toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Renero-Lecuna, C.; Herrero, A.; Jimenez de Aberasturi, D.; Martínez-Flórez, M.; Valiente, R.; Mychinko, M.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Nd3+-Doped Lanthanum Oxychloride Nanocrystals as Nanothermometers Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 36 Pages 19887-19896  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The development of optical nanothermometers operating in the near-infrared (NIR) is of high relevance toward temperature measurements in biological systems. We propose herein the use of Nd3+-doped lanthanum oxychloride nanocrystals as an efficient system with intense photoluminescence under NIR irradiation in the first biological transparency window and emission in the second biological window with excellent emission stability over time under 808 nm excitation, regardless of Nd3+ concentration, which can be considered as a particular strength of our system. Additionally, surface passivation through overgrowth of an inert LaOCl shell around optically active LaOCl/Nd3+ cores was found to further enhance the photoluminescence intensity and also the lifetime of the 1066 nm, 4F3/2 to 4I11/2 transition, without affecting its (ratiometric) sensitivity toward temperature changes. As required for biological applications, we show that the obtained (initially hydrophobic) nanocrystals can be readily transferred into aqueous solvents with high, long-term stability, through either ligand exchange or encapsulation with an amphiphilic polymer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000697335100031 Publication Date 2021-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 9 Open Access OpenAccess  
  Notes The authors thank the financial support of the European Research Council (ERC-AdG-2017 787510, ERC-CoG-2019 815128) and of the European Commission (EUSMI, Grant 731019). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency−Grant MDM-2017−0720. Realnano; sygmaSB Approved Most recent IF: 4.536  
  Call Number (up) EMAT @ emat @c:irua:181671 Serial 6831  
Permanent link to this record
 

 
Author Heyvaert, W.; Pedrazo-Tardajos, A.; Kadu, A.; Claes, N.; González-Rubio, G.; Liz-Marzán, L.M.; Albrecht, W.; Bals, S. pdf  url
doi  openurl
  Title Quantification of the Helical Morphology of Chiral Gold Nanorods Type A1 Journal article
  Year 2022 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.  
  Volume 4 Issue Pages 642-649  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Chirality in inorganic nanoparticles and nanostructures has gained increasing scientific interest, because of the possibility to tune their ability to interact differently with left- and right-handed circularly polarized light. In some cases, the optical activity is hypothesized to originate from a chiral morphology of the nanomaterial. However, quantifying the degree of chirality in objects with sizes of tens of nanometers is far from straightforward. Electron tomography offers the possibility to faithfully retrieve the three-dimensional morphology of nanomaterials, but only a qualitative interpretation of the morphology of chiral nanoparticles has been possible so far. We introduce herein a methodology that enables us to quantify the helicity of complex chiral nanomaterials, based on the geometrical properties of a helix. We demonstrate that an analysis at the single particle level can provide significant insights into the origin of chiroptical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000784490000013 Publication Date 2022-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access OpenAccess  
  Notes S.B. and A.P.-T. gratefully acknowledge funding by the European Research Council (ERC Consolidator Grant #815128-REALNANO) the European Union’s Horizon 2020 research and innovation program under grant agreement #823717ESTEEM3. L.M.L.-M. acknowledges funding from MCIN/ AEI /10.13039/501100011033, grant # PID2020- 117779RB-I00 and the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720). G.G.-R. thanks the Spanish Spanish Ministerio de Ciencia e Innovación for an FPI (BES-2014- 068972) fellowship.; SygmaSB; esteem3reported; esteem3jra Approved Most recent IF: NA  
  Call Number (up) EMAT @ emat @c:irua:186959 Serial 6956  
Permanent link to this record
 

 
Author Pedrazo-Tardajos, A.; Arslan Irmak, E.; Kumar, V.; Sánchez-Iglesias, A.; Chen, Q.; Wirix, M.; Freitag, B.; Albrecht, W.; Van Aert, S.; Liz-Marzán, L.M.; Bals, S. pdf  url
doi  openurl
  Title Thermal Activation of Gold Atom Diffusion in Au@Pt Nanorods Type A1 Journal article
  Year 2022 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Understanding the thermal stability of bimetallic nanoparticles is of vital importance to preserve their functionalities during their use in a variety of applications. In contrast to well-studied bimetallic systems such as Au@Ag, heat-induced morphological and compositional changes in Au@Pt nanoparticles are insufficiently understood, even though Au@Pt is an important material for catalysis. To investigate the thermal instability of Au@Pt nanorods at temperatures below their bulk melting point, we combined in situ heating with two- and three-dimensional electron microscopy techniques, including three-dimensional energy-dispersive X-ray spectroscopy. The experimental results were used as input for molecular dynamics simulations, to unravel the mechanisms behind the morphological transformation of Au@Pt core–shell nanorods. We conclude that thermal stability is influenced not only by the degree of coverage of Pt on Au but also by structural details of the Pt shell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000819246800001 Publication Date 2022-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 8 Open Access OpenAccess  
  Notes S.B., S.V.A., L.M.L.-M. and A.P.-T. acknowledge financial support from the European Commission under the Horizon 2020 Programme by grant nos. 731019 (EUSMI) and 823717 (ESTEEM3) and ERC Consolidator grant nos. 815128 (REALNANO) and 770887 (PICOMETRICS). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 through grants no. PID2020-117779RB-I00 and Maria de Maeztu Unit of Excellence no. MDM-2017-0720. The authors acknowledge the resources and services used for the simulations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government.; esteem3reported; esteem3JRA Approved Most recent IF: 17.1  
  Call Number (up) EMAT @ emat @c:irua:188540 Serial 7072  
Permanent link to this record
 

 
Author De Backer, A.; Zhang, Z.; van den Bos, K.H.W.; Bladt, E.; Sánchez‐Iglesias, A.; Liz‐Marzán, L.M.; Nellist, P.D.; Bals, S.; Van Aert, S. url  doi
openurl 
  Title Element Specific Atom Counting at the Atomic Scale by Combining High Angle Annular Dark Field Scanning Transmission Electron Microscopy and Energy Dispersive X‐ray Spectroscopy Type A1 Journal article
  Year 2022 Publication Small methods Abbreviated Journal Small Methods  
  Volume Issue Pages 2200875  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A new methodology is presented to count the number of atoms in multimetallic nanocrystals by combining energy dispersive X-ray spectroscopy (EDX) and high angle annular dark field scanning transmission electron microscopy (HAADF STEM). For this purpose, the existence of a linear relationship between the incoherent HAADF STEM and EDX images is exploited. Next to the number of atoms for each element in the atomic columns, the method also allows quantification of the error in the obtained number of atoms, which is of importance given the noisy nature of the acquired EDX signals. Using experimental images of an Au@Ag core–shell nanorod, it is demonstrated that 3D structural information can be extracted at the atomic scale. Furthermore, simulated data of an Au@Pt core–shell nanorod show the prospect to characterize heterogeneous nanostructures with adjacent atomic numbers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000862072700001 Publication Date 2022-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2366-9608 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.4 Times cited 5 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S.V.A., Grant 815128 REALNANO to S.B., and Grant 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0267.18N, G.0502.18N, G.0346.21N) and a postdoctoral grant to A.D.B.; esteem3reported; esteem3JRA Approved Most recent IF: 12.4  
  Call Number (up) EMAT @ emat @c:irua:191570 Serial 7109  
Permanent link to this record
 

 
Author Ni, B.; Mychinko, M.; Gómez‐Graña, S.; Morales‐Vidal, J.; Obelleiro‐Liz, M.; Heyvaert, W.; Vila‐Liarte, D.; Zhuo, X.; Albrecht, W.; Zheng, G.; González‐Rubio, G.; Taboada, J.M.; Obelleiro, F.; López, N.; Pérez‐Juste, J.; Pastoriza‐Santos, I.; Cölfen, H.; Bals, S.; Liz‐Marzán, L.M. url  doi
openurl 
  Title Chiral Seeded Growth of Gold Nanorods Into 4‐Fold Twisted Nanoparticles with Plasmonic Optical Activity Type A1 Journal article
  Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume Issue Pages 2208299  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A robust and reproducible methodology to prepare stable inorganic nanoparticles with chiral morphology might hold the key to the practical utilization of these materials. We describe herein an optimized chiral growth method to prepare 4-fold twisted gold nanorods, where the amino acid cysteine is used as a dissymmetry inducer. Four tilted ridges were found to develop on the surface of single-crystal nanorods upon repeated reduction of HAuCl4, in the presence of cysteine as the chiral inducer and ascorbic acid as a reducing agent. From detailed electron microscopy analysis of the crystallographic structures, we propose that dissymmetry results from the development of chiral facets in the form of protrusions (tilted ridges) on the initial nanorods, eventually leading to a twisted shape. The role of cysteine is attributed to assisting enantioselective facet evolution, which is supported by density functional theory simulations of the surface energies, modified upon adsorption of the chiral molecule. The development of R-type and S-type chiral structures (small facets, terraces, or kinks) would thus be non-equal, removing the mirror symmetry of the Au NR and in turn resulting in a markedly chiral morphology with high plasmonic optical activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000888886000001 Publication Date 2022-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.4 Times cited 35 Open Access OpenAccess  
  Notes This work was supported by the MCIN/AEI/10.13039/501100011033 (Grants PID2019-108954RB-I00, PID2020-117371RA-I00, PID2020-117779RB-I00, and Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency Grant No. MDM-2017-0720), Xunta de Galicia/FEDER (Grant GRC ED431C 2020/09) and the European Regional Development Fund (ERDF). M.M., W.H. and S.B. acknowledge financial support from the European Commission under the Horizon 2020 Programme by ERC Consolidator grant no. 815128 (REALNANO). W.A. acknowledges financial support from the research program of AMOLF, which is partly financed by the Dutch Research Council (NWO). J. M.-V. and N. L. thank the Spanish Ministry of Science and Innovation for financial support (RTI2018- 101394-B-I00 and Severo Ochoa Grant MCIN/AEI/10.13039/501100011033 CEX2019-000925-S) and the Barcelona Supercomputing Center-MareNostrum (BSC-RES) for providing generous computer resources. S.G.-G. acknowledges the MCIN. B. N. acknowledges a postdoctoral fellowship of the Alexander von Humboldt Foundation. G. G.-R. acknowledges the Deutsche Forschungsgemeinschaft (GO 3526/1-1) for financial support. H.C. thanks Deutsche Forschungsgemeinschaft (DFG) SFB 1214 project B1 for funding. G.C-Z. acknowledges National Natural Science Foundation of China (Grant No. 21902148). Approved Most recent IF: 29.4  
  Call Number (up) EMAT @ emat @c:irua:191808 Serial 7115  
Permanent link to this record
 

 
Author Zhuo, X.; Mychinko, M.; Heyvaert, W.; Larios, D.; Obelleiro-Liz, M.; Taboada, J.M.; Bals, S.; Liz-Marzán, L.M. url  doi
openurl 
  Title Morphological and Optical Transitions during Micelle-Seeded Chiral Growth on Gold Nanorods Type A1 Journal article
  Year 2022 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Chiral plasmonics is a rapidly developing field where breakthroughs and unsolved problems coexist. We have recently reported binary surfactant-assisted seeded growth of chiral gold nanorods (Au NRs) with high chiroptical activity. Such a seeded-growth process involves the use of a chiral cosurfactant that induces micellar helicity, in turn driving the transition from achiral to chiral Au NRs, from both the morphological and the optical points of view. We report herein a detailed study on both transitions, which reveals intermediate states that were hidden so far. The correlation between structure and optical response is carefully analyzed, including the (linear and CD) spectral evolution over time, electron tomography, the impact of NR dimensions on their optical response, the variation of the absorption-to-scattering ratio during the evolution from achiral to chiral Au NRs, and the near-field enhancement related to chiral plasmon modes. Our findings provide further understanding of the growth process of chiral Au NRs and the associated optical changes, which will facilitate further study and applications of chiral nanomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000878324400001 Publication Date 2022-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 17 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (ERC-AdG-4DbioSERS-787510 to L.M.L.-M. and ERC-CoG-REALNANO-815128 to S.B.) and the MCIN/AEI/10.13039/501100011033 (Grant PID2020-117779RB-I00). X.Z. acknowledges funding from the Juan de la Cierva fellowship (FJC2018-036104-I) and the University Development Fund (UDF01002665, CUHK-Shenzhen). D.L., M.O.-L., and J.M.T. acknowledge funding from the European Regional Development Fund (ERDF) and the Spanish Ministerio de Ciencia, Innovación y Universidades, under Projects PID2020-116627RB-C21 and PID2020-116627RB-C22, as well as from the ERDF/Galician Regional Government as part of the agreement for funding the Atlantic Research Center for Information and Communication Technologies (atlanTTic) and ERDF/Extremadura Regional Government under Projects IB18073 and GR18055. This work was performed in the framework of the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency (Grant No. MDM-2017-0720). The authors acknowledge Dr. Guillermo González-Rubio for providing suggestions for synthesis and Dr. Irantzu Llarena for assisting with the CD measurements. Approved Most recent IF: 17.1  
  Call Number (up) EMAT @ emat @c:irua:191815 Serial 7116  
Permanent link to this record
 

 
Author de la Encarnación, C.; Jungwirth, F.; Vila-Liarte, D.; Renero-Lecuna, C.; Kavak, S.; Orue, I.; Wilhelm, C.; Bals, S.; Henriksen-Lacey, M.; Jimenez de Aberasturi, D.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Hybrid core–shell nanoparticles for cell-specific magnetic separation and photothermal heating Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry B : materials for biology and medicine Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hyperthermia, as the process of heating a malignant site above 42 °C to trigger cell death, has emerged as an effective and selective cancer therapy strategy. Various modalities of hyperthermia have been proposed, among which magnetic and photothermal hyperthermia are known to benefit from the use of nanomaterials. In this context, we introduce herein a hybrid colloidal nanostructure comprising plasmonic gold nanorods (AuNRs) covered by a silica shell, onto which iron oxide nanoparticles (IONPs) are subsequently grown. The resulting hybrid nanostructures are responsive to both external magnetic fields and near-infrared irradiation. As a result, they can be applied for the targeted magnetic separation of selected cell populations – upon targeting by antibody functionalization – as well as for photothermal heating. Through this combined functionality, the therapeutic effect of photothermal heating can be enhanced. We demonstrate both the fabrication of the hybrid system and its application for targeted photothermal hyperthermia of human glioblastoma cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000968908400001 Publication Date 2023-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-750X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited 1 Open Access OpenAccess  
  Notes Ministerio de Ciencia e Innovación, PID2019-108854RA-I00 ; H2020 European Research Council, ERC AdG 787510, 4DBIOSERS ERC CoG 815128, REALNANO ; Fonds Wetenschappelijk Onderzoek, PhD research grant 1181122N ; Approved Most recent IF: 7; 2023 IF: 4.543  
  Call Number (up) EMAT @ emat @c:irua:195879 Serial 7261  
Permanent link to this record
 

 
Author Kavak, S.; Kadu, A.A.; Claes, N.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Batenburg, K.J.; Bals, S. pdf  url
doi  openurl
  Title Quantitative 3D Investigation of Nanoparticle Assemblies by Volumetric Segmentation of Electron Tomography Data Sets Type A1 Journal article
  Year 2023 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal  
  Volume 127 Issue 20 Pages 9725-9734  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Morphological characterization of nanoparticle assemblies and hybrid nanomaterials is critical in determining their structure-property relationships as well as in the development of structures with desired properties. Electron tomography has become a widely utilized technique for the three-dimensional characterization of nanoparticle assemblies. However, the extraction of quantitative morphological parameters from the reconstructed volume can be a complex and labor-intensive task. In this study, we aim to overcome this challenge by automating the volumetric segmentation process applied to three-dimensional reconstructions of nanoparticle assemblies. The key to enabling automated characterization is to assess the performance of different volumetric segmentation methods in accurately extracting predefined quantitative descriptors for morphological characterization. In our methodology, we compare the quantitative descriptors obtained through manual segmentation with those obtained through automated segmentation methods, to evaluate their accuracy and effectiveness. To show generality, our study focuses on the characterization of assemblies of CdSe/CdS quantum dots, gold nanospheres and CdSe/CdS encapsulated in polymeric micelles, and silica-coated gold nanorods decorated with both CdSe/CdS or PbS quantum dots. We use two unsupervised segmentation algorithms: the watershed transform and the spherical Hough transform. Our results demonstrate that the choice of automated segmentation method is crucial for accurately extracting the predefined quantitative descriptors. Specifically, the spherical Hough transform exhibits superior performance in accurately extracting quantitative descriptors, such as particle size and interparticle distance, thereby allowing for an objective, efficient, and reliable volumetric segmentation of complex nanoparticle assemblies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000991752700001 Publication Date 2023-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 2 Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, 1181122N ; Horizon 2020 Framework Programme, 861950 ; H2020 European Research Council, 815128 ; Approved Most recent IF: 3.7; 2023 IF: 4.536  
  Call Number (up) EMAT @ emat @c:irua:196971 Serial 8793  
Permanent link to this record
 

 
Author Vlasov, E.; Skorikov, A.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Verbeeck, J.; Bals, S. pdf  url
doi  openurl
  Title Secondary electron induced current in scanning transmission electron microscopy: an alternative way to visualize the morphology of nanoparticles Type A1 Journal article
  Year 2023 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.  
  Volume Issue Pages 1916-1921  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography (ET) is a powerful tool to determine the three-dimensional (3D) structure of nanomaterials in a transmission electron microscope. However, the acquisition of a conventional tilt series for ET is a time-consuming process and can therefore not provide 3D structural information in a time-efficient manner. Here, we propose surface-sensitive secondary electron (SE) imaging as an alternative to ET for the investigation of the morphology of nanomaterials. We use the SE electron beam induced current (SEEBIC) technique that maps the electrical current arising from holes generated by the emission of SEs from the sample. SEEBIC imaging can provide valuable information on the sample morphology with high spatial resolution and significantly shorter throughput times compared with ET. In addition, we discuss the contrast formation mechanisms that aid in the interpretation of SEEBIC data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001006191600001 Publication Date 2023-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access OpenAccess  
  Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO). J.V. acknowledges the eBEAM project, which is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 101017720 (FET-Proactive EBEAM). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (grant # PID2020-117779RB-I00). Approved Most recent IF: NA  
  Call Number (up) EMAT @ emat @c:irua:197004 Serial 8795  
Permanent link to this record
 

 
Author Sa, J.; Hu, N.; Heyvaert, W.; Van Gordon, K.; Li, H.; Wang, L.; Bals, S.; Liz-Marzán, L.M.; Ni, W. pdf  url
doi  openurl
  Title Spontaneous Chirality Evolved at the Au–Ag Interface in Plasmonic Nanorods Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal Chem. Mater.  
  Volume Issue Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Chiral ligands are considered a required ingredient during the synthesis of dissymmetric plasmonic metal nanocrystals. The mechanism behind the generation of chiral structures involves the formation of high Miller index chiral facets, induced by the adsorption of such chiral ligands. We found however that, chirality can also evolve spontaneously, without the involvement of any chiral ligands, during the co-deposition of Au and Ag on Au nanorods. When using a specific Au/Ag ratio, phase segregation of the two metals leads to an interface within the obtained AuAg shell, which can be exposed by removing the Ag component via oxidative etching. Although a close-to-racemic mixture of chiral Au nanorods with right and left handedness is found in solution, electron tomography analysis evidences left- and righthanded helicities, both at the Au-Ag interface and at the exposed surface of Au NRs after Ag etching. The helicity profile of the NRs indicates dominating inclination angles in a range from 30° to 60°. Single-particle optical characterization also reveals random handedness in the plasmonic response of individual nanorods. We hypothesize that, the origin of chirality is related with symmetry breaking during the co-deposition of Au and Ag, through an initial perturbation in a small region on the Au-Ag interface that eventually leads to chiral segregation throughout the nanocrystal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001052093300001 Publication Date 2023-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited Open Access OpenAccess  
  Notes The authors acknowledge the financial support from the National Natural Science Foundation of China (grant 22074102). LMLM acknowledges funding from 26 MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020- 117779RB-I00). This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3.; Ministerio de Ciencia e Innovaci?n, PID2020-117779RB-I00 ; H2020 Research Infrastructures, 823717 ; European Social Fund, PID2020-117779RB-I00 ; National Natural Science Foundation of China, 22074102 ; Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number (up) EMAT @ emat @c:irua:198151 Serial 8810  
Permanent link to this record
 

 
Author Van Gordon, K.; Baúlde, S.; Mychinko, M.; Heyvaert, W.; Obelleiro-Liz, M.; Criado, A.; Bals, S.; Liz-Marzán, L.M.; Mosquera, J. pdf  url
doi  openurl
  Title Tuning the Growth of Chiral Gold Nanoparticles Through Rational Design of a Chiral Molecular Inducer Type A1 Journal Article
  Year 2023 Publication Nano Letters Abbreviated Journal Nano Lett.  
  Volume Issue Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract The bottom-up production of chiral gold nanomaterials holds great potential for the advancement of biosensing and nano-optics, among other applications. Reproducible preparations of colloidal nanomaterials with chiral morphology have been reported, using cosurfactants or chiral inducers such as thiolated amino acids. However, the underlying growth mechanisms for these nanomaterials remain insufficiently understood. We introduce herein a purposely devised chiral inducer, a cysteine modified with a hydrophobic chain, as a versatile chiral inducer. The amphiphilic and chiral features of this molecule provide control over the chiral morphology and the chiroptical signature of the obtained nanoparticles by simply varying the concentration of chiral inducer. These results are supported by circular dichroism and electromagnetic modeling as well as electron tomography to analyze structural evolution at the facet scale. Our observations suggest complex roles for the factors involved in chiral synthesis: the chemical nature of the chiral inducers and the influence of cosurfactants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001092787000001 Publication Date 2023-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 10.8 Times cited Open Access OpenAccess  
  Notes J.M. Taboada and F. Obelleiro are thanked for support with electromagnetic simulations. The authors acknowledge financial support by the European Research Council (ERC CoG No. 815128 REALNANO to S. Bals; ERC AdG No. 787510, 4DbioSERS to L.M.L.-M.) and from MCIN/AEI/10.13039/501100011033 and “ESF Investing in your future” (Grant PID2020-117779RB-I00 to L.M.L.-M., Grant RYC2020-030183-I to A.C., and Grants RYC2019-027842-I, PID2020-117885GA-I00 to J.M.). Approved Most recent IF: 10.8; 2023 IF: 12.712  
  Call Number (up) EMAT @ emat @c:irua:200590 Serial 8963  
Permanent link to this record
 

 
Author Altantzis, T.; Lobato, I.; De Backer, A.; Béché, A.; Zhang, Y.; Basak, S.; Porcu, M.; Xu, Q.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Van Tendeloo, G.; Van Aert, S.; Bals, S. url  doi
openurl 
  Title Three-Dimensional Quantification of the Facet Evolution of Pt Nanoparticles in a Variable Gaseous Environment Type A1 Journal article
  Year 2019 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 19 Issue 19 Pages 477-481  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Pt nanoparticles play an essential role in a wide variety of catalytic reactions. The activity of the particles strongly depends on their three-dimensional (3D) structure and exposed facets, as well as on the reactive environment. High-resolution electron microscopy has often been used to characterize nanoparticle catalysts but unfortunately most observations so far have been either performed in vacuum and/or using conventional (2D) in situ microscopy. The latter however does not provide direct 3D morphological information. We have implemented a quantitative methodology to measure variations of the 3D atomic structure of nanoparticles under the flow of a selected gas. We were thereby able to quantify refaceting of Pt nanoparticles with atomic resolution during various oxidation−reduction cycles. In a H2 environment, a more faceted surface morphology of the particles was observed with {100} and {111} planes being dominant. On the other hand, in O2 the percentage of {100} and {111} facets decreased and a significant increase of higher order facets was found, resulting in a more rounded morphology. This methodology opens up new opportunities toward in situ characterization of catalytic nanoparticles because for the first time it enables one to directly measure 3D morphology variations at the atomic scale in a specific gaseous reaction environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455561300061 Publication Date 2019-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 82 Open Access OpenAccess  
  Notes This work was supported by the European Research Council (Grant 335078 COLOURATOM to S.B. and Grant 770887 PICOMETRICS to S.V.A.). The authors acknowledge funding from the European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M., and Q.X. and MUMMERING 765604 to S.B. and Q.X.). The authors gratefully acknowledge funding from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0368.15N, G.0369.15N, and G.0267.18N), postdoctoral grants to T.A. and A.D.B, and an FWO [PEGASUS]2 Marie Sklodowska-Curie fellowship to Y.Z. (12U4917N). L.M.L.-M. acknowledges funding from the Spanish Ministerio de Economía y Competitividad (Grant MAT2017-86659-R). We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X Pascal GPU used for this research. ecas_sara Realnano 815128; sygma Approved Most recent IF: 12.712  
  Call Number (up) EMAT @ emat @UA @ admin @ c:irua:156390 Serial 5150  
Permanent link to this record
 

 
Author Scarabelli, L.; Schumacher, M.; Jimenez de Aberasturi, D.; Merkl, J.‐P.; Henriksen‐Lacey, M.; Milagres de Oliveira, T.; Janschel, M.; Schmidtke, C.; Bals, S.; Weller, H.; Liz‐Marzán, L.M. pdf  url
doi  openurl
  Title Encapsulation of Noble Metal Nanoparticles through Seeded Emulsion Polymerization as Highly Stable Plasmonic Systems Type A1 Journal article
  Year 2019 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 29 Issue 29 Pages 1809071  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The implementation of plasmonic nanoparticles in vivo remains hindered by important limitations such as biocompatibility, solubility in biological fluids, and physiological stability. A general and versatile protocol is presented, based on seeded emulsion polymerization, for the controlled encapsulation of gold and silver nanoparticles. This procedure enables the encapsulation of single nanoparticles as well as nanoparticle clusters inside a protecting polymer shell. Specifically, the efficient coating of nanoparticles of both metals is demonstrated, with final dimensions ranging between 50 and 200 nm, i.e., sizes of interest for bio-applications. Such hybrid nanocomposites display extraordinary stability in high ionic strength and oxidizing environments, along with high cellular uptake, and low cytotoxicity. Overall, the prepared nanostructures are promising candidates for plasmonic applications under biologically relevant conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000467109100024 Publication Date 2019-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 19 Open Access OpenAccess  
  Notes L.S. and M.S. contributed equally to this work. This work was supported by the Spanish MINECO (Grant MAT2017-86659-R), by the German Research Foundation (DFG, Grant LA 2901/1-1) and by the European Research Council (Grant 335078 COLOURATOM to S.B). The authors acknowledge funding from the European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M). L.S. acknowledges funding from the American-Italian Cancer Foundation through a Post-Doctoral Research Fellowship. D.J.d.A. thanks MINECO for a Juan de la Cierva fellowship (IJCI-2015-24264). J.P.M. was financed by Verband der Chemischen Industrie e.V. (VCI). The authors thank Dr. Artur Feld, Dr. Andreas Kornowski and Stefan Werner (Institute of Physical Chemistry, University of Hamburg) for their support. Approved Most recent IF: 12.124  
  Call Number (up) EMAT @ emat @UA @ admin @ c:irua:160710 Serial 5190  
Permanent link to this record
 

 
Author Altantzis, T.; Goris, B.; Sánchez-Iglesias, A.; Grzelczak, M.; Liz-Marzán, L.M.; Bals, S. pdf  url
doi  openurl
  Title Quantitative structure determination of large three-dimensional nanoparticle assemblies Type A1 Journal article
  Year 2013 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 30 Issue 1 Pages 84-88  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Thumbnail image of graphical abstract To investigate nanoassemblies in three dimensions, electron tomography is an important tool. For large nanoassemblies, it is not straightforward to obtain quantitative results in three dimensions. An optimized acquisition technique, incoherent bright field scanning transmission electron microscopy, is combined with an advanced 3D reconstruction algorithm. The approach is applied to quantitatively analyze large nanoassemblies in three dimensions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000310806000008 Publication Date 2012-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 23 Open Access  
  Notes Goa; Fwo; 267867 Plasmaquo; 262348 Esmi Approved Most recent IF: 4.474; 2013 IF: 0.537  
  Call Number (up) UA @ lucian @ c:irua:101776 Serial 2763  
Permanent link to this record
 

 
Author Goris, B.; Bals, S.; van den Broek, W.; Carbó-Argibay, E.; Gómez-Graña, S.; Liz-Marzán, L.M.; Van Tendeloo, G. url  doi
openurl 
  Title Atomic-scale determination of surface facets in gold nanorods Type A1 Journal article
  Year 2012 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 11 Issue 11 Pages 930-935  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract It is widely accepted that the physical properties of nanostructures depend on the type of surface facets1, 2. For Au nanorods, the surface facets have a major influence on crucial effects such as reactivity and ligand adsorption and there has been controversy regarding facet indexing3, 4. Aberration-corrected electron microscopy is the ideal technique to study the atomic structure of nanomaterials5, 6. However, these images correspond to two-dimensional (2D) projections of 3D nano-objects, leading to an incomplete characterization. Recently, much progress was achieved in the field of atomic-resolution electron tomography, but it is still far from being a routinely used technique. Here we propose a methodology to measure the 3D atomic structure of free-standing nanoparticles, which we apply to characterize the surface facets of Au nanorods. This methodology is applicable to a broad range of nanocrystals, leading to unique insights concerning the connection between the structure and properties of nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000310434600015 Publication Date 2012-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 261 Open Access  
  Notes 262348 ESMI; Hercules 3; 24691 COUNTATOMS; 267867 PLASMAQUO Approved Most recent IF: 39.737; 2012 IF: 35.749  
  Call Number (up) UA @ lucian @ c:irua:101778 Serial 182  
Permanent link to this record
 

 
Author Grzelczak, M.; Sánchez-Iglesias, A.; Heidari Mezerji, H.; Bals, S.; Pérez-Juste, J.; Liz-Marzán, L.M. pdf  doi
openurl 
  Title Steric hindrance induces crosslike self-assembly of gold nanodumbbells Type A1 Journal article
  Year 2012 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 12 Issue 8 Pages 4380-4384  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In the formation of colloidal molecules, directional interactions are crucial for controlling the spatial distribution of the building blocks. Anisotropic nanoparticles facilitate directional clustering via steric constraints imposed by each specific shape, thereby restricting assembly along certain directions. We show in this Letter that the combination of patchiness (attraction) and shape (steric hindrance) allows assembling gold nanodumbbell building blocks into crosslike dimers with well-controlled interparticle distance and relative orientation. Steric hindrance between interacting dumbbell-like particles opens up a new synthetic approach toward low-symmetry plasmonic clusters, which may significantly contribute to understand complex plasmonic phenomena.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000307211000081 Publication Date 2012-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 85 Open Access  
  Notes Nanodirect 213948-2; 262348 Esmi Approved Most recent IF: 12.712; 2012 IF: 13.025  
  Call Number (up) UA @ lucian @ c:irua:101900 Serial 3161  
Permanent link to this record
 

 
Author Sánchez-Iglesias, A.; Grzelczak, M.; Altantzis, T.; Goris, B.; Pérez-Juste, J.; Bals, S.; Van Tendeloo, G.; Donaldson, S.H.; Chmelka, B.F.; Israelachvili, J.N.; Liz-Marzán, L.M.; pdf  doi
openurl 
  Title Hydrophobic interactions modulate self-assembly of nanoparticles Type A1 Journal article
  Year 2012 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 6 Issue 12 Pages 11059-11065  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Hydrophobic interactions constitute one of the most important types of nonspecific interactions in biological systems, which emerge when water molecules rearrange as two hydrophobic species come close to each other. The prediction of hydrophobic interactions at the level of nanoparticles (Brownian objects) remains challenging because of uncontrolled diffusive motion of the particles. We describe here a general methodology for solvent-induced, reversible self-assembly of gold nanoparticles into 3D clusters with well-controlled sizes. A theoretical description of the process confirmed that hydrophobic interactions are the main driving force behind nanoparticle aggregation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000312563600070 Publication Date 2012-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 311 Open Access  
  Notes 267867 Plasma Quo; 246791 Countatoms; 262348 Esmi Approved Most recent IF: 13.942; 2012 IF: 12.062  
  Call Number (up) UA @ lucian @ c:irua:105292 Serial 1538  
Permanent link to this record
 

 
Author Gómez-Graña, S.; Goris, B.; Altantzis, T.; Fernández-López, C.; Carbó-Argibay, E.; Guerrero-Martínez, A.; Almora-Barrios, N.; López, N.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L.M.; pdf  doi
openurl 
  Title Au@Ag nanoparticles : halides stabilize {100} facets Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume 4 Issue 13 Pages 2209-2216  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Seed-mediated growth is the most efficient methodology to control the size and shape of colloidal metal nanoparticles. In this process, the final nanocrystal shape is defined by the crystalline structure of the initial seed as well as by the presence of ligands and other additives that help to stabilize certain crystallographic facets. We analyze here the growth mechanism in aqueous solution of silver shells on presynthesized gold nanoparticles displaying various well-defined crystalline structures and morphologies. A thorough three-dimensional electron microscopy characterization of the morphology and internal structure of the resulting core-shell nanocrystals indicates that {100} facets are preferred for the outer silver shell, regardless of the morphology and crystallinity of the gold cores. These results are in agreement with theoretical analysis based on the relative surface energies of the exposed facets in the presence of halide ions.  
  Address  
  Corporate Author Thesis  
  Publisher American Chemical Society Place of Publication Washington, D.C Editor  
  Language Wos 000321809500018 Publication Date 2013-06-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.353 Times cited 131 Open Access  
  Notes 267867 Plasmaquo; 246791 COUNTATOMS; 262348 ESMI; FWO Approved Most recent IF: 9.353; 2013 IF: 6.687  
  Call Number (up) UA @ lucian @ c:irua:109811 Serial 204  
Permanent link to this record
 

 
Author Goris, B.; de Backer, A.; Van Aert, S.; Gómez-Graña, S.; Liz-Marzán, L.M.; Van Tendeloo, G.; Bals, S. pdf  doi
openurl 
  Title Three-dimensional elemental mapping at the atomic scale in bimetallic nanocrystals Type A1 Journal article
  Year 2013 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 13 Issue 9 Pages 4236-4241  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A thorough understanding of the three-dimensional (3D) atomic structure and composition of coreshell nanostructures is indispensable to obtain a deeper insight on their physical behavior. Such 3D information can be reconstructed from two-dimensional (2D) projection images using electron tomography. Recently, different electron tomography techniques have enabled the 3D characterization of a variety of nanostructures down to the atomic level. However, these methods have all focused on the investigation of nanomaterials containing only one type of chemical element. Here, we combine statistical parameter estimation theory with compressive sensing based tomography to determine the positions and atom type of each atom in heteronanostructures. The approach is applied here to investigate the interface in coreshell Au@Ag nanorods but it is of great interest in the investigation of a broad range of nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000330158900043 Publication Date 2013-08-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 90 Open Access  
  Notes FWO; 246791 COUNTATOMS; 267867 PLASMAQUO; 262348 ESMI; 312483 ESTEEM2; Hercules 3; esteem2_jra4 Approved Most recent IF: 12.712; 2013 IF: 12.940  
  Call Number (up) UA @ lucian @ c:irua:110036 Serial 3650  
Permanent link to this record
 

 
Author Goris, B.; Polavarapu, L.; Bals, S.; Van Tendeloo, G.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title Monitoring galvanic replacement through three-dimensional morphological and chemical mapping Type A1 Journal article
  Year 2014 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 6 Pages 3220-3226  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Galvanic replacement reactions on metal nanoparticles are often used for the preparation of hollow nanostructures with tunable porosity and chemical composition, leading to tailored optical and catalytic properties. However, the precise interplay between the three-dimensional (3D) morphology and chemical composition of nanostructures during galvanic replacement is not always well understood as the 3D chemical imaging of nanoscale materials is still challenging. It is especially far from straightforward to obtain detailed information from the inside of hollow nanostructures using electron microscopy techniques such as SEM or TEM. We demonstrate here that a combination of state-of-the-art EDX mapping with electron tomography results in the unambiguous determination of both morphology transformation and elemental composition of nanostructures in 3D, during galvanic replacement of Ag nanocubes. This work provides direct and unambiguous experimental evidence toward understanding the galvanic replacement reaction. In addition, the powerful approach presented here can be applied to a wide range of nanoscale transformation processes, which will undoubtedly guide the development of novel nanostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000337337100038 Publication Date 2014-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 120 Open Access OpenAccess  
  Notes 267867 Plasmaquo; 246791 Countatoms; 335078 Colouratom; 262348 Esmi; Fwo; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number (up) UA @ lucian @ c:irua:116954 Serial 2189  
Permanent link to this record
 

 
Author Goris, B.; Guzzinati, G.; Fernández-López, C.; Pérez-Juste, J.; Liz-Marzán, L.M.; Trügler, A.; Hohenester, U.; Verbeeck, J.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Plasmon mapping in Au@Ag nanocube assemblies Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue 28 Pages 15356-15362  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag coreshell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000339368700031 Publication Date 2014-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 41 Open Access OpenAccess  
  Notes Fwo; 246791 Countatoms; 278510 Vortex; 335078 Colouratom; 262348 Esmi ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number (up) UA @ lucian @ c:irua:118099UA @ admin @ c:irua:118099 Serial 2644  
Permanent link to this record
 

 
Author Angelomé, P.C.; Heidari Mezerji, H.; Goris, B.; Pastoriza-Santos, I.; Pérez-Juste, J.; Bals, S.; Liz-Marzán, L.M. pdf  doi
openurl 
  Title Seedless synthesis of single crystalline Au nanoparticles with unusual shapes and tunable LSPR in the near-IR Type A1 Journal article
  Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 24 Issue 7 Pages 1393-1399  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The plasmonic properties of metal nanoparticles have acquired great importance because of their potential applications in very diverse fields. Metal nanoparticles with localized surface plasmon resonances (LSPR) in the near-infrared (NIR, 7501300 nm) are of particular interest because tissues, blood, and water display low absorption in this spectral range, thus facilitating biomedical applications. Cetyltrimethylammonium chloride (CTAC) was used to induce the seedless formation of highly anisotropic, twisted single crystalline Au nanoparticles in a single step. The LSPR of the obtained particles can be tuned from 600 nm up to 1400 nm by simply changing the reaction temperature or the reagents concentrations. The tunability of the LSPR is closely associated with significant changes in the final particle morphology, which was studied by advanced electron microscopy techniques (3D Tomography and HAADF-STEM). Kinetic experiments were carried out to establish the growth mechanism, suggesting that slow kinetics together with the complexation of the gold salt precursor to CTAC are key factors favoring the formation of these anisotropic particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000302487500020 Publication Date 2012-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 42 Open Access  
  Notes Fwo Approved Most recent IF: 9.466; 2012 IF: 8.238  
  Call Number (up) UA @ lucian @ c:irua:97388 Serial 2959  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: