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Abstract 

Morphological characterization of nanoparticle assemblies and hybrid nanomaterials is critical in 

determining their structure-property relationships, as well as in the development of structures with 

desired properties. Electron tomography (ET) has become a widely utilized technique for the three-

dimensional characterization of nanoparticle assemblies. However, the extraction of quantitative 

morphological parameters from the reconstructed volume can be a complex and labor-intensive 

task. In this study, we aim to overcome this challenge by automating the volumetric segmentation 

process applied to three-dimensional (3D) reconstructions of nanoparticle assemblies. Key to 

enabling automated characterization is to assess the performance of different volumetric 

segmentation methods in accurately extracting predefined quantitative descriptors for 

morphological characterization. In our methodology, we compare the quantitative descriptors 

obtained through manual segmentation with those obtained through automated segmentation 

methods, to evaluate their accuracy and effectiveness. To show generality, our study focuses on 

the characterization of assemblies of CdSe/CdS quantum dots, gold nanospheres (AuNSs) and 

CdSe/CdS encapsulated in polymeric micelles, and silica-coated gold nanorods (AuNRs) 

decorated with both CdSe/Cds or PbS quantum dots. We use two unsupervised segmentation 

algorithms: the Watershed transform and the spherical Hough transform. Our results demonstrate 

that the choice of automated segmentation method is crucial for accurately extracting the 

predefined quantitative descriptors. Specifically, the spherical Hough transform exhibits superior 

performance in accurately extracting quantitative descriptors, such as particle size and interparticle 

distance, thereby allowing for an objective, efficient, and reliable volumetric segmentation of 

complex nanoparticle assemblies.  
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1. Introduction 

Nanoparticle assemblies with tunable three-dimensional (3D) structures and properties are of great 

interest in various fields.1–4 By altering the number, shape, size, and separation distance between 

individual nanoparticles, it is possible to assemble custom structures with specific properties for 

targeted use.5 Of particular interest are multifunctional nanostructures comprising particles with 

different compositions.6 However,  a detailed understanding of the structure-property relationship 

often requires a thorough structural characterization that provides accurate information about the 

distribution and mutual separation between the different components. For example, when 

combining plasmonic nanoparticles with photoluminescent quantum dots, the overall optical 

response critically depends on their precise organization, which may result in photoluminescence 

quenching or enhancement, for shorter or longer separation distances. 

Transmission electron microscopy (TEM) is a widely used technique for studying the shape, size 

distribution, composition, and structure of nanomaterials. However, conventional TEM images 

only provide a two-dimensional (2D) representation of a three-dimensional (3D) object. One way 

to overcome this limitation is through electron tomography (ET), which involves acquiring a series 

of 2D projection images at different angles and using them to create a 3D reconstruction. This 

method has proven to be particularly useful for characterizing 3D assemblies of nanoparticles. 

Significant progress has been recently made toward optimizing the acquisition and reconstruction 

of ET tilt series.7–15 Still, reconstruction artifacts, such as misalignment, streak artifacts, or the 

missing wedge,16 hamper straightforward extraction of quantitative morphological parameters, 

such as e.g., the number of particles, and the interparticle distances, from a reconstructed 3D 

tomography volume.  
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To extract quantitative morphological parameters from a 3D reconstructed volume, volumetric 

segmentation is essential. This process involves assigning regions of the data set to specific 

materials or compositions based on the grey levels of the voxels. Many approaches have been 

proposed to reach this goal, among which manual segmentation is most often used. This process 

involves visually identifying the boundary between different grey levels in a 3D reconstructed 

volume. Ideally, the procedure is repeated for each slice of the reconstructed volume in the three 

principal directions (x, y, z). Manual segmentation of 3D reconstructions of nano-assemblies 

presents a challenge in terms of accuracy and efficiency. The subjective nature of manual 

segmentation and the difficulty in segmenting assemblies with a high number of small or closely 

spaced particles are the major drawbacks. To address these limitations, advanced reconstruction 

algorithms have been developed. One such example is the discrete algebraic reconstruction 

technique (DART),17–19 which assumes the sample consists of a small, discrete set of materials. 

While effective in certain cases, this method requires extensive parameter tuning and is susceptible 

to image formation artifacts. Another example is the sparse sphere reconstruction (SSR) method, 

which assumes that nanoparticles can be modelled as perfect spheres of known size.10 Although 

suitable for many nanoparticle assemblies, this algorithm cannot be generalized for assemblies 

made of anisotropic nanoparticles.  

Considering the limitations of existing methods, the focus of the present study is on enabling 

automated volumetric segmentation for quantitative morphological feature extraction of 3D 

nanoparticle assemblies, using robust image processing operations, and therefore not relying on 

the limiting assumptions of advanced reconstruction methods. Key to our approach is determining 

which automated volumetric segmentation methods are suitable for accurately extracting 

predefined quantitative descriptors for morphological characterization. This requires a rigorous 
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validation of algorithmic performance with respect to a “gold standard” segmentation. In our 

methodology, we evaluate the accuracy of automated volumetric segmentation methods by 

comparing the quantitative descriptors obtained through manual segmentation with those obtained 

through automated segmentation. 

Specifically, our experimental study is devoted to extracting quantitative parameters that describe 

3D assemblies based on the assembly of cadmium selenide/cadmium sulfide (CdSe/CdS) quantum 

dots (QDs) and co-assembly of spherical gold nanoparticles (AuNPs) and CdSe/CdS, both 

encapsulated in polymeric micelles of polystyrene-polyacrylic acid (PS-PAA), induced by 

hydrophobic interactions (Figure 1). We also investigated hybrid materials comprising silica-

coated gold nanorods (AuNRs@SiO2) decorated with QDs (CdSe/CdS and PbS), (Figure 2). 

These systems are of interest because the combination of semiconductor and plasmonic materials 

may enhance existing functionalities or may even lead to new synergy and applications in the fields 

of catalysis,20,21 plasmonics22–25 sensors,26 and cancer therapy.27  

Two different strategies were used here, which can be applied toward tailoring the interaction 

between the plasmonic Au core and the satellite QDs, through control over their respective 

positions and distances. Whereas in the first strategy, hydrophobic NPs were encapsulated into 

block-copolymer micelles upon the addition of water, the second involved silica coating of Au 

NRs and chemical binding of QDs onto the thiol-functionalized silica surface. 

Our study compares the extraction of fixed quantitative descriptors, including the number of QDs, 

particle size, and interparticle distance, from 3D reconstructions through manual segmentation, 

with the results obtained using unsupervised image segmentation methods. We use two alternative 

unsupervised algorithms for segmentation: the Watershed transform28 and the spherical Hough 

transform.29 
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The Watershed transform has been traditionally employed for volumetric segmentation,30 and it 

has been successfully demonstrated in quantifying spherical silica NPs from electron tomography 

reconstructions. However, this method may fail in certain scenarios due to its sensitivity to noise, 

over-segmentation, and difficulty in separating touching or overlapping objects.31 In contrast, it 

was recently shown that the spherical Hough transform can address some of these limitations, 

delivering more accurate and reliable results when extracting quantitative descriptors.32 We 

observe that the spherical Hough transform has found applications in biomedical imaging,33,34 but 

has not been demonstrated in 3D electron tomography to best of our knowledge. While both the 

Watershed transform and the spherical Hough transform can perform on par with manual 

segmentation techniques for the characterization of nanoparticle assemblies, a comparative 

analysis of the number of particles in the assembly, their average diameter, and interparticle 

distances, reveals that the spherical Hough transform surpasses the Watershed transform in terms 

of accuracy and efficiency. The Hough approach therefore offers a robust, objective, and efficient 

method for the volumetric segmentation of diverse nanoparticle assemblies.  

2. Materials and Methods  

2.1. Materials and Synthesis Details 

Samples described in Table 1. 

Table 1. Description of the samples used in this study. 

Sample Core QDs Encapsulated/Assembled 

#1 - CdSe/CdS Polymeric micelles 

#2 Au nanosphere CdSe/CdS Polymeric micelles 
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#3 Au nanorod CdSe/CdS SiO2 shell 

#4 Au nanorod PbS SiO2 shell 

 

2.1.1. Chemicals 

Gold (III) chloride trihydrate (HAuCl4∙3H2O, ≥ 99%), sodium borohydride (NaBH4, 99%), L-

ascorbic acid (AA, ≥ 99%), silver nitrate (AgNO3, ≥ 99%), sodium oleate (NaOL, ≥ 99%), 

tetraethyl orthosilicate (TEOS, 98%), sodium hydroxide (NaOH, 97%), 

benzyldimethylhexadecylammonium chloride (BDAC), hexadecyltrimethylammonium bromide 

(CTAB, ≥ 99%), hexadecyltrimethylammonium chloride (CTAC, 25 %wt), tetrahydrofuran (THF, 

≥ 99.9%), and 3-mercaptopropyl-trimethoxysilane (MPTS, 95 %) were purchased from Sigma-

Aldrich. Hydrochloric acid solution (HCl, 37 wt%) and ethanol (99.5 %) were purchased from 

Scharlau. Thiol-terminated polystyrene (PS509-SH, MW: 53K) and poly (styrene-b-acrylic acid) 

(PS403-b-PAA62) were purchased from Polymer Source. Quantum dot nanocrystals stabilized 

with oleic acid (OA) in tetrahydrofuran: CdSe/CdS@OA (diameter: 11.4 ± 1.8 nm) and PbS@OA 

(diameter: 6.2 ± 0.6 nm) were purchased from Center for Applied Nanotechnology GmbH (CAN). 

All chemicals were used without further purification. Milli-Q water (resistivity 18.2 MΩ·cm at 25 

°C) was used in all experiments. All glassware was cleaned with aqua regia, rinsed with Milli-Q 

water, and dried before use. 

2.1.2. Synthesis of gold nanospheres.7 

Gold nanospheres were synthesized via successive seed-mediated growth. First, gold seeds were 

prepared by fast reduction of HAuCl4 with NaBH4 in CTAB solution. HAuCl4 solution (0.025 mL, 

50 mM) solution was added to a solution of CTAB (4.7 mL, 100 mM), the mixture was stirred for 
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5 min at 27 °C until the Au+3:CTAB complex was solubilized. Subsequently, a freshly prepared 

NaBH4 solution (0.3 mL, 10 mM) was rapidly injected under vigorous stirring. The solution color 

changed from yellow to brownish yellow and stirring was stopped after 2 min. The Au seed 

solution was aged at room temperature for 30 min prior to use, to allow the decomposition of 

excess sodium borohydride. The final concentration of metallic gold was 0.25 mM. The same seed 

solution was used to synthesize Au nanospheres and Au nanorods. 

An aliquot of seed solution (0.6 mL) was added to a growth solution (100 mL) containing CTAC 

(100 mM), HAuCl4 (0.18 mM), and AA (0.36 mM). The mixture was left undisturbed for 2 h at 

25 ºC. After synthesis, the colloidal dispersion containing 10 nm gold nanospheres was centrifuged 

(9000 rpm, 2 h) to remove excess CTAC and ascorbic acid, and redispersed in an aqueous BDAC 

solution (10 mM) to a final Au concentration equal to 2.5 mM. 

To grow 10 nm Au nanospheres up to 40 nm, a volume of Au seed solution (0.08 mL, 2.5 mM) 

was added under vigorous stirring to a growth solution (25 mL) containing BDAC (100 mM), 

HAuCl4 (0.5 mM), and AA (1 mM). The mixture was left undisturbed for 30 min at 30 ºC, and 

then washed twice by centrifugation. The particles were finally dispersed in CTAB (1 mM) to a 

final Au concentration equal to 5 mM. The final diameter of Au spheres was 38 ± 1 nm. 

2.1.3 Synthesis of gold nanorods.35 

Gold nanorods (AuNRs) were prepared through the well-known seeded growth method, based on 

the reduction of HAuCl4 on CTAB-stabilized Au nanoparticle seeds in the presence of silver ions. 

To prepare the growth solution, 1.8 g of CTAB and 0.25 g of NaOL were dissolved in 100 mL of 

warm Milli-Q water (~ 50 ºC), in a 250 mL erlenmeyer flask. Once NaOL was completely 
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dissolved, the mixture was cooled down to 30 ºC and AgNO3 (4.8 mL, 4 mM) was added under 

stirring. The mixture was kept at 30 ºC for 15 min, after which HAuCl4 was added (1 mL, 50 mM) 

under vigorous stirring. The mixture became colorless after 20 min at 30 ºC and HCl (0.3 mL, 

37%) was introduced. After 15 min of stirring, AA (0.25 mL, 64 mM) was added, and the solution 

was vigorously stirred for 30 s. Finally, seed solution (0.16 mL, 0.25 mM) was injected into the 

growth solution under vigorous stirring for 5 minutes, and then the solution was left undisturbed 

at 30 ºC for 12 h. The solution was centrifuged twice (7000 rpm, 30 min) to remove excess 

reactants and dispersed in aqueous CTAB solution (1 mM). The final concentration of metallic Au 

was 5 mM. The final dimensions of AuNRs were 88 ± 3 nm (length) and 22 ± 1 nm (width).  

2.1.4 Functionalization with polystyrene, clustering, and encapsulation of Au and CdSe/CdS 

nanoparticles.7,36 

To replace the surfactant with a hydrophobic polymer, thiolated polystyrene (PS-SH) with a 

molecular weight of 53 kg/mol was used. The AuNS dispersion (2 mL, 5 mM) was added dropwise 

under sonication to a PS-SH solution (1 molecule of PS-SH per nm2 of gold surface) in THF (20 

mL). The solution was left for 15 min in an ultrasonic bath. To ensure ligand exchange, the 

resulting mixture was left undisturbed for 12 h, and then centrifuged twice (7000 rpm, 30 min). 

The particles were finally dispersed in THF to a final Au concentration of 5 mM. 

The clustering of PS-functionalized Au NPs (AuNPs@PS) and CdSe/CdS@OA quantum dots was 

carried out according to a previously reported method. In a typical self-assembly experiment, water 

(0.2 mL) was added dropwise to AuNP@PS (0.25 mM, 10 mL) and CdSe/CdS@OA (0.02 mL, 10 

mg/mL) in THF, under magnetic stirring. The dispersion was stirred for 5 min and then a solution 

of PS403-b-PAA62 in THF (1 mL, 6 mg/mL) was added dropwise under magnetic stirring. 
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Subsequently, the water content was increased up to 35 wt%, followed by increasing the 

temperature up to 70 ºC, which was maintained for 30 min. The dispersion of clusters was then 

centrifuged twice (4000 rpm, 30 min) and redispersed in water. 

For clustering of CdSe/CdS@OA quantum dots, water (0.3 mL) was added dropwise to the QDs 

dispersion (0.02 mL, 10 mg/mL) in THF, under magnetic stirring. The mixture was stirred for 10 

min and then a solution of PS403-b-PAA62 in THF (0.2 mL, 6 mg/mL) was added dropwise under 

magnetic stirring. Subsequently, the water content was increased up to 35 wt%, followed by 

increasing the temperature up to 70 ºC, which was maintained for 30 min. The clusters dispersion 

was centrifuged twice (18000 rpm, 30 min) and redispersed in water. 

2.1.5. Mesoporous silica coating of AuNRs and decoration with QDs.37 

Mesoporous silica shells were grown on AuNRs by adding three consecutive aliquots of TEOS 

solution (24 µL, 20 vol% in EtOH ) at 60 min intervals, to a solution containing AuNRs@CTAB 

(8 mL, 1 mM) and NaOH (80 µL, 100 mM) in CTAB (1.5 mM). The reaction was allowed to 

continue while stirring for 2 days. The resulting silica-coated gold nanorods (AuNRs@SiO2) were 

washed twice with ethanol (5000 rpm, 30 min), and finally dispersed in EtOH to a final Au 

concentration of 1 mM. Then, MPTS (5 mL, 0.15 % v/v) was added to the AuNRs@SiO2 (5 mL, 

1 mM) dispersion, to modify the silica surface. The mixture was heated to 40 °C for 24 hours and 

then thiol-functionalized AuNRs@SiO2 were washed three times with ethanol by centrifugation 

to remove excess MPTS, and finally dispersed in THF to a final Au concentration of 0.5 mM. 

CdSe/CdS or PbS QDs dispersed in THF (0.1 mL, 10 mg/mL) were mixed with the suspension of 

thiol-functionalized AuNRs@SiO2 nanoparticles in THF (5 mL, 0.5 mM) under mild stirring for 

4 hours. The QDs were self-assembled onto AuNRs@SiO2 nanoparticles due to the interaction of 
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thiol groups and QDs. Finally, the hybrid AuNRs@SiO2@QDs nanoparticles were centrifuged 

twice and redispersed in THF. 

2.2 Methods 

2.2.1. TEM Imaging 

TEM images were acquired with a JEOL JEM-1400PLUS transmission electron microscope 

operating at an acceleration voltage of 120 kV. 

2.2.2. Electron Tomography 

The ET experiments for samples #1, #2, and #3 were performed using a Thermo Fisher Tecnai G2 

microscope operating at 200 kV in high-angle annular dark field (HAADF-STEM) mode. Tilt 

series for sample #1 were acquired from -72° to +75°, for sample #2 from -75° to +75°, and for 

sample #3 from -66° to +69°. Sample #4 contained smaller quantum dots (QDs) compared to the 

other three samples. Therefore, a Thermo Fisher Scientific Tecnai Osiris operating at 200 kV with 

the better spatial resolution was used to collect a tilt series from -75° to +75°. A Fischione model 

2020 single tilt tomography with a tilt increment of 3° was used for all series. From these tilt-

series, 3D volumes were reconstructed using the Expectation Maximization algorithm,38–40 which 

iteratively minimizes the maximum likelihood of the mismatch between the forward projection 

and the tilt-series, assuming that the noise follows a Poisson distribution, which is appropriate for 

electron microscopy images. During each iteration, the algorithm first estimates the hidden 

parameters of the model using the current estimates of the observed parameters and then updates 

the estimates of the observed parameters using the newly-estimated hidden parameters. This 

process is repeated until convergence, resulting in a 3D volume with minimal noise and artifacts. 
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2.2.3 Watershed transform 

The Watershed transform is a prevalent technique in the field of image processing for demarcating 

different regions or “basins” in an image. This method is based on the principles of a “watershed”, 

which is a region of land that drains water into a specific river or lake. In the context of image 

processing, the idea behind Watershed segmentation is to treat the grayscale values in an image as 

a topographical map, where the darkest voxels represent the low points (valleys), and the lightest 

voxels represent the high points (peaks). The algorithm then “floods” the 3D image from the peaks, 

filling in the valleys and creating a set of connected regions. These regions can then be labelled 

and treated as individual particles in the image. Details about the method and its hyperparameters 

are given in the SI-section 2. In this study, the Watershed transform was implemented using 

Avizo3D visualization software, and the LabelAnalysis tool of Avizo3D was used to quantify 

morphological parameters, including center position and corresponding radius.   

2.2.4 Spherical Hough transform 

The spherical Hough transform is an algorithm that detects spherical objects in the 3D image, 

characterized by a radius and a central position (as shown in SI-section 3). 41,42 This approach has 

been primarily utilized in biomedical imaging for segmentation purposes, such as detecting 

multiform femoral heads and cell nuclei.43–45 In our study, the spherical Hough Transform was 

employed to identify spherical particles in 3D anisotropic assemblies. The four-dimensional 

representation (i.e., center location and radius) allowed for easier manipulation of the spherical 

objects in three dimensions. The transform employs a voting mechanism to detect clusters of points 

that correspond to individual particles and construct a spherical model of the particles using these 

clusters (refer to the SI-section 3 for more information regarding the algorithm). The spherical 
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Hough Transform offers several benefits over alternative methods, including robustness to noise 

and the ability to handle complex shapes. Its voting system allows for the accurate detection of 

particles even in the presence of noise or distortion, thereby enabling the separation of attached 

and/or agglomerated particles without subjectivity. The implementation of this transform was 

performed in MATLAB, and the resulting code was validated on numerous synthetic structures. 

3. Results 

In Figure 3, an overview of the different samples is presented through 2D high-angle annular dark-

field scanning transmission electron microscopy (HAADF-STEM) images. Sample #1, depicted 

in Figure 1.a and Figure 3.a, comprises solely of CdSe/CdS QDs embedded within a polymeric 

micelle shell. Sample #2, shown in Figure 1.b and Figure 3.b, was prepared by co-assembly of 

AuNPs and QDs,7,35–37 resulting in hybrid assemblies typically containing one Au nanosphere and 

numerous QDs. Two additional samples were examined, which were prepared by the second 

strategy, as described above. Figure 2.a and Figure 3.c present the general appearance of the 

hybrid particles in sample #3, which consist of CdSe/CdS QDs assembled onto gold nanorods and 

surrounded by a silica shell (AuNRs@SiO2). Sample #4 (Figure 2.b and Figure 3.d) has a similar 

structure, but PbS QDs were used instead of CdSe/CdS.   
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a) 

b) 

Figure 1. TEM images of clusters encapsulated in polymeric micelles: a) CdSe/Cd; b) 

AuNS@CdSe/CdS. 
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a) 

b) 

Figure 2. TEM images of AuNR@SiO2@QDs: a) CdS/CdS; b) PbS. 

b) a) c) d) 

Figure 3. 2D HAADF-STEM images of different hybrid NP assemblies: a) sample #1, CdSe/CdS 

QDs in polymeric micelles; b) sample #2, AuNPs and CdSe/CdS co-encapsulated in polymeric 

micelles; c) sample #3, AuNR@SiO2@CdSe/CdS; d) sample #4, AuNR@SiO2@PbS. All scale 

bars correspond to 30 nm. 
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The morphological characterization of all nanoparticle assemblies was performed through the 

application of ET. The technical details and the parameters used for the ET experiments can be 

found in the Materials and Methods section. The results of the ET reconstructions are depicted in 

Figure 4, where the visual representation of the 3D structures and representative orthoslices 

acquired through the 3D reconstructions are presented. Our observations indicate that the Au NPs 

are positioned at the central axis of the assemblies, with a uniform distribution of the QDs 

surrounding them. We can also confirm that, the QDs in samples #3 and #4 are primarily located 

on the outer surface of the SiO2 shell, whereas in samples #1 and #2, the QDs are dispersed 

throughout the polymeric micelle matrix. This different distribution of QDs was expected from the 

application of different synthesis methods, samples #1 and #2 being prepared from co-assembly 

of NPs from a mixed dispersion and subsequently encapsulated by the block-copolymer, whereas 

in samples #3 and #4 the QDs were added after coating of AuNRs with the SiO2 shell and 

modifying its outer surface to facilitate QD binding.  
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The ultimate objective of our 3D analysis was the determination of quantitative descriptors for the 

nanoparticle assemblies, including the number of particles within the assembly, the interparticle 

distances between QDs, and the mean diameter of the individual QDs. To obtain these parameters, 

the center of mass position of each QD must be first determined. However, as the QDs in the 

assemblies exhibit varying shapes and sizes, and frequently appear to be agglomerated in the 

reconstructions, algorithms such as DART and SSR are not suitable. Therefore, the focus of this 

study is to optimize the segmentation process applied to a reconstructed 3D dataset, as it pertains 

to quantifying the morphological features of nanoparticle assemblies.  

First, we performed careful manual segmentation for every orthoslice along the x, y, and z 

directions. The boundaries of the individual QDs and the Au nanoparticle were manually indicated 

and separated from the background for each assembly, as illustrated in Figure S1. This approach 

a) 

e) 

b) 

f) 

c) 

g) 

d) 

h) 

Figure 4. 3D visualizations of representative reconstructions (a-d: #1-#4), and orthoslices (e-h: 

#1-#4). All scale bars represent 30 nm. 
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is time-consuming and can be subjective. To reduce user bias, manual segmentation was repeated 

several times. In this manner, we consider the resulting quantitative parameters to be the accepted 

reference values, and they are listed in Table 2. 

Table 2. Summary of the most important descriptors for the NP assemblies as extracted by means 

of different segmentation approaches: manual segmentation, use of the Watershed transform, and 

a spherical Hough transform. The determined descriptors include: the number of QDs in an 

assembly, the diameter distribution of the individual QDs, the average interparticle distances, and 

the nearest neighbor distances, together with standard error values. 

 

 

 

 Manual seg. 
Watershed 

 transform 

Spherical 

Hough 

transform 

#
1
 

number of QDs 136 127 136 

diameter (nm) 10.1 ± 0.2 10.6 ± 0.3 10.0 ± 0.1 

average distance (nm) 65. 3 ± 0.2 67.7 ± 0.2 65.0 ± 0.2 

nearest neighbor distance 

(nm) 
11.6 ± 0.3 12.0 ± 0.3 12.1 ± 0.2 

#
2
 

number of QDs 71 78 72 

diameter (nm) 10.9 ± 0.2 10.2 ± 0.2 11.0 ± 0.1 

average distance (nm) 53.7 ± 0.3 53.4 ± 0.3 53.9 ± 0.2 

nearest neighbor distance 

(nm) 
14.2 ± 0.6 12.7 ± 0.7 14.6 ± 0.5 

#
3
 

number of QDs 130 131 128 

diameter (nm) 11.7 ± 0.2 11.5 ± 0.2 11.8 ± 0.1 

average distance (nm) 75.2 ± 0.2 74.8 ± 0.2 73.6 ± 0.2 

nearest neighbor distance 

(nm) 
12.4 ± 0.2 12.6 ± 0.3 12.5 ± 0.2 

#
4
 

number of QDs 153 154 150 

diameter (nm) 6.7 ± 0.1 6.3 ± 0.1 6.5 ± 0.1 

average distance (nm) 66.5 ± 0.2 70.3 ± 0.2 70.4 ± 0.2 

nearest neighbor distance 

(nm) 
8.2 ± 0.4 8.6 ± 0.3 8.4± 0.3 
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Next, we performed segmentation of our 3D reconstructions based on the use of a Watershed 

transform31 (Figure S2-3), as summarized in Table 2, and Figure 5. The percentage error values 

for the calculated parameters are presented in Figure 6. It can be seen that the quantified results 

are in reasonable agreement with the manual segmentation results, which we accepted as accepted 

reference values. The obtained diameters are furthermore consistent with the values provided by 

the vendor of the quantum dot nanocrystals (see section 4.1.1). On the other hand, larger deviations 

(see error bars) were found regarding the number of QDs per assembly for samples #1 and #2, 

average diameter for samples #1, #2, and #4, and nearest neighbor distance for samples #2 and #4. 

This unexpected result (in particular for QD diameter) is likely to result from an oversegmentation 

problem, which we discuss below. 
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Figure 5. 3D visualizations obtained through manual segmentation (a, d, g, j), segmentation using 

the Watershed transform (b, e, h, k), and segmentation using the spherical Hough transform (c, f, 

i, l), for samples #1, #2, #3, and #4, from first to last row, respectively. Scale bars represent 30 nm 

in each image. 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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As an alternative, we applied the spherical Hough transform and a qualitative comparison to the 

manual segmentation and results obtained by the Watershed transform is depicted in Figure 5. The 

quantified outcomes are illustrated in Table 2 and represented by the error percentage values in 

Figure 6. The analysis reveals that the quantified results obtained through the spherical Hough 
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a) b) 

c) d) 

Figure 6. Percentage error values for: a) number of QDs, b) average diameters of QDs, c) 

average distance between QDs, and d) average distance of a QD to the nearest neighbor QD. 

Stars (★) indicate manual segmentation results, squares (■) indicate the Watershed transform 

results, and circles (●) indicate the results from the spherical Hough function. Error bars were 

calculated from the difference (%) to the average of accepted reference values (manual 

segmentation). 
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transform segmentation exhibit a high degree of concurrence with the reference data. The number 

of QDs demonstrates excellent overlap with the reference data, as demonstrated by the small error 

percentage values displayed in Figure 6. In comparison to the results obtained through the 

Watershed transform, the spherical Hough transform exhibits significantly improved accuracy in 

determining the parameters of average diameter, average distance, and average nearest neighbor 

distance, as evidenced by the results in Figure 6. 

4. Discussion 

The efficacy of each segmentation method was compared across four distinct nanoparticle 

assemblies. The applied methods comprised manual segmentation, the Watershed transform, 

corresponding to a traditional approach for segmentation problems and the spherical Hough 

transform, an alternative technique for segmentation32. Our results indicate 136, 71, 130, and 152 

particles were detected by manual segmentation for samples #1 – #4, respectively. The number of 

particles detected using the Watershed transform was higher than the accepted reference values 

for samples #2, #3, and #4, an issue commonly referred to as over-segmentation (Figure S4), 

which arises from the division of an image of particles into an excessive number of regions or 

segments that do not correspond to distinct structures or particles. Conversely, the number of 

particles detected using the Spherical Hough transform was in better agreement (lower percentage 

error values, Figure 6) with the accepted reference values, compared to the Watershed transform, 

for all samples. 

Subsequently, the diameters of the nanoparticles were computed using the three segmentation 

methods. The diameters computed through manual segmentation were 10.1, 10.9, 11.7 and 6.7 nm 

for samples #1 – #4, respectively. The diameters calculated using the Watershed transform differed 

from the accepted reference values by 2-7%. In contrast, the diameters calculated using the 
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Spherical Hough transform again exhibited better agreement with the accepted reference values, 

with differences ranging from 0.9-3.0%.  

Additionally, the inter-particle distances were calculated using all three segmentation methods. 

The average inter-particle distances calculated through manual segmentation were 65.3, 53.7, 75.2 

and 66.5 nm for samples #1 – #4, respectively. The average distances computed using the 

Watershed transform were different from the accepted reference values by 0.5-3.7% for samples 

#1-#3, and by 5.7% for sample #4. On the other hand, the average distances computed using the 

Spherical Hough transform demonstrated improved agreement with the accepted reference values 

for all samples, with differences ranging from 0.4-2% for samples #1 – #3. And for sample #4, the 

difference was similar with Watershed transform #4 by 5.8% (Figure 6). 

The final parameter evaluated was the average nearest neighbor distance, which quantifies the 

proximity of a nanoparticle to its closest neighboring particle. The average nearest neighbor 

distances obtained from manual segmentation were 11. 6 nm, 14.2 nm, 12.4 nm, and 8.2 nm for 

samples #1 – #4, respectively. For sample #1, the average nearest neighbor distance calculated 

using the spherical Hough transform showed a slightly higher error of 4.3% compared to the 

Watershed transform, which showed an error of 3.4%. However, for samples #2 – #4, the spherical 

Hough transform demonstrated improved agreement with manual segmentation results, by 0.8-

2.8% difference, compared to the Watershed transform which shows 1.6-10.6% difference, as 

evident from the data presented in Figure 6.  

In conclusion, we have performed ET experiments on a collection of nanoparticle assemblies, and 

evaluated two computational methods for automated volumetric segmentation, the Watershed 

transform, and the spherical Hough transform, alongside manual segmentation, the latter of which 
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served as the accepted reference value. Our numerical results indicate that the spherical Hough 

transform is a superior approach for quantifying 3D nanoparticle assemblies, due to its ability to 

deliver objective, efficient, and accurate quantification results.  
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