Serial 7805  
Permanent link to this record
 

 
Author Penders, A.; Konstantinovic, M.J.; Van Renterghem, W.; Bosch, R.W.; Schryvers, D. url  doi
openurl 
  Title TEM investigation of SCC crack tips in high Si stainless steel tapered specimens Type A1 Journal article
  Year 2021 Publication Corrosion Engineering Science And Technology Abbreviated Journal Corros Eng Sci Techn  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The stress corrosion cracking (SCC) mechanism is investigated in high Si duplex stainless steel in a simulated PWR environment based on TEM analysis of FIB-extracted SCC crack tips. The microstructural investigation in the near vicinity of SCC crack tips illustrates a strain-rate dependence in SCC mechanisms. Detailed analysis of the crack tip morphology, that includes crack tip oxidation and surrounding deformation field, indicates the existence of an interplay between corrosion- and deformation-driven failure as a function of the strain rate. Slow strain-rate crack tips exhibit a narrow cleavage failure which can be linked to the film-induced failure mechanism, while rounded shaped crack tips for faster strain rates could be related to the strain-induced failure. As a result, two nominal strain-rate-dependent failure regimes dominated either by corrosion or deformation-driven cracking mechanisms can be distinguished.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000695956400001 Publication Date 2021-09-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1478-422x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.879 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 0.879  
  Call Number (down) UA @ admin @ c:irua:181533 Serial 6892  
Permanent link to this record
 

 
Author Liang, Q.; Yang, D.; Xia, F.; Bai, H.; Peng, H.; Yu, R.; Yan, Y.; He, D.; Cao, S.; Van Tendeloo, G.; Li, G.; Zhang, Q.; Tang, X.; Wu, J. pdf  doi
openurl 
  Title Phase-transformation-induced giant deformation in thermoelectric Ag₂Se semiconductor Type A1 Journal article
  Year 2021 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume Issue Pages 2106938  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In most semiconducting metal chalcogenides, a large deformation is usually accompanied by a phase transformation, while the deformation mechanism remains largely unexplored. Herein, a phase-transformation-induced deformation in Ag2Se is investigated by in situ transmission electron microscopy, and a new ordered high-temperature phase (named as alpha '-Ag2Se) is identified. The Se-Se bonds are folded when the Ag+-ion vacancies are ordered and become stretched when these vacancies are disordered. Such a stretch/fold of the Se-Se bonds enables a fast and large deformation occurring during the phase transition. Meanwhile, the different Se-Se bonding states in alpha-, alpha '-, beta-Ag2Se phases lead to the formation of a large number of nanoslabs and the high concentration of dislocations at the interface, which flexibly accommodate the strain caused by the phase transformation. This study reveals the atomic mechanism of the deformation in Ag2Se inorganic semiconductors during the phase transition, which also provides inspiration for understanding the phase transition process in other functional materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000695142800001 Publication Date 2021-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 12.124  
  Call Number (down) UA @ admin @ c:irua:181527 Serial 6879  
Permanent link to this record
 

 
Author Van Loenhout, J. url  openurl
  Title Targeting pancreatic ductal adenocarcinoma and glioblastoma with oxidative stress-mediated treatment strategies : focus on tumor cell death and modulation of the tumor microenvironment Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 167 p.  
  Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Pancreatic ductal adenocarcinoma (PDAC) and glioblastoma multiforme (GBM) are two of the most malignant solid tumor types with poor survival rates, which underscore the urgency of novel and efficacious treatment strategies. Within the last decade, immunotherapy has been established as a breakthrough in cancer therapy. This mainly has been driven by the clinical data and approval associated with several immune checkpoint inhibitors (e.g. anti-CTLA-4 and anti-PD-1/L1). Despite the clinical benefit in specific tumor types, these inhibitors have not yet fulfilled their promise in low immunogenic tumors such as PDAC and GBM. Oxidative stress in cancer cells due to elevated reactive oxygen species (ROS) and an inability to balance intracellular redox state has recently been highlighted as promising target for anticancer treatment strategies with possible immunogenic effects. In this PhD dissertation, I investigated novel oxidative stress-mediated treatment approaches to target PDAC and GBM and to enhance immunogenicity by inducing immunogenic cell death (ICD). In the first part of this thesis (chapter 2), I reviewed the mechanistic responses of cancer cells towards different oxidative stress-inducing treatment strategies and their immunomodulating effects. The resulting literature demonstrated that different exogenous and endogenous ROS-inducing therapies show direct and indirect immunomodulating effects, which can be either immunostimulatory or immunosuppressive. One of the indirect immunostimulatory effects of the ROS-mediating therapies is the capacity of inducing immunogenic cell death (ICD) in tumor cells, which can increase the immunogenicity and consequently can trigger an antitumoral immune response. In chapter 3, I investigated a novel exogenous ROS-inducing treatment method, namely cold atmospheric plasma, to determine the therapeutic and ICD-inducing effects in PDAC, in vitro. I revealed that plasma-treated PBS (pPBS) has the potential to induce ICD in pancreatic cancer cells (PCCs) and to reduce the immunosuppressive tumor microenvironment (TME) by attacking the tumor supportive pancreatic stellate cells (PSCs). Although the cell death induced in PSCs was non-immunogenic as seen by the lack of danger-associated molecular patterns (DAMPs) emission and DC activation, I showed that pPBS could disrupt the physical barrier and lower the immunosuppressive secretion profile (lower TGF-β) of PSCs. In contrast, DAMPs were released by PCCs after treatment with pPBS which resulted in activation and maturation of DCs and a more immunostimulatory secretion profile (higher TNF-α, IFN-γ). Hence, indirect plasma treatment via pPBS has the potential to enhance immunogenicity in PDAC by triggering ICD and by attacking the immunosuppressive PSCs. Tumor cells can evolve adaptation mechanisms to protect themselves against intrinsic oxidative stress by upregulation of pro-survival molecules and their antioxidant defense system to maintain the redox balance. As such, tumor cells can become resistant towards exogenous ROS-inducing therapies, like plasma. Dual targeting of the redox balance of tumor cells by increasing exogenous levels of ROS and inhibiting the antioxidant defense system can maximally exploit ROS-mediated cell death mechanisms as therapeutic anticancer strategy. In this regard, cold atmospheric plasma was combined with auranofin, a thioredoxin reductase inhibitor, in GBM (chapter 4). A synergistic effect was shown after this combination treatment in 2D and 3D, however, in 3D only high concentrations of auranofin synergized with plasma treatment. I confirmed a ROS-mediated response after combination treatment, which was able to induce distinct cell death mechanisms, specifically apoptosis and ferroptosis. Additionally, the auranofin and plasma combined treatment strategy induced cell death, which resulted in an increased release of DAMPs. Together with the observed DC maturation, these results indicates the potential increase in immunogenicity, though, the phagocytotic capacity of DCs was inhibited by auranofin. In chapter 5, I evaluated this promising oxidative stress combination therapy in GBM, in vivo. A decrease in tumor kinetics and an increased survival in GBM-bearing mice was observed when auranofin was sequentially combined with direct plasma treatment. No T cell infiltration was observed after auranofin monotherapy. However, further characterization of the TME after the combination therapy is necessary to provide more insight in the immunogenic effects in vivo. In conclusion, this PhD dissertation comprises novel and important therapeutic and immunogenic insights in cold atmospheric plasma and auranofin as promising oxidative stress-mediated treatment strategies for low immunogenic tumors, like PDAC and GBM. These preclinical results provide a solid basis for future research towards combinations with immunotherapeutic approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (down) UA @ admin @ c:irua:181309 Serial 8643  
Permanent link to this record
 

 
Author Parrilla, M.; Joosten, F.; De Wael, K. pdf  url
doi  openurl
  Title Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 348 Issue Pages 130659  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drug consumption is a worldwide worrying phenomenon that troubles modern society. For this reason, law enforcement agencies (LEAs) are placing tremendous efforts into tackling the spreading of such substances among our community. New sensing technologies can facilitate the LEAs duties by providing portable and affordable analytical devices. Herein, we present for the first time a sensitive and low-cost electrochemical method, i.e. square-wave adsorptive stripping voltammetry on carbon screen-printed electrodes (SPE), for the detection of five illicit drugs (i.e. cocaine, heroin, 3,4-methylenedioxymethamphetamine, 4-chloro-alpha-pyrrolidinovalerophenone, and ketamine) in oral fluid by the aid of a surfactant. Particularly, the surfactant is adsorbed at the carbon electrode’s surface and yields the adsorption of illicit drug molecules, allowing for an enhanced electrochemical signal in comparison to surfactant-free media. First, the surfactant-mediated behavior is deeply explored at the SPE by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier-transform infrared spectroscopy. Subsequently, the electrochemical behavior of the five illicit drugs is studied and optimized to render optimal analytical performance. Accordingly, the analytical system exhibited a wide linear concentration range from 1 to 30 µM with sub-micromolar limits of detection and high sensitivity. This performance is similar to other reported electrochemical sensors, but with the advantage of using an unmodified SPE, thus avoiding costly and complex functionalization of the SPE. Finally, the methodology was evaluated in diluted oral fluid samples spiked with illicit drugs. Overall, this work describes a simple, rapid, portable, and sensitive method for the detection of illicit drugs aiming to provide oral fluid testing opportunities to LEAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000701915600005 Publication Date 2021-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number (down) UA @ admin @ c:irua:181307 Serial 7912  
Permanent link to this record
 

 
Author Parrilla, M.; De Wael, K. pdf  url
doi  openurl
  Title Wearable self‐powered electrochemical devices for continuous health management Type A1 Journal article
  Year 2021 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume 31 Issue 50 Pages 2107042  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The wearable revolution is already present in society through numerous gadgets. However, the contest remains in fully deployable wearable (bio)chemical sensing. Its use is constrained by the energy consumption which is provided by miniaturized batteries, limiting the autonomy of the device. Hence, the combination of materials and engineering efforts to develop sustainable energy management is paramount in the next generation of wearable self-powered electrochemical devices (WeSPEDs). In this direction, this review highlights for the first time the incorporation of innovative energy harvesting technologies with top-notch wearable self-powered sensors and low-powered electrochemical sensors toward battery-free and self-sustainable devices for health and wellbeing management. First, current elements such as wearable designs, electrochemical sensors, energy harvesters and storage, and user interfaces that conform WeSPEDs are depicted. Importantly, the bottlenecks in the development of WeSPEDs from an analytical perspective, product side, and power needs are carefully addressed. Subsequently, energy harvesting opportunities to power wearable electrochemical sensors are discussed. Finally, key findings that will enable the next generation of wearable devices are proposed. Overall, this review aims to bring new strategies for an energy-balanced deployment of WeSPEDs for successful monitoring of (bio)chemical parameters of the body toward personalized, predictive, and importantly, preventive healthcare.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000694642500001 Publication Date 2021-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 12.124  
  Call Number (down) UA @ admin @ c:irua:181306 Serial 8750  
Permanent link to this record
 

 
Author Van Tendeloo, M.; Xie, Y.; Van Beeck, W.; Zhu, W.; Lebeer, S.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Oxygen control and stressor treatments for complete and long-term suppression of nitrite-oxidizing bacteria in biofilm-based partial nitritation/anammox Type A1 Journal article
  Year 2021 Publication Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 342 Issue Pages 125996  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Mainstream nitrogen removal by partial nitritation/anammox (PN/A) can realize energy and cost savings for sewage treatment. Selective suppression of nitrite oxidizing bacteria (NOB) remains a key bottleneck for PN/A implementation. A rotating biological contactor was studied with an overhead cover and controlled air/N2 inflow to regulate oxygen availability at 20 °C. Biofilm exposure to dissolved oxygen concentrations < 0.51 ± 0.04 mg O2 L-1 when submerged in the water and < 1.41 ± 0.31 mg O2 L-1 when emerged in the headspace (estimated), resulted in complete and long-term NOB suppression with a low relative nitrate production ratio of 10 ± 4%. Additionally, weekly biofilm stressor treatments with free ammonia (FA) (29 ± 1 mg NH3-N L-1 for 3 h) could improve the NOB suppression while free nitrous acid treatments had insufficient effect. This study demonstrated the potential of managing NOB suppression in biofilm-based systems by oxygen control and recurrent FA exposure, opening opportunities for resource efficient nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704455300005 Publication Date 2021-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.651  
  Call Number (down) UA @ admin @ c:irua:181301 Serial 8355  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. pdf  doi
openurl 
  Title Carrier transport in a two-dimensional topological insulator nanoribbon in the presence of vacancy defects Type P1 Proceeding
  Year 2018 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 24-26, 2018, Austin, TX Abbreviated Journal  
  Volume Issue Pages 92-96  
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We model transport through two-dimensional topological insulator (TI) nanoribbons. To model the quantum transport, we employ the non-equilibrium Green's function approach. With the presented approach, we study the effect of lattice imperfections on the carrier transport. We observe that the topologically protected edge states of TIs are robust against a high percentage (2%) of vacancy defects. We also investigate tunneling of the edge states in two decoupled TI nanoribbons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000516619300024 Publication Date 2018-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-5386-6790-3; 1946-1577; 978-1-5386-6791-0 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:181281 Serial 7579  
Permanent link to this record
 

 
Author Koldeweij, J.; Hoogstede, L.; Ilsink, M.; Janssens, K.; De Keyser, N.; Gotink, R.K.; Legrand, S.; Nauhaus, J.M.; van der Snickt, G.; Spronk, R. file  openurl
  Title The patron of Hieronymus Bosch's 'Last Judgment' triptych in Vienna Type A1 Journal article
  Year 2018 Publication The Burlington magazine Abbreviated Journal  
  Volume 160 Issue 1379 Pages 106-111  
  Keywords A1 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A technical examination of the Last Judgment triptych by Hieronymus Bosch in the Paintings Gallery of the Academy of Fine Arts, Vienna, has revealed a painted escutcheon with the coat of arms of the Burgundian court official Hippolyte de Berthoz underneath the current surface of the right outer wing. This allows him to be firmly identified as the painting's patron.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458246800007 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0007-6287; 2044-9925 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:181267 Serial 8656  
Permanent link to this record
 

 
Author Ma, R.; He, Y.; Feng, J.; Hu, Z.-Y.; Van Tendeloo, G.; Li, D. pdf  url
doi  openurl
  Title A facile synthesis of Ag@PdAg core-shell architecture for efficient purification of ethene feedstock Type A1 Journal article
  Year 2019 Publication Journal of catalysis Abbreviated Journal  
  Volume 369 Issue Pages 440-449  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Precise control of elemental configurations within multimetallic nanoparticles could enable access to functional nanomaterials with significant performance benefits. Here, we present a one-pot synthesis of supported Ag@PdAg core-shell catalyst with an ordered PdAg alloy shell and an Ag core. Both the relative reduction potential and ratio of metal precursors are essential for this synthesis strategy. The distinguished properties of Ag@PdAg, particularly the electronic structure, indicates the existence of electron modification not only between Pd and Ag on PdAg shell, but between Ag core and alloy shell. The Ag@PdAg catalyst displays 97% ethene yield in the partial hydrogenation of acetylene, which is 2.0 and 8.1 times that of over PdAg alloy and pure Pd catalysts, and this is the most selective catalyst reported to data under industrial evaluation conditions. Moreover, this core-shell structure exhibits preferable stability with comparison to PdAg alloy catalyst. The facile synthesis of core-shell architecture with alloy shell structure provides a new platform for efficient catalytic transfer of chemical resource. (C) 2018 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460711700045 Publication Date 2018-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:181261 Serial 6848  
Permanent link to this record
 

 
Author Bouwmeester, R.L.; de Hond, K.; Gauquelin, N.; Verbeeck, J.; Koster, G.; Brinkman, A. pdf  url
doi  openurl
  Title Stabilization of the perovskite phase in the Y-Bi-O system by using a BaBiO₃ buffer layer Type A1 Journal article
  Year 2019 Publication Physica status solidi: rapid research letters Abbreviated Journal  
  Volume 13 Issue 7 Pages 1800679  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A topological insulating phase has theoretically been predicted for the thermodynamically unstable perovskite phase of YBiO3. Here, it is shown that the crystal structure of the Y-Bi-O system can be controlled by using a BaBiO3 buffer layer. The BaBiO3 film overcomes the large lattice mismatch of 12% with the SrTiO3 substrate by forming a rocksalt structure in between the two perovskite structures. Depositing an YBiO3 film directly on a SrTiO3 substrate gives a fluorite structure. However, when the Y-Bi-O system is deposited on top of the buffer layer with the correct crystal phase and comparable lattice constant, a single oriented perovskite structure with the expected lattice constants is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000477671800005 Publication Date 2019-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6254 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access  
  Notes The work at the University of Twente is financially supported by NWO through a VICI grant. N.G. and J.V. acknowledge financial support from the GOA project “Solarpaint” of the University of Antwerp. The microscope used for this experiment has been partially financed by the Hercules Fund from the Flemish Government. L. Ding is acknowledge for his help with the GPA analysis. Approved no  
  Call Number (down) UA @ admin @ c:irua:181236 Serial 6889  
Permanent link to this record
 

