|
Record |
Links |
|
Author |
Borkowski, R.; Straub, M.; Ou, Y.; Lefevre, Y.; Jelić, Ž.L.; Lanneer, W.; Kaneda, N.; Mahadevan, A.; Hueckstaedt, V.; van Veen, D.; Houtsma, V.; Coomans, W.; Bonk, R.; Maes, J. |
|
|
Title |
FLCS-PON : a 100 Gbit/s flexible passive optical network: concepts and field trial |
Type |
A1 Journal article |
|
Year |
2021 |
Publication |
Journal Of Lightwave Technology |
Abbreviated Journal |
J Lightwave Technol |
|
|
Volume |
39 |
Issue |
16 |
Pages |
5314-5324 |
|
|
Keywords |
A1 Journal article; Mass communications; Condensed Matter Theory (CMT) |
|
|
Abstract |
We demonstrate concepts and results of a field trial for a flexible-rate passive optical network (FLCS-PON), which delivers bitrates up to 100 Gbit/s and allows for adaptations in the transmission method to match the users' channel conditions and optimize throughput. FLCS-PON builds on top of the hardware ecosystem that will be developed for ITU-T 50 Gbit/s PON and employs three new ingredients: optical network unit (ONU) grouping, flexible modulation format, and flexible forward error correction (FEC) code rate. Together, these techniques take advantage of the optical distribution network (ODN) statistics to realize a system capable of more than twofold throughput increase compared to the upcoming 50 Gbit/s PON, but still able to support a full array of deployed fiber edge cases, which are problematic for legacy PONs. In this paper we explain the concepts behind enabling techniques of FLCS-PON. We then report on a field trial over a deployed fiber infrastructure, using a system consisting of one FLCS-PON OLT and two ONUs. We report both pre- and post-forward-error-correction (post-FEC) performance of our system, demonstrating achievable net bitrate over an operator's fiber infrastructure. We realize a downlink transmission at double the speed of ITU-T 50 Gbit/s PON for ONUs exhibiting lower optical path loss (OPL), while simultaneously continue to support ONUs at high OPLs. We additionally realize a record-high 31.5 dB loss budget for 100 Gbit/s transmission using a direct-detection ONU with an optical preamplifier. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000692209800017 |
Publication Date |
2021-08-06 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0733-8724 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.671 |
Times cited |
|
Open Access |
Not_Open_Access |
|
|
Notes |
|
Approved |
Most recent IF: 3.671 |
|
|
Call Number |
UA @ admin @ c:irua:181586 |
Serial |
6995 |
|
Permanent link to this record |