 
Author Bae, J.; Cichocka, M.O.; Zhang, Y.; Bacsik, Z.; Bals, S.; Zou, X.; Willhammar, T.; Hong, S.B. pdf  url
doi  openurl
  Title Phase transformation behavior of a two-dimensional zeolite Type A1 Journal article
  Year 2019 Publication Angewandte Chemie: international edition in English Abbreviated Journal  
  Volume 58 Issue 30 Pages 10230-10235  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Understanding the molecular-level mechanisms of phase transformation in solids is of fundamental interest for functional materials such as zeolites. Two-dimensional (2D) zeolites, when used as shape-selective catalysts, can offer improved access to the catalytically active sites and a shortened diffusion length in comparison with their 3D analogues. However, few materials are known to maintain both their intralayer microporosity and structure during calcination for organic structure-directing agent (SDA) removal. Herein we report that PST-9, a new 2D zeolite which has been synthesized via the multiple inorganic cation approach and fulfills the requirements for true layered zeolites, can be transformed into the small-pore zeolite EU-12 under its crystallization conditions through the single-layer folding process, but not through the traditional dissolution/recrystallization route. We also show that zeolite crystal growth pathway can differ according to the type of organic SDAs employed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000476452700030 Publication Date 2019-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access OpenAccess  
  Notes We acknowledge financial support from National Creative Research Initiative Program (2012R1A3A-2048833) through the National Research Foundation of Korea, the National Research Council of Science & Technology (CRC-14-1-KRICT) grant by the Korea government (MSIP), the Swedish Research Council (2017-04321), and the Knut and Alice Wallenberg Foundation (KAW) through the project grant 3DEM-NATUR (2012.0112). T.W. acknowledges an international postdoc grant from the Swedish Research Council (2014-06948). Approved no  
  Call Number (down) UA @ admin @ c:irua:181233 Serial 6878  
Permanent link to this record
 

 
Author Cagno, S.; Lind, O.C.; Popic, J.M.; Skipperud, L.; De Nolf, W.; Nuyts, G.; Vanmeert, F.; Jaroszewicz, J.; Janssens, K.; Salbu, B. url  doi
openurl 
  Title Micro-analytical characterization of thorium-rich aggregates from Norwegian NORM sites (Fen Complex, Telemark) Type A1 Journal article
  Year 2020 Publication Journal Of Environmental Radioactivity Abbreviated Journal J Environ Radioactiv  
  Volume 219 Issue Pages 106273  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract In this study we performed microscopic characterization of mineral particles that were collected in the thorium-rich Fen Complex in Norway and identified and isolated based on autoradiography in function of their radioactivity. For this we combined information obtained with X-ray absorption mu-CT, mu-XRF and mu-XRD, both in bi- and in three-dimensional (tomographic) mode. We demonstrate that radionuclides and metals are heterogeneously distributed both within soil samples and within individual Th-enriched aggregates, which are characterised as low-density mineral bulk particles with high density material inclusions, where Th as well as several metals are highly concentrated. For these sites, it is important to take into account how these inhomogeneous distributions could affect the overall environmental behaviour of Th and progeny upon weathering due to human or environmental factors. Moreover, the estimated size of the Th-containing inclusions as determined in this work represents information of importance for the characterization of radionuclides and toxic metals exposure, as well as for assessing the viability of mining for Th and rare-earth metals in the Fen Complex and the associated environmental impact.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535130500005 Publication Date 2020-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0265-931x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.3 Times cited Open Access  
  Notes Approved Most recent IF: 2.3; 2020 IF: 2.31  
  Call Number (down) UA @ admin @ c:irua:181195 Serial 8229  
Permanent link to this record
 

 
Author Pedrazo Tardajos, A. openurl 
  Title Advanced graphene supports for 3D in situ transmission electron microscopy Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 247 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy (TEM) is an ideal tool to investigate nanomaterials. The information from TEM experiments allows us to link the structure and composition of nanomaterials to their intrinsic physical properties. However, despite the significant evolution of the TEM field during the last two decades, major progress is still possible through the development of optimal TEM techniques and supports. The results presented in this thesis focus on the optimization of sample supports and their application. Among the different options, graphene has previously been reported as useful sample support for electron microscopy due to its unparalleled properties, for example, it is the thinnest known support and provides a protective effect to the sample under investigation. Unfortunately, commercial graphene grids show poor quality, in terms of intactness and cleanness, inhibiting their wide application within the field. Therefore, this thesis focuses on the application of optimized graphene TEM grids, obtained by transferring high quality graphene using an advanced procedure. This improvement on the transfer has enabled the visualization of materials with low contrast and high sensitivity towards the electron beam, such as surface ligands capping gold nanoparticles or metal halide perovskites. Furthermore, the implemented protocol is not only of interest for conventional TEM grids but also a major benefit for in situ TEM studies, where the sample is investigated in real time under certain stimuli. Hence, the same graphene transfer technology can be also applied to advanced in situ MEMS holders dedicated for both heating and gas experiments, where the thickness and insulating nature of the silicon nitride (Si3N4) support may hamper some applications. By engineering periodic arrays of holes in their Si3N4 membrane by focused ion beam, onto which the graphene is transferred, it has been possible to get proof-of-concept 3D in situ investigations of heat-induced morphological and compositional transformations of complex nanosystems. As an example, it has enabled the investigation of the possible phase-transition of metal halide perovskites upon heating using 2D and 3D structural characterization. Moreover, it has allowed the study of in situ three-dimensional nanoparticle dynamics during gas phase catalysis as well as the first steps that would lead towards the design and creation of the first Graphene Gas Cell. Consequently, implementation of the advanced graphene transfer technology described in this thesis is envisaged to impact a broad range of future experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (down) UA @ admin @ c:irua:181143 Serial 6836  
Permanent link to this record
 

 
Author Stosic, D. file  openurl
  Title Numerical simulations of magnetic skyrmions in atomically-thin ferromagnetic films Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 153 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract Moore’s Law has driven the electronics industry for the past half century. However, the doubling of transistors about every two years is beginning to break down, owing to fundamental limits that arise as they approach the atomic length. As a result, the search for new pathways for electronics has become crucial. Among potential candidates, the discovery of magnetic textures known as skyrmions has attracted considerable interest and attention in spintronic technology, which relies on both the electron charge and its spin. The unusual topological and particle-like behavior launched skyrmions into the spotlight of scientific research. Topological protected stability, nanoscale size, and low driving currents needed to move them make skyrmions promising candidates for future consumer nanoelectronics. Recent advances in the field have provided all of the basic functions needed for carrying and processing information. In this thesis, we procure to advance the current understanding of skyrmion physics, and explore their potential to replace conventional electronics technology. First, the fundamental properties and lifetimes of racetrack skyrmions at room temperature are investigated. We discover that skyrmions can easily collapse at the boundary in laterally finite systems, and propose ways to improve their stability for constrained geometries. Then, pinning of single skyrmions on atomic defects of distinct origins are studied. We reveal that the preferred pinning positions depend on the skyrmion size and type of defect being considered, and discuss applications where control of skyrmions by defects is of particular interest. Next, we explore other magnetic configurations that can compete with skyrmions when considering new materials, and describe a previously unseen mechanism for collapse of skyrmions into cycloidal spin backgrounds. Finally, switching and interactions between skyrmions with distinct topologies are reported. We find that skyrmions transition to higher or lower topologies by absorbing a unit spin texture. The interactions between skyrmions of different topological charges can be attractive or repulsive, leading to the formation of arranged clusters. We conclude with a numerical library for simulating magnetic skyrmions in various scenarios.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:181142 Serial 8322  
Permanent link to this record
 

 
Author Stosic, D. file  openurl
  Title High-performance Ginzburg-Landau simulations of superconductivity Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 166 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract Superconductivity is one of the most important discoveries of the last century. With many applications in physics, engineering, and technology, superconductors are crucial to our way of living. Several material and engineering issues however prevent their widespread usage in everyday life. Comprehensive studies are being directed at these materials and their properties to come up with new technologies that will address these challenges and enhance their superconductive capabilities. In this context, numerical modeling plays an important role in the search of new solutions to existing material and engineering issues. The time-dependent Ginzburg-Landau (TDGL) theory is a powerful predictive tool for modeling the macroscopic behavior of superconductors. However most of the numerical algorithms developed so far are incapable of describing many basic properties of real superconducting devices, and are too slow on current hardware for large-scale numerical simulations necessary for their accurate description. Therefore, the purpose of this thesis is to develop high-performing numerical solutions that can correctly describe material features to be used as modeling tools of laboratory experiments. Some important innovations introduced in this work include the numerical modeling of nonrectangular geometrical shapes with complex electrical and insulating components, the inclusion of dynamic heating of the material, and the description of different types of material inhomogeneities. These encompass the principal features necessary for a complete description of the superconductive physics in real material samples. In this thesis a numerical solution is developed for modeling superconducting thin films and used to study the superconductive properties of three experimental configurations: the dynamics of vortex matter in a Corbino disk, the motion of ultrafast vortices in an hourglass-shaped microbridge, and the photon detection process in a meander-patterned nanowire. Moreover, a numerical solution is developed for modeling three-dimensional superconductors which are studied here for the first time in the type-I superconducting regime. These numerical algorithms are optimized to exploit the computational horsepower of graphics processing units (GPUs) and multicore central-processing unit (CPU) clusters such that they can achieve high-performance and be used to model large-scale problems previously impossible on conventional machines. Several computational tools are also designed to assist with the modeling of superconducting devices. These include a numerical library of the TDGL equations, a novel mechanism for the generation of complex geometries, a closed-form solver to conduct numerical simulations, and a graphics user interface (GUI) to visualize the dynamic behavior of superconductors. The contributions in this thesis ultimately push the boundaries on what is possible in state-of-the-art numerical modeling of superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number (down) UA @ admin @ c:irua:181141 Serial 8034  
Permanent link to this record
 

 
Author Roegiers, J. file  openurl
  Title Development of combined photocatalytic and active carbon fiber technology for indoor air purification based on Multiphysics models Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages XXX, 197 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Exposure to volatile organic compounds (VOCs) remains a major public health concern. Indoor VOC concentrations typically far exceed outdoor levels due to a variety of emission sources and the stringent insulation measures that are imposed today. Many attempts have been made to use photocatalysis for indoor air purification. In an ideal situation, photocatalysis is capable of complete mineralization of VOCs to H2O and CO2, without any byproduct formation. Moreover, the process can take place at standard atmospheric conditions, i.e. ambient temperature and atmospheric pressure. However, successful exploitation is still impeded due to low conversion efficiency, significant pressure loss (and hence a high energy consumption) and byproduct formation. In the first part of this thesis an attempt was made to tackles these problems by designing a novel type of photocatalytic (PCO) reactor. The PCO device consists of a cylindrical vessel filled with TiO2-coated glass tubes and equipped with UV fluorescence lamps. It was investigated in terms of fluid dynamics, coating properties, UV-light distribution and photocatalytic activity. Experimental data was later used to develop and calibrate a Multiphysics model. The model proved to be a useful tool for designing and upscaling the PCO reactor. Consequently, an optimized prototype reactor was constructed and tested according the CEN-EN-16846-1 standard for VOC removal. Although the prototype showed promising results for lab-scale conditions, it struggled with byproduct formation when purifying ppb-level VOCs. In the second part of this thesis, activated carbon adsorption was investigated in order to combine it with photocatalysis. Activated carbon fiber was opted for its fast kinetics, high adsorption capacity and thermo-electrical regeneration. The filter was studied in detail regarding the adsorption of polar and apolar VOCs at indoor air concentration levels and regeneration capabilities. Experimental data was used to develop a Multiphysics model for activated carbon adsorption as well. Consequently, a novel type of ACF filter was developed using the Multiphysics model, which was equipped with electrodes in the tips of the pleats for effective thermal regeneration. In the last part, the combination of both ACF and PCO was studied using a realistic case study. Based on the Multiphysics model, the feasibility of a so-called hybrid air purification device could be investigated. The Multiphysics model shows promising results for this hybrid PCO-ACF system and hence, a demo setup was constructed for future research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (down) UA @ admin @ c:irua:181137 Serial 6860  
Permanent link to this record
 

 
Author Gonzalez-Quiroga, A.; Shtern, V.; Perreault, P.; Vandewalle, L.; Marin, G.B.; Van Geem, K.M. pdf  doi
openurl 
  Title Intensifying mass and heat transfer using a high-g stator-rotor vortex chamber Type A1 Journal article
  Year 2021 Publication Chemical Engineering And Processing Abbreviated Journal Chem Eng Process  
  Volume 169 Issue Pages 108638-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Vortex reactors take advantage of the synergy between enhanced heat and mass transfer rates and multifunctional phenomena at different temporal and spatial scales. Proof-of-concept experiments with our novel and innovative STAtor-Rotor VOrtex Chamber (STARVOC) confirm its advantageous features for the sustainable production of chemicals and fuels. STARVOC is a high-g contactor that uses carrier flow (gas or liquid) tangential injection to drive a rotor attached to low-friction bearings. The vortex chamber inside the rotor contains a secondary phase or phases, such as a solids bed, a liquid layer, or a suspension. Carrier fluid passes through the perforated rotor wall and contacts a densely and uniformly distributed secondary phase with enhanced slip velocities. Experiments focused on pressure profiles, rotor angular velocity, and solids azimuthal velocity. With air as the carrier fluid and different solid particle beds as the secondary phase, STARVOC reached bed azimuthal velocities up to four-fold compared to those reached in Gas-Solid Vortex Units with fully static geometry. These results show its potential to improve interfacial heat and mass transfer rates and take advantage of flow energy and angular momentum. Due to its process intensification capabilities, STARVOC is a promising alternative for the state-of-the-art chemical industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704946900008 Publication Date 2021-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0255-2701 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.234 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.234  
  Call Number (down) UA @ admin @ c:irua:181062 Serial 8111  
Permanent link to this record
 

 
Author Grangeiro de Barros, A.; Devroede, R.; Vanlanduit, S.; Vuye, C.; Kampen, J.K. url  openurl
  Title Acoustic simulation of noise barriers and prediction of annoyance for local residents Type P1 Proceeding
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords P1 Proceeding; Engineering sciences. Technology; Engineering Management (ENM); Condensed Matter Theory (CMT); Energy and Materials in Infrastructure and Buildings (EMIB); Social Epidemiology & Health Policy (SEHPO)  
  Abstract Road traffic is the most widespread environmental noise source in Europe, proven to affect human health and well-being adversely. Noise barriers can be a very effective way to objectively reduce the noise levels to which the population is exposed, leading to positive effects on noise perception and quality of life. In this paper, surveys were used to assess subjective noise level indicators (annoyance and quality of life) from residents of the vicinity of a highway where obsolete noise barriers were to be replaced. %HA before the barrier replacement was measured from the surveys (26.8%) and estimated based on the acoustic simulation and two existing exposure/response relationships (14.6 and 18.8% before and 13.6 and 8.3% after). The difference in the measured %HA to those calculated from the ERRs shows that those models might not estimate %HA fairly for small samples or particular situations where high Lden is reported. Noise annoyance correlated differently with the quality of life indicators: a weak link was observed with health problems, while a strong correlation was found with the comfort level to perform activities outdoors. Objective noise measurements gave LA,eq,(15 min.) reductions of 4.1dB(A) due to the new barrier, while in acoustics models, calculated as Lday, expected this reduction to be 5.2 dB(A). After replacing the noise barriers, a second survey could still not be distributed due to the unknown effect of the COVID-19 measures that are still active  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-83-7880-799-5 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (down) UA @ admin @ c:irua:181057 Serial 6969  
Permanent link to this record
 

 
Author Sleegers, N. openurl 
  Title Cephalosporin antibiotics : electrochemical fingerprints and redox pathways investigated by mass spectral analysis Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 208 p.  
  Keywords Doctoral thesis; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (down) UA @ admin @ c:irua:181014 Serial 7588  
Permanent link to this record
 

 
Author Rodrigues Lavor, I. url  openurl
  Title Plasmons and electronic transport in two-dimensional materials Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 219 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract This thesis presents, in its first part, an investigation on the trembling motion of wave packets known as zitterbewegung (ZBW), in multilayer graphene, as well as in moiré excitons in twisted MoS2/WSe2 hetero-bilayers. In the last few decades, the dynamics of wave packets has been subject of many theoretical and experimental studies in various types of systems such as semiconductors, superconductors, crystalline solids and cold atoms. The discovery of graphene and moiré excitons in twisted hetero-bilayers, brought two new platforms for the investigation on time evolution of wave packets and possible observation of ZBW. This trembling motion was first theoretically predicted by Schrödinger for wave packets describing particles that obey the Dirac equation. This is exactly the case of low energy electrons in graphene, as well as of moiré exciton in twisted MoS2/WSe2 under an external applied electromagnetic field. ZBW in multilayer graphene was studied both analytically and computationally, respectively, through the Green's function and split-operator methods. In this system, it is found that ZBW depends not only on the wave packet width and initial pseudospin polarization, but also on the number of layers. Furthermore, the analytical and numerical methods proposed here allow to investigate wave packet dynamics in graphene systems with an arbitrary number of layers and arbitrary potential landscapes. For moiré excitons in twisted MoS2/WSe2 hetero-bilayers, it is shown that, analogously to other Dirac-like particles, this system also exhibits ZBW when under a perpendicular applied field. In this case, the ZBW presents long timescales that are compatible with current experimental techniques for exciton dynamics. This promotes the study of the dynamics of moiré excitons in van der Waals heterostructures as an advantageous solidstate platform to probe zitterbewegung, broadly tunable by gating and inter-layer twist angle. In the second part of this thesis, a study into graphene plasmonic in van der Waals heterostructure (vdWhs) are treated in a linear response framework within the Random Phase Approximation and with support of the quantum electrostatic heterostructure (QEH), a DFT-based method. Since Dirac plasmons in graphene are very sensitive to the dielectric properties of the environment, it is possible to explore this property to probe the structure and composition of van der Waals heterostructures (vdWh) placed underneath a single graphene layer. In this way, one can achieve a layer sensitivity of a single layer and differentiate between different TMDs for heterostructures thicker than 2 layers. As a consequence of this, study, the hybridization of Dirac plasmons in graphene with phonons of transition metal dichalcogenides (TMDs), when the materials are combined in so-called van der Waals heterostructures (vdWh) forming surface plasmon-phonon polaritons (SPPPs) are also investigated. It was found that it is possible to realize both strong and ultrastrong coupling regimes by tuning graphene’s Fermi energy and changing TMD layer number.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (down) UA @ admin @ c:irua:181012 Serial 7011  
Permanent link to this record
 

 
Author Einhäupl, P. openurl 
  Title Landfill mining : implementing the missing link to a circular economy: an evaluation of the societal sustainability Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages xxiii, 216 p.  
  Keywords Doctoral thesis; Economics; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract One of the main objectives of implementing a circular economy system is the reuse and recycling of resources. Closing material cycles and renewable-based electricity and fuel production are essential to such systems. To achieve a high degree of circularity, waste streams have to be rethought and integrated from a cradle-to-grave to a cradle-to-cradle approach. However, today’s circular economy strategies mostly focus on current waste streams, while past waste streams, buried in landfills, could play an important role when recovering resources and energy. Hence, a well-thought-out circular economy strategy should include the re-integration of past waste streams. A grave-to-cradle approach is needed. Landfill mining (LFM), i.e. the excavation and processing of formerly buried waste to energy and materials, aims at utilizing these past waste streams. Doing so could bear potential economic, environmental, and societal burdens and benefits. Originating from landfill remediation projects, landfill mining has been further developed towards resource recovery. Today, using up-to-date technologies and following the most stringent environmental and social criteria, the concept is also known as enhanced landfill mining (ELFM). Throughout the relevant scientific literature, most attention is given to advances in technological development for (E)LFM, as well as its techno-economic and environmental assessment. Societal assessments of LFM projects are rare and treat societal impacts only selectively or from unilateral societal perspectives. If stakeholders are included in societal (E)LFM assessments, only industrial actors, like landfill operators, and governmental actors are asked to participate. A holistic stakeholder assessment for (E)LFM is missing. Moreover, the diverse societal impacts – ranging from socio-environmental benefits through the mitigation of health risks, over socio-economic benefits through land reclamation, and social benefits through community engagement, for example – are either only studied selectively or evaluated as one, entangling various societal effects. A holistic and specific assessment of societal factors affecting (E)LFM implementation is also missing. This thesis uses an anticipatory approach to tackle these challenges. This approach aims to integrate stakeholder values and include uncertainty through the use of multiple social perspectives and prospective modeling tools. In-depth interviews were conducted to develop a typology of (E)LFM stakeholders and to elicit the most important stakeholder needs. Stakeholders were selected along an extended quadruple helix framework, including industrial, institutional, scientific, and community actors. Furthermore, using system dynamics tools, namely causal loop diagrams, societal systems of (E)LFM could be visualized and analyzed. Finally, a discrete choice experiment was conducted to evaluate a set of societal factors representing the conversion of a landfill into a public park for recreational use. The in-depth interviews included landfill operators, technology providers and incubators, local governments and governmental institutions, as well as researchers and community members. To structure the diverse perspectives of stakeholders on (E)LFM, five stakeholder archetypes were developed: The Entrepreneur, the Engaged Citizen, the Visionary, the Technology Enthusiast, and the Skeptic. The archetypes capture important characteristics and opinions approaching (E)LFM implementation. They differ in risk perceptions, knowledge base, influence on (E)LFM’s systemic and project implementation, and their main concerns and motivations. Furthermore, 18 stakeholder needs were derived from the interviews. This includes societal, environmental, regulatory, and techno-economic needs. The needs are put in relation to the affected stakeholders and sustainability dimensions. Uncertainties that could potentially be reduced through the fulfillment of each need are qualitatively assessed. Quantitatively, stakeholders were focusing on societal, regulatory, and techno-economic needs, whereas qualitative emphasis was given to environmental needs, especially the avoidance of impacts from primary resource production. When meeting stakeholder needs fairly, intra- and inter-dimensional trade-offs have to be considered as different perspectives can lead to different and sometimes contradicting implications for (E)LFM implementation. To conceptualize societal systems of (E)LFM, causal loop diagrams were developed following system dynamics methodology. The visualizations show how (E)LFM is embedded in its societal context. Variables comprising the societal impact were analyzed, and mechanisms affecting the public project acceptance and the market acceptance of (E)LFM products worked out. Leverage points were identified, helping (E)LFM practitioners and policymakers to minimize potential risks and maximize potential benefits. To these count technological choices, stakeholder involvement, the after-use, quality standards, and LFM regulation in general, amongst others. To disentangle and evaluate societal impacts of (E)LFM, a discrete choice experiment was conducted deriving the utility of five distinct attributes: the size of a landfill, the project duration, job creation, disamenities, and climate impacts. To determine the willingness to pay, perform scenario analysis, and model policy simulations, a sixth attribute was added representing a cost factor for project implementation. Environmental considerations are most important to the sample, while project duration and disamenities also play a significant role. The scenario analysis and policy simulations show that taxing households for (E)LFM implementation is a viable option, especially for environmentally beneficial projects. Nonetheless, a favorable combination of the remaining attributes can compensate utility losses for environmentally questionable projects. As risks of classical landfill management practices are likely to grow with an updated evaluation of after-care periods lasting up to 100 years and more, positive effects of (E)LFM become even more noteworthy. Nonetheless, (E)LFM projects also pose potential risks like groundwater contamination or the reintroduction of hazardous materials. If executed poorly, (E)LFM projects could potentially do more harm than good. A mix of policy measures is recommended to push a major part of potential (E)LFM projects from being environmentally beneficial and economically inefficient to being societally, environmentally, and economically favorable. Overall, more research is necessary to integrate (E)LFM into circular economy strategies and build a sensible grave-to-cradle approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (down) UA @ admin @ c:irua:181007 Serial 6935  
Permanent link to this record
 

 
Author Velazco Torrejón, A. url  openurl
  Title Alternative scan strategies for high resolution STEM imaging Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages 131 p.  
  Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)  
  Abstract Currently, a large variety of materials are studied by transmission electron microscopy (TEM) as it offers the possibility to perform structural and elemental analysis at a local scale. Relatively recent advances in aberration correctors and electron sources allow the instrument to achieve atomic resolution. Along with these advances, a state-of-the-art technology has been reached in TEM. However, the instrument is far from being perfect and imperfections or external sources can make the interpretation of information troublesome. Environmental factors such as acoustic and mechanical vibrations, temperature fluctuations, etc., can induce sample drift and create image distortions. These distortions are enhanced in scanning operation because of the serial acquisition of the information, which are more apparent at atomic resolution as small field of views are imaged. In addition, scanning distortions are induced due to the finite time response of the scan coils. These types of distortions would reduce precision in atomic-scale strain analysis, for instance, in semiconductors. Most of the efforts to correct these distortions are focused on data processing techniques post-acquisition. Another limitation in TEM is beam damage effects. Beam damage arises because of the energy transferred to the sample in electron-sample interactions. In scanning TEM, at atomic resolution, the increased electron charge density (electron dose) carried on a sub-Å size electron probe may aggravate beam damage effects. Soft materials such as zeolites, organic, biological materials, etc., can be destroyed under irradiation limiting the amount of information that can be acquired. Current efforts to circumvent beam damage are mostly based on low electron dose acquisitions and data processing methods to maximize the signal at low dose conditions. In this thesis, a different approach is given to address drift and scanning distortions, as well as beam damage effects. Novel scan strategies are proposed for that purpose, which are shown to substantially overcome these issues compared to the standard scan method in TEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number (down) UA @ admin @ c:irua:180973 Serial 6852  
Permanent link to this record
 

 
Author Li, Y.; Niklas, K.J.; Gielis, J.; Niinemets, Ü.; Schrader, J.; Wang, R.; Shi, P. url  doi
openurl 
  Title An elliptical blade is not a true ellipse, but a superellipse : evidence from two Michelia species Type A1 Journal article
  Year 2022 Publication Journal of forestry research Abbreviated Journal J Forestry Res  
  Volume 33 Issue 4 Pages 1341-1348  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The shape of leaf laminae exhibits considerable diversity and complexity that reflects adaptations to environmental factors such as ambient light and precipitation as well as phyletic legacy. Many leaves appear to be elliptical which may represent a ‘default’ developmental condition. However, whether their geometry truly conforms to the ellipse equation (EE), i.e., (x/a)2 + (y/b)2 = 1, remains conjectural. One alternative is described by the superellipse equation (SE), a generalized version of EE, i.e., |x/a|n +|y/b|n = 1. To test the efficacy of EE versus SE to describe leaf geometry, the leaf shapes of two Michelia species (i.e., M. cavaleriei var. platypetala, and M. maudiae), were investigated using 60 leaves from each species. Analysis shows that the majority of leaves (118 out of 120) had adjusted root-mean-square errors of < 0.05 for the nonlinear fitting of SE to leaf geometry, i.e., the mean absolute deviation from the polar point to leaf marginal points was smaller than 5% of the radius of a hypothesized circle with its area equaling leaf area. The estimates of n for the two species were ˂ 2, indicating that all sampled leaves conformed to SE and not to EE. This study confirms the existence of SE in leaves, linking this to its potential functional advantages, particularly the possible influence of leaf shape on hydraulic conductance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000695118600001 Publication Date 2021-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1007-662x; 1993-0607 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3  
  Call Number (down) UA @ admin @ c:irua:180967 Serial 7152  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: