toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Bafekry, A.; Stampfl, C.; Peeters, F.M. pdf  doi
openurl 
  Title The electronic, optical, and thermoelectric properties of monolayer PbTe and the tunability of the electronic structure by external fields and defects Type A1 Journal article
  Year 2020 Publication Physica Status Solidi B-Basic Solid State Physics Abbreviated Journal Phys Status Solidi B  
  Volume Issue Pages 2000182-12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract First‐principles calculations, within the framework of density functional theory, are used to investigate the structural, electronic, optical, and thermoelectric properties of monolayer PbTe. The effect of layer thickness, electric field, strain, and vacancy defects on the electronic and magnetic properties is systematically studied. The results show that the bandgap decreases as the layer thickness increases from monolayer to bulk. With application of an electric field on bilayer PbTe, the bandgap decreases from 70 meV (0.2 V Å⁻¹) to 50 meV (1 V Å⁻¹) when including spin–orbit coupling (SOC). Application of uniaxial strain induces a direct‐to‐indirect bandgap transition for strain greater than +6%. In addition, the bandgap decreases under compressive biaxial strain (with SOC). The effect of vacancy defects on the electronic properties of PbTe is also investigated. Such vacancy defects turn PbTe into a ferromagnetic metal (single vacancy Pb) with a magnetic moment of 1.3 μB, and into an indirect semiconductor with bandgap of 1.2 eV (single Te vacancy) and 1.5 eV (double Pb + Te vacancy). In addition, with change of the Te vacancy concentration, a bandgap of 0.38 eV (5.55%), 0.43 eV (8.33%), and 0.46 eV (11.11%) is predicted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000527679200001 Publication Date 2020-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-1972 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.6 Times cited 37 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). In addition, this work was supported by the FLAG-ERA project 2DTRANS TMD and the Flemish Science Foundation (FWO-Vl). The authors are thankful for comments by Mohan Verma from the Computational Nanoionics Research Lab, Department of Applied Physics, Bhilai, India and to Francesco Buonocore from ENEA, Casaccia Research Centre, Rome, Italy. ; Approved Most recent IF: 1.6; 2020 IF: 1.674  
  Call Number UA @ admin @ c:irua:168730 Serial 6502  
Permanent link to this record
 

 
Author (down) Bafekry, A.; Stampfl, C.; Ghergherehchi, M.; Shayesteh, S.F. pdf  url
doi  openurl
  Title A first-principles study of the effects of atom impurities, defects, strain, electric field and layer thickness on the electronic and magnetic properties of the C2N nanosheet Type A1 Journal article
  Year 2020 Publication Carbon Abbreviated Journal Carbon  
  Volume 157 Issue 157 Pages 371-384  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the first-principles calculations, we explore the structural and novel electronic/optical properties of the C2N nanosheet. To this goal, we systematically investigate the affect of layer thickness, electrical field and strain on the electronic properties of the C2N nanosheet. By increasing the thickness of C2N, we observed that the band gap decreases. Moreover, by applying an electrical field to bilayer C2N, the band gap decreases and a semiconductor-to-metal transition can occur. Our results also confirm that uniaxial and biaxial strain can effectively alter the band gap of C2N monolayer. Furthermore, we show that the electronic and magnetic properties of C2N can be modified by the adsorption and substitution of various atoms. Depending on the species of embedded atoms, they may induce semiconductor (O, C, Si and Be), metal (S, N, P, Na, K, Mg and Ca), dilute-magnetic semiconductor (H, F, B), or ferro-magnetic-metal (Cl, Li) character in C2N monolayer. It was also found that the inclusion of hydrogen or oxygen impurities and nitrogen vacancies, can induce magnetism in the C2N monolayer. These extensive calculations can be useful to guide future studies to modify the electronic/optical properties of two-dimensional materials. (C) 2019 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000502548500044 Publication Date 2019-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited 49 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). We are thankful for comments by Meysam Baghery Tagani from department of physics in University of Guilan and Bohayra Mortazavi from Gottfried Wilhelm Leibniz Universitat Hannover, Hannover, Germany. ; Approved Most recent IF: 10.9; 2020 IF: 6.337  
  Call Number UA @ admin @ c:irua:165024 Serial 6283  
Permanent link to this record
 

 
Author (down) Bafekry, A.; Stampfl, C.; Ghergherehchi, M. pdf  url
doi  isbn
openurl 
  Title Strain, electric-field and functionalization induced widely tunable electronic properties in MoS2/BC3, /C3N and / C3N4 van der Waals heterostructures Type A1 Journal article
  Year 2020 Publication Nanotechnology (Bristol. Print) Abbreviated Journal  
  Volume Issue Pages 295202 pp  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract In this paper, the effect of BC3, C3N and C3N4BC(3) and MoS2/C(3)N4 heterostructures are direct semiconductors with band gaps of 0.4 and 1.74 eV, respectively, while MoS2/C3N is a metal. Furthermore, the influence of strain and electric field on the electronic structure of these van der Waals heterostructures is investigated. The MoS2/BC3 heterostructure, for strains larger than -4%, transforms it into a metal where the metallic character is maintained for strains larger than -6%. The band gap decreases with increasing strain to 0.35 eV (at +2%), while for strain (>+6%) a direct-indirect band gap transition is predicted to occur. For the MoS2/C3N heterostructure, the metallic character persists for all strains considered. On applying an electric field, the electronic properties of MoS2/C3N4 are modified and its band gap decreases as the electric field increases. Interestingly, the band gap reaches 30 meV at +0.8 V/angstrom, and with increase above +0.8 V/angstrom, a semiconductor-to-metal transition occurs. Furthermore, we investigated effects of semi- and full-hydrogenation of MoS2/C3N and we found that it leads to a metallic and semiconducting character, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000532366000001 Publication Date 2020-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0957-4484 Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 19 Open Access  
  Notes ; This work has supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(NRF-2017R1A2B2011989). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:169523 Serial 6444  
Permanent link to this record
 

 
Author (down) Bafekry, A.; Stampfl, C.; Akgenc, B.; Mortazavi, B.; Ghergherehchi, M.; Nguyen, C.V. url  doi
openurl 
  Title Embedding of atoms into the nanopore sites of the C₆N₆ and C₆N₈ porous carbon nitride monolayers with tunable electronic properties Type A1 Journal article
  Year 2020 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 22 Issue 11 Pages 6418-6433  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principles calculations, we study the effect of embedding various atoms into the nanopore sites of both C6N6 and C6N8 monolayers. Our results indicate that the embedded atoms significantly affect the electronic and magnetic properties of C6N6 and C6N8 monolayers and lead to extraordinary and multifarious electronic properties, such as metallic, half-metallic, spin-glass semiconductor and dilute-magnetic semiconductor behaviour. Our results reveal that the H atom concentration dramatically affects the C6N6 monolayer. On increasing the H coverage, the impurity states also increase due to H atoms around the Fermi-level. C6N6 shows metallic character when the H atom concentration reaches 6.25%. Moreover, the effect of charge on the electronic properties of both Cr@C6N6 and C@C6N8 is also studied. Cr@C6N6 is a ferromagnetic metal with a magnetic moment of 2.40 mu(B), and when 0.2 electrons are added and removed, it remains a ferromagnetic metal with a magnetic moment of 2.57 and 2.77 mu(B), respectively. Interestingly, one can observe a semi-metal, in which the VBM and CBM in both spin channels touch each other near the Fermi-level. C@C6N8 is a semiconductor with a nontrivial band gap. When 0.2 electrons are removed, it remains metallic, and under excess electronic charge, it exhibits half-metallic behaviour.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000523409400037 Publication Date 2020-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 17 Open Access  
  Notes ; This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.3; 2020 IF: 4.123  
  Call Number UA @ admin @ c:irua:168617 Serial 6504  
Permanent link to this record
 

 
Author (down) Bafekry, A.; Stampfl, C.; Akgenc, B.; Ghergherehchi, M. url  doi
openurl 
  Title Control of C3N4 and C4N3 carbon nitride nanosheets' electronic and magnetic properties through embedded atoms Type A1 Journal article
  Year 2020 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 22 Issue 4 Pages 2249-2261  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In the present work, the effect of various embedded atom impurities on tuning electronic and magnetic properties of C3N4 and C4N3 nanosheets have been studied using first-principles calculations. Our calculations show that C3N4 is a semiconductor and it exhibits extraordinary electronic properties such as dilute-magnetic semiconductor (with H, F, Cl, Be, V, Fe and Co); metal (with N, P, Mg and Ca), half-metal (with Li, Na, K, Al, Sc, Cr, Mn, and Cu) and semiconductor (with O, S, B, C, Si, Ti, Ni and Zn) with the band gaps in the range of 0.3-2.0 eV depending on the species of embedded atom. The calculated electronic properties reveal that C4N3 is a half-metal and it retains half-metallic character with embedded H, O, S, F, B, N, P, Be, Mg, Al, Sc, V, Fe, Ni and Zn atoms. The substitution of Cl, C, Cr and Mn atoms create ferromagnetic-metal character in the C4N3 nanosheet, embedded Co and Cu atoms exhibit a dilute-magnetic semiconductor nature, and embedded Ti atoms result in the system becoming a semiconductor. Therefore, our results reveal the fact that the band gap and magnetism can be modified or induced by various atom impurities, thus, offering effective possibilities to tune the electronic and magnetic properties of C3N4 and C4N3 nanosheets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000510729400042 Publication Date 2019-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 18 Open Access  
  Notes ; This work has supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). B. Akgenc acknowledges financial support the Kirklareli University-BAP under the Project No 189 and TUBITAK ULAKBIM, High Performance and Grid Computing Center. ; Approved Most recent IF: 3.3; 2020 IF: 4.123  
  Call Number UA @ admin @ c:irua:166553 Serial 6476  
Permanent link to this record
 

 
Author (down) Bafekry, A.; Shojai, F.; Hoat, D.M.; Shahrokhi, M.; Ghergherehchi, M.; Nguyen, C. url  doi
openurl 
  Title The mechanical, electronic, optical and thermoelectric properties of two-dimensional honeycomb-like of XSb (X = Si, Ge, Sn) monolayers: a first-principles calculations Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue 51 Pages 30398-30405  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Herein, by using first-principles calculations, we demonstrate a two-dimensional (2D) of XSb (X = Si, Ge, and Sn) monolayers that have a honey-like crystal structure. The structural, mechanical, electronic, thermoelectric efficiency, and optical properties of XSb monolayers are studied.Ab initiomolecular dynamic simulations and phonon dispersion calculations suggests their good thermal and dynamical stabilities. The mechanical properties of XSb monolayers shows that the monolayers are considerably softer than graphene, and their in-plane stiffness decreases from SiSb to SnSb. Our results shows that the single layers of SiSb, GeSb and SnSb are semiconductor with band gap of 1.48, 0.77 and 0.73 eV, respectively. The optical analysis illustrate that the first absorption peaks of the SiSb, GeSb and SnSb monolayers along the in-plane polarization are located in visible range of light which may serve as a promising candidate to design advanced optoelectronic devices. Thermoelectric properties of the XSb monolayers, including Seebeck coefficient, electrical conductivity, electronic thermal conductivity, power factor and figure of merit are calculated as a function of doping level at temperatures of 300 K and 800 K. Between the studied two-dimensional materials (2DM), SiSb single layer may be the most promising candidate for application in the thermoelectric generators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000561344000009 Publication Date 2020-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 2 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number UA @ admin @ c:irua:172074 Serial 6624  
Permanent link to this record
 

 
Author (down) Bafekry, A.; Shojaei, F.; Obeid, M.M.; Ghergherehchi, M.; Nguyen, C.; Oskouian, M. url  doi
openurl 
  Title Two-dimensional silicon bismotide (SiBi) monolayer with a honeycomb-like lattice: first-principles study of tuning the electronic properties Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue 53 Pages 31894-31900  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using density functional theory, we investigate a novel two-dimensional silicon bismotide (SiBi) that has a layered GaSe-like crystal structure.Ab initiomolecular dynamic simulations and phonon dispersion calculations suggest its good thermal and dynamical stability. The SiBi monolayer is a semiconductor with a narrow indirect bandgap of 0.4 eV. Our results show that the indirect bandgap decreases as the number of layers increases, and when the number of layers is more than six layers, direct-to-indirect bandgap switching occurs. The SiBi bilayer is found to be very sensitive to an E-field. The bandgap monotonically decreases in response to uniaxial and biaxial compressive strain, and reaches 0.2 eV at 5%, while at 6%, the semiconductor becomes a metal. For both uniaxial and biaxial tensile strains, the material remains a semiconductor and indirect-to-direct bandgap transition occurs at a strain of 3%. Compared to a SiBi monolayer with a layer thickness of 4.89 angstrom, the bandgap decreases with either increasing or decreasing layer thickness, and at a thicknesses of 4.59 to 5.01 angstrom, the semiconductor-to-metal transition happens. In addition, under pressure, the semiconducting character of the SiBi bilayer with a 0.25 eV direct bandgap is preserved. Our results demonstrate that the SiBi nanosheet is a promising candidate for designing high-speed low-dissipation devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565206400027 Publication Date 2020-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 8 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant, funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number UA @ admin @ c:irua:172045 Serial 6644  
Permanent link to this record
 

 
Author (down) Bafekry, A.; Obeid, M.; Nguyen, C.; Bagheri Tagani, M.; Ghergherehchi, M. url  doi
openurl 
  Title Graphene hetero-multilayer on layered platinum mineral Jacutingaite (Pt₂HgSe₃): Van der Waals heterostructures with novel optoelectronic and thermoelectric performances Type A1 Journal article
  Year 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A  
  Volume 8 Issue 26 Pages 13248-13260  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent successful synthesis of the layered platinum mineral jacutingaite (Pt2HgSe3), we have studied the optoelectronic, mechanical, and thermoelectric properties of graphene hetero-multilayer on Pt(2)HgSe(3)monolayer (PHS) heterostructures (LG/PHS) by using first-principles calculations. PHS is a topological insulator with a band gap of about 160 meV with fully relativistic calculations; when graphene layers are stacked on PHS, a narrow band gap of similar to 10-15 meV opens. In the presence of gate-voltage and out-of plane strain,i.e.pressure, the electronic properties are modified; the Dirac-cone of graphene can be shifted upwards (downward) to a lower (higher) binding energy. The absorption spectrum shows two peaks, which are located around 216 nm (5.74 eV) and protracted to 490 nm (2.53 eV), indicating that PHS could absorb more visible light. Increasing the number of graphene layers on PHS has a positive impact on the UV-vis light absorption and gives a clear red-shift with enhanced absorption intensity. To investigate the electronic performance of the heterostructure, the electrical conductance and thermopower of a device composed of graphene layers and PHS is examined by a combination of DFT and Green function formalism. The number of graphene layers can significantly tune the thermopower and electrical conductance. This analysis reveals that the heterostructures not only significantly affect the electronic properties, but they can also be used as an efficient way to modulate the optic and thermoelectric properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000546391600032 Publication Date 2020-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.9 Times cited 20 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (NRF-2017R1A2B2011989) and Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.01-2019.05. ; Approved Most recent IF: 11.9; 2020 IF: 8.867  
  Call Number UA @ admin @ c:irua:169755 Serial 6529  
Permanent link to this record
 

 
Author (down) Bafekry, A.; Nguyen, C.; Obeid, M.M.; Ghergherehchi, M. url  doi
openurl 
  Title Modulating the electro-optical properties of doped C₃N monolayers and graphene bilayersviamechanical strain and pressure Type A1 Journal article
  Year 2020 Publication New Journal Of Chemistry Abbreviated Journal New J Chem  
  Volume 44 Issue 36 Pages 15785-15792  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, we investigated systematically the electronic and optical properties of B doped C3N monolayers as well as B and N doped graphene bilayers (BN-Gr@2L). We found that the doping of B atoms leads to an enlarged band gap of the C3N monolayer and when the dopant concentration reaches 12.5%, an indirect-to-direct band gap switching occurs. In addition, with co-doping of B and N atoms on the graphene monolayer in the hexagonal configuration, an electronic transition from semi-metal to semiconductor occurs. Our optical results for B-C3N show a broad absorption spectrum in a wide visible range starting from 400 nm to 1000 nm with strong absorption intensity, making it a suitable candidate for nanoelectronic and optoelectronic applications. Interestingly, a transition from semi-metal to semiconductor emerges in the graphene monolayer with doping of B and N atoms. Furthermore, our results demonstrate that the in-plane strain and out-of-plane strain (pressure) can modulate the band gap of the BN-Gr@2L. The controllable electronic properties and optical features of the doped graphene bilayer by strain engineering may facilitate their practical performance for various applications in future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000571972400054 Publication Date 2020-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 7 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.3; 2020 IF: 3.269  
  Call Number UA @ admin @ c:irua:171936 Serial 6561  
Permanent link to this record
 

 
Author (down) Bafekry, A.; Nguyen, C., V; Goudarzi, A.; Ghergherehchi, M.; Shafieirad, M. url  doi
openurl 
  Title Investigation of strain and doping on the electronic properties of single layers of C₆N₆ and C₆N₈: a first principles study Type A1 Journal article
  Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv  
  Volume 10 Issue 46 Pages 27743-27751  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, by performing first-principles calculations, we explore the effects of various atom impurities on the electronic and magnetic properties of single layers of C(6)N(6)and C6N8. Our results indicate that atom doping may significantly modify the electronic properties. Surprisingly, doping Cr into a holey site of C(6)N(6)monolayer was found to exhibit a narrow band gap of 125 meV upon compression strain, considering the spin-orbit coupling effect. Also, a C atom doped in C(6)N(8)monolayer shows semi-metal nature under compression strains larger than -2%. Our results propose that Mg or Ca doped into strained C(6)N(6)may exhibit small band gaps in the range of 10-30 meV. In addition, a magnetic-to-nonmagnetic phase transition can occur under large tensile strains in the Ca doped C(6)N(8)monolayer. Our results highlight the electronic properties and magnetism of C(6)N(6)and C(6)N(8)monolayers. Our results show that the electronic properties can be effectively modified by atom doping and mechanical strain, thereby offering new possibilities to tailor the electronic and magnetic properties of C(6)N(6)and C(6)N(8)carbon nitride monolayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000553911800053 Publication Date 2020-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.9 Times cited 11 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2017R1A2B2011989). ; Approved Most recent IF: 3.9; 2020 IF: 3.108  
  Call Number UA @ admin @ c:irua:172111 Serial 6553  
Permanent link to this record
 

 
Author (down) Bafekry, A.; Neek-Amal, M.; Peeters, F.M. url  doi
openurl 
  Title Two-dimensional graphitic carbon nitrides: strain-tunable ferromagnetic ordering Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 16 Pages 165407-165408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first-principle calculations, we systematically study strain tuning of the electronic properties of two- dimensional graphitic carbon nitride nanosheets with empirical formula CnNm. We found the following: (i) the ferromagnetic ordered state in the metal-free systems (n, m) = (4,3), (10,9), and (14,12) remains stable in the presence of strain of about 6%. However, the system (9,7) loses its ferromagnetic ordering when increasing strain. This is due to the presence of topological defects in the (9,7) system, which eliminates the asymmetry between spin up and spin down of the p(z) orbitals when strain is applied. (ii) By applying uniaxial strain, a band gap opens in systems which are initially gapless. (iii) In semiconducting systems which have an initial gap of about 1 eV, the band gap is closed with applying uniaxial strain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000523630200012 Publication Date 2020-04-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 22 Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:168560 Serial 6643  
Permanent link to this record
 

 
Author (down) Bafekry, A.; Neek-Amal, M. url  doi
openurl 
  Title Tuning the electronic properties of graphene-graphitic carbon nitride heterostructures and heterojunctions by using an electric field Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 8 Pages 085417-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Integration of graphene-based two-dimensional materials is essential for nanoelectronics applications. Using density-functional theory, we systematically investigate the electronic properties of vertically stacked graphene-graphitic carbon nitrides (GE/GCN). We also studied the covalently lateral stitched graphene-graphitic carbon nitrides (GE-GCN heterojunctions). The effects of perpendicular electric field on the electronic properties of six different heterostructures, i.e., (i) one layer of GE on top of a layer of CnNm with (n, m) = (3,1), (3,4), and (4,3) and (ii) three heterostructures CnNm/Cn'Nm', where (n, m) not equal (n', m') are elucidated. The most important calculated features are (i) the systems GE/C3N4, C3N/C3N4, GE-C3N, GE-C4N3, and C3N-C3N4 exhibit semiconducting characteristics having small band gaps of Delta(0)=20, 250, 100, 100, 80 meV, respectively while (ii) the systems GE/C4N3, C3N/C4N3, and C3N-C4N3 show ferromagnetic-metallic properties. In particular, we found that, in semiconducting heterostructures, the band gap increases nontrivially with increasing the absolute value of the applied perpendicular electric field. This work is useful for designing heterojunctions and heterostructures made of graphene and other two-dimensional materials such as those proposed in recent experiments [X. Liu and M. C. Hersam Sci. Adv. 5, 6444 (2019)].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515659700007 Publication Date 2020-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited 24 Open Access  
  Notes ; ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:167760 Serial 6640  
Permanent link to this record
 

 
Author (down) Bafekry, A.; Akgenc, B.; Shayesteh, S.F.; Mortazavi, B. pdf  url
doi  openurl
  Title Tunable electronic and magnetic properties of graphene/carbon-nitride van der Waals heterostructures Type A1 Journal article
  Year 2020 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 505 Issue Pages 144450-144459  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, we explore the electronic properties of C3N, C3N4 and C4N3 and graphene (Gr) van der Waals heterostructures by conducing extensive first-principles calculations. The acquired results show that these heterostructures can show diverse electronic properties, such as the metal (Gr on C3N), semiconductor with narrow band gap (Gr on C3N4) and ferromagnetic-metal (Gr on C4N3). We furthermore explored the effect of vacancies, atom substitution, topological, antisite and Stone-Wales defects on the structural and electronic properties of considered heterostructures. Our results show that the vacancy defects introduce localized states near the Fermi level and create a local magnetic moment. The Gr/C3N heterostructures with the single and double vacancy defects exhibit a ferromagnetic-metal, while Stone-Wales defects show an indirect semiconductor with the band gap of 0.2 eV. The effects of adsorption and insertion of O, C, Be, Cr, Fe and Co atoms on the electronic properties of Gr/C3N have been also elaborately studied. Our results highlight that the electronic and magnetic properties of garphene/carbon-nitride lateral heterostructures can be effectively modified by point defects and impurities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000510846500052 Publication Date 2019-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.7 Times cited 26 Open Access  
  Notes ; ; Approved Most recent IF: 6.7; 2020 IF: 3.387  
  Call Number UA @ admin @ c:irua:167732 Serial 6638  
Permanent link to this record
 

 
Author (down) Bafekry, A.; Akgenc, B.; Ghergherehchi, M.; Peeters, F.M. pdf  url
doi  openurl
  Title Strain and electric field tuning of semi-metallic character WCrCO₂ MXenes with dual narrow band gap Type A1 Journal article
  Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat  
  Volume 32 Issue 35 Pages 355504-355508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent successful synthesis of double-M carbides, we investigate structural and electronic properties of WCrC and WCrCO2 monolayers and the effects of biaxial and out-of-plane strain and electric field using density functional theory. WCrC and WCrCO2 monolayers are found to be dynamically stable. WCrC is metallic and WCrCO2 display semi-metallic character with narrow band gap, which can be controlled by strain engineering and electric field. WCrCO2 monolayer exhibits a dual band gap which is preserved in the presence of an electric field. The band gap of WCrCO2 monolayer increases under uniaxial strain while it becomes metallic under tensile strain, resulting in an exotic 2D double semi-metallic behavior. Our results demonstrate that WCrCO2 is a new platform for the study of novel physical properties in two-dimensional Dirac materials and which may provide new opportunities to realize high-speed low-dissipation devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000539375800001 Publication Date 2020-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.7 Times cited 37 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIT)(NRF-2017R1A2B2011989). In addition, this work was supported by the Flemish Science Foundation (FW0-Vl). ; Approved Most recent IF: 2.7; 2020 IF: 2.649  
  Call Number UA @ admin @ c:irua:169756 Serial 6616  
Permanent link to this record
 

 
Author (down) Bafekry, A. doi  openurl
  Title Graphene-like BC₆N single-layer: tunable electronic and magnetic properties via thickness, gating, topological defects, and adatom/molecule Type A1 Journal article
  Year 2020 Publication Physica E-Low-Dimensional Systems & Nanostructures Abbreviated Journal Physica E  
  Volume 118 Issue Pages 113850-15  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract By using density functional theory-based first-principles calculations, we investigate the structural, electronic, optical, and transport properties of pristine single-layer BC6N. Under different external actions and functionalization. Increasing the thickness of the structure results in a decrease of the band gap. Applying a perpendicular electric field decreases the band gap and a semiconductor-to-topological insulator transition is revealed. Uniaxial and biaxial strains of +8% result in a semiconductor-to-metal transition. Nanoribbons of BC6N having zigzag edge with even (odd) values of widths, become metal (semiconductor), while the armchair edge nanoribbons exhibit robust semiconducting behavior. In addition, we systematically investigate the effect of surface adatom and molecule, substitutional impurity and defect engineering on the electronic properties of single-layer BC6N and found transitions from metal to half-metal, to ferromagnetic metal, to dilute magnetic semiconductor, and even to spin-glass semiconductor. Furthermore we found that, topological defects including vacancies and Stone–Wales type, induce magnetism in single-layer BC6N.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000515321700032 Publication Date 2019-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.3 Times cited 30 Open Access  
  Notes ; ; Approved Most recent IF: 3.3; 2020 IF: 2.221  
  Call Number UA @ admin @ c:irua:169750 Serial 6530  
Permanent link to this record
 

 
Author (down) Bafekry, A. url  openurl
  Title Investigation of the effects of defects and impurities on nanostructures consisting of Group IV and V elements using First-principles calculations Type Doctoral thesis
  Year 2020 Publication Abbreviated Journal  
  Volume Issue Pages 126 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:168738 Serial 6554  
Permanent link to this record
 

 
Author (down) Baez, J.F.; Compton, M.; Chahrati, S.; Cánovas, R.; Blondeau, P.; Andrade, F.J. doi  openurl
  Title Controlling the mixed potential of polyelectrolyte-coated platinum electrodes for the potentiometric detection of hydrogen peroxide Type A1 Journal article
  Year 2020 Publication Analytica Chimica Acta Abbreviated Journal Anal Chim Acta  
  Volume 1097 Issue Pages 204-213  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The use of a Pt electrode coated with a layer of Nafion has been described in previous works as an attractive way to perform the potentiometric detection of hydrogen peroxide. Despite of the attractive features of this approach, the nature of the non-Nernstian response of this system was not properly addressed. In this work, using a mixed potential model, the open circuit potential of the Pt electrode is shown to be under kinetic control of the oxygen reduction reaction (ORR). It is proposed that hydrogen peroxide acts as an oxygenated species that blocks free sites on the Pt surface, interfering with the ORR. Therefore, the effect of the polyelectrolyte coating can be understood in terms of the modulation of the factors that affects the kinetics of the ORR, such as an increase of the H+ concentration, minimization of the effect of the spectator species, etc. Because of the complexity and the lack of models that accurately describe systems with practical applications, this work is not intended to provide a mechanistic but rather a phenomenological view on problem. A general framework to understand the factors that affect the potentiometric response is provided. Experimental evidence showing that the use of polyelectrolyte coatings are a powerful way to control the mixed potential open new ways for the development of robust and simple potentiometric sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record  
  Impact Factor 6.2 Times cited Open Access  
  Notes Approved Most recent IF: 6.2; 2020 IF: 4.95  
  Call Number UA @ admin @ c:irua:184381 Serial 7731  
Permanent link to this record
 

 
Author (down) Bacaksiz, C.; Yagmurcukardes, M.; Peeters, F.M.; Milošević, M.V. doi  openurl
  Title Hematite at its thinnest limit Type A1 Journal article
  Year 2020 Publication 2d Materials Abbreviated Journal 2D Mater  
  Volume 7 Issue 2 Pages 025029  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Motivated by the recent synthesis of two-dimensional alpha-Fe2O3 (Balan et al 2018 Nat. Nanotechnol. 13 602), we analyze the structural, vibrational, electronic and magnetic properties of single- and few-layer alpha-Fe2O3 compared to bulk, by ab initio and Monte-Carlo simulations. We reveal how monolayer alpha-Fe2O3 (hematene) can be distinguished from the few-layer structures, and how they all differ from bulk through observable Raman spectra. The optical spectra exhibit gradual shift of the prominent peak to higher energy, as well as additional features at lower energy when alpha-Fe2O3 is thinned down to a monolayer. Both optical and electronic properties have strong spin asymmetry, meaning that lower-energy optical and electronic activities are allowed for the single-spin state. Finally, our considerations of magnetic properties reveal that 2D hematite has anti-ferromagnetic ground state for all thicknesses, but the critical temperature for Morin transition increases with decreasing sample thickness. On all accounts, the link to available experimental data is made, and further measurements are prompted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537341000002 Publication Date 2020-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.5 Times cited 11 Open Access  
  Notes ; This work was supported by Research Foundation-Flanders (FWO-Vlaanderen). Computational resources were provided by Flemish Supercomputer Center(VSC), and TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). Part of this work was also supported by FLAG-ERA project TRANS-2D-TMD and TOPBOF-UAntwerp. MY was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 5.5; 2020 IF: 6.937  
  Call Number UA @ admin @ c:irua:170301 Serial 6533  
Permanent link to this record
 

 
Author (down) Attri, P.; Razzokov, J.; Yusupov, M.; Koga, K.; Shiratani, M.; Bogaerts, A. pdf  url
doi  openurl
  Title Influence of osmolytes and ionic liquids on the Bacteriorhodopsin structure in the absence and presence of oxidative stress: A combined experimental and computational study Type A1 Journal article
  Year 2020 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol  
  Volume 148 Issue Pages 657-665  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Understanding the folding and stability of membrane proteins is of great importance in protein science. Recently, osmolytes and ionic liquids (ILs) are increasingly being used as drug delivery systems in the biopharmaceutical industry. However, the stability of membrane proteins in the presence of osmolytes and ILs is not yet fully understood. Besides, the effect of oxidative stress on membrane proteins with osmolytes or ILs has not been investigated. Therefore, we studied the influence of osmolytes and ILs as co-solvents on the stability of a model membrane protein (i.e., Bacteriorhodopsin in purple membrane of Halobacterium salinarum), using UV–Vis spectroscopy and molecular dynamics (MD) simulations. The MD simulations allowed us to determine the flexibility and solvent accessible surface area (SASA) of Bacteriorhodopsin protein in the presence and/or absence of cosolvents, as well as to carry out principal component analysis (PCA) to identify the most important movements in this protein. In addition, by means of UV–Vis spectroscopy we studied the effect of oxidative stress generated by cold atmospheric plasma on the stability of Bacteriorhodopsin in the presence and/or absence of co-solvents. This study is important for a better understanding of the stability of proteins in the presence of oxidative stress.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000522094600066 Publication Date 2020-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.2 Times cited Open Access  
  Notes Horizon2020, 743546 ; JSPS, 19H05462 16H03895 ; Nagoya University; We gratefully acknowledge the European Marie Skłodowska-Curie Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). This work was also supported by JSPS-KAKENHI 19H05462 and 16H03895, the joint usage/research program of Center for Low-temperature Plasma Science, Nagoya University and also supported by JSPS and RCL under the Japan-Lithuania Research Cooperative Program. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 8.2; 2020 IF: 3.671  
  Call Number PLASMANT @ plasmant @c:irua:165585 Serial 5444  
Permanent link to this record
 

 
Author (down) Attri, P.; Park, J.-H.; De Backer, J.; Kim, M.; Yun, J.-H.; Heo, Y.; Dewilde, S.; Shiratani, M.; Choi, E.H.; Lee, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Structural modification of NADPH oxidase activator (Noxa 1) by oxidative stress: An experimental and computational study Type A1 Journal article
  Year 2020 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol  
  Volume 163 Issue Pages 2405-2414  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract NADPH oxidases 1 (NOX1) derived reactive oxygen species (ROS) play an important role in the progression of cancer through signaling pathways. Therefore, in this paper, we demonstrate the effect of cold atmospheric plasma (CAP) on the structural changes of Noxa1 SH3 protein, one of the regulatory subunits of NOX1. For this purpose, firstly we purified the Noxa1 SH3 protein and analyzed the structure using X-ray crystallography, and subsequently, we treated the protein with two types of CAP reactors such as pulsed dielectric barrier discharge (DBD) and Soft Jet for different time intervals. The structural deformation of Noxa1 SH3 protein was analyzed by various experimental methods (circular dichroism, fluorescence, and NMR spectroscopy) and by MD simulations. Additionally, we demonstrate the effect of CAP (DBD and Soft Jet) on the viability and expression of NOX1 in A375 cancer cells. Our results are useful to understand the structural modification/oxidation occur in protein due to reactive oxygen and nitrogen (RONS) species generated by CAP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000579839600233 Publication Date 2020-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.2 Times cited Open Access  
  Notes European Marie Skłodowska-Curie Individual Fellowship, 743546 ; JSPS, 20K14454 ; National Research Foundation of Korea, 2019M3A9F6021810 NRF-2017M3A9F6029753 NRF-2019M3E5D6063903 NRF-2016R1A6A3A04010213 ; Brain Korea 21; MSIT, NRF-2016K1A4A3914113 ; Hercules Foundation; Flemish Government; UA; We gratefully acknowledge the European Marie SkłodowskaCurie Individual Fellowship “Anticancer-PAM” within Horizon 2020 (grant number 743546). This work was also supported by JSPS-KAKENHI grant number 20K14454. Additionally, work was supported by several grants (2019M3A9F6021810, NRF2017M3A9F6029753, NRF-2019M3E5D6063903 to W. Lee), Basic Science Research Program (NRF-2016R1A6A3A04010213 to J.H. Yun) through the National Research Foundation of Korea and in part by the Brain Korea 21 (BK21) PLUS program (J.H.P.). EHC is thankful to National Research Foundation (NRF) of Korea, funded by the Korea government (MSIT) under the grant number (NRF2016K1A4A3914113). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 8.2; 2020 IF: 3.671  
  Call Number PLASMANT @ plasmant @c:irua:172451 Serial 6419  
Permanent link to this record
 

 
Author (down) Asfora, V.K.; Bueno, C.C.; de Barros, V.M.; Khoury, H.; Van Grieken, R. pdf  doi
openurl 
  Title X-ray spectrometry applied for characterization of bricks of Brazilian historical sites Type A1 Journal article
  Year 2020 Publication X-Ray Spectrometry Abbreviated Journal X-Ray Spectrom  
  Volume Issue Pages 1-8  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This paper presents the results of X-ray fluorescence (XRF) analysis of bricks sampled from historical places in Pernambuco, a state in the northeastern region of Brazil. In this study, twenty bricks found in historical sites were analyzed. Two bricks made in the 17th century, presumably used as ballast in ships coming from Holland, five locally manufactured bricks: one from 18th century, three from 19th century, and one from 20th century, and thirteen bricks collected from a recent Archeological investigation of Alto da Se, in the town of Olinda. Qualitative determination of the chemical elements present in the samples was undertaken using a self-assembled portable XRF system based on a compact X-ray tube and a thermoelectrically cooled Si-PIN photodiode system, both commercially available. X-ray diffraction analysis was also carried out to assess the crystalline mineral phases present in the bricks. The results showed that quartz (SiO2) is the major mineral content in all bricks. Although less expressive in the XRD patterns, mineral phases of illite, kaolinite, anorthite, and rutile are also identified. The trace element distribution patterns of the bricks, determined by the XRF technique, is dominated by Fe and, in decreasing order, by K, Ti, Ca, Mn, Zr, Rb, Sr, Cr, and Y with slight differences among them. Analyses of the chemical compositional features of the bricks, evaluated by principal component analysis of the XRF datasets, allowed the samples to be grouped into five clusters with similar chemical composition. These cluster groups were able to identify both age and manufacturing sites. Dutch bricks prepared with different geological clays compositions were defined.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000568830300001 Publication Date 2020-09-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.2 Times cited Open Access  
  Notes ; The authors are grateful to CNPQ (Process: 305903/2011-0 and 407458/2013-1) for providing funds to carry out the present work and for supporting a visitor professor to UFPE through the program science without frontier. The authors also thank Mr. Roberto Araujo from the Center of Advanced Studies on Integrated Environmental Protection-CECI that made available the bricks to be analyzed. ; Approved Most recent IF: 1.2; 2020 IF: 1.298  
  Call Number UA @ admin @ c:irua:171960 Serial 6654  
Permanent link to this record
 

 
Author (down) Araizi-Kanoutas, G.; Geessinck, J.; Gauquelin, N.; Smit, S.; Verbeek, X.H.; Mishra, S.K.; Bencok, P.; Schlueter, C.; Lee, T.-L.; Krishnan, D.; Fatermans, J.; Verbeeck, J.; Rijnders, G.; Koster, G.; Golden, M.S. pdf  url
doi  openurl
  Title Co valence transformation in isopolar LaCoO3/LaTiO3 perovskite heterostructures via interfacial engineering Type A1 Journal article
  Year 2020 Publication Physical review materials Abbreviated Journal Phys. Rev. Materials  
  Volume 4 Issue 2 Pages 026001  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report charge transfer up to a single electron per interfacial unit cell across nonpolar heterointerfaces from the Mott insulator LaTiO3 to the charge transfer insulator LaCoO3. In high-quality bi- and trilayer systems grown using pulsed laser deposition, soft x-ray absorption, dichroism, and scanning transmission electron microscopy-electron energy loss spectroscopy are used to probe the cobalt-3d electron count and provide an element-specific investigation of the magnetic properties. The experiments show the cobalt valence conversion is active within 3 unit cells of the heterointerface, and able to generate full conversion to 3d7 divalent Co, which displays a paramagnetic ground state. The number of LaTiO3/LaCoO3 interfaces, the thickness of an additional, electronically insulating “break” layer between the LaTiO3 and LaCoO3, and the LaCoO3 film thickness itself in trilayers provide a trio of control knobs for average charge of the cobalt ions in LaCoO3, illustrating the efficacy of O−2p band alignment as a guiding principle for property design in complex oxide heterointerfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000513551200007 Publication Date 2020-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.4 Times cited 13 Open Access OpenAccess  
  Notes Nederlandse Organisatie voor Wetenschappelijk Onderzoek; Universiteit Antwerpen; Horizon 2020, 730872 ; Department of Science and Technology, Ministry of Science and Technology, SR/NM/Z-07/2015 ; Jawaharlal Nehru Centre for Advanced Scientific Research; Approved Most recent IF: 3.4; 2020 IF: NA  
  Call Number EMAT @ emat @c:irua:167787 Serial 6376  
Permanent link to this record
 

 
Author (down) Annys, S.; Van Passel, S.; Dessein, J.; Ghebreyohannes, T.; Adgo, E.; Nyssen, J. pdf  doi
openurl 
  Title Small-scale irrigation expansion along the dam-regulated Tekeze River in Northern Ethiopia Type A1 Journal article
  Year 2020 Publication International Journal Of Water Resources Development Abbreviated Journal Int J Water Resour D  
  Volume Issue Pages 1-22  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract Based on extensive field information, farmer-led small-scale irrigation systems along the dam-regulated Tekeze River is investigated and the likelihood of future irrigation expansion within the area with modelled potential is discussed, considering facilitating and hampering factors. Due to dam-induced hydrologic alterations, downstream socio-ecological systems have strongly transformed as the irrigated area has quadrupled and the post-dam potential for perennial crop cultivation has attracted numerous migrant investors to the area, inducing inequalities but also providing opportunities. Future dam construction should involve tailored policy interventions to facilitate irrigation expansion, while safeguarding equal and sustainable access to water and land.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000569995600001 Publication Date 2020-09-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0790-0627 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access  
  Notes Approved Most recent IF: 3.1; 2020 IF: 2.088  
  Call Number UA @ admin @ c:irua:171952 Serial 6943  
Permanent link to this record
 

 
Author (down) Annys, S.; Van Passel, S.; Dessein, J.; Adgo, E.; Nyssen, J. pdf  doi
openurl 
  Title From fast-track implementation to livelihood deterioration: The dam-based Ribb Irrigation and Drainage Project in Northwest Ethiopia Type A1 Journal article
  Year 2020 Publication Agricultural Systems Abbreviated Journal Agr Syst  
  Volume 184 Issue Pages 102909-102913  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract The 21st century revival of large-scale water resources development projects makes it important to keep assessing their impacts – preferably from an interdisciplinary perspective – in order to not repeat past mistakes and explore whether they could improve livelihood conditions for rural communities. In this study, costs and benefits of the World Bank-funded Ribb Irrigation and Drainage Project (RIDP) were investigated using a unique systems approach. The impact for farmers with different initial farming systems (rainfed – residual moisture – irrigated) was studied using field observations, document analyses, remote sensing, agronomic data and semi-structured interviews (n = 165). Data on project-induced changes to land and water availability, cropping patterns, farming systems and farm-level economics were collected. The results show that dam and dyke construction has reduced flooding, which has resulted in declining rice productivity ( – 42%) and concomitant shifts to lower value cropping systems. Results also reveal that the land redistribution has caused widespread livelihood deterioration as households had to give up 25% of their farmland and the communal grazing land was fully converted into farmland. Due to top-down implementation, nontransparent communication, delayed construction and lagging financial compensation, social resistance has appeared in the command area, impeding the construction works. In addition to these problems, if no rapid change to higher value crops can be realized, 20.5% of the farmers (those who already irrigate) will experience a loss of livelihood, 64.1% of the farmers (those with rainfed and residual moisture cultivation) will be on the verge of livelihood deterioration and only 13.5% of the farmers (those with solely rainfed cultivation) will enjoy RIDP-induced improved livelihoods. The fate of this project stresses the importance of investigating initial farming systems, exploring worthy project alternatives, improving participation, communication and benefit-sharing and strengthening the institutional capacity of implementing authorities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000564756600013 Publication Date 2020-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.6 Times cited Open Access  
  Notes Approved Most recent IF: 6.6; 2020 IF: 2.571  
  Call Number UA @ admin @ c:irua:172030 Serial 6927  
Permanent link to this record
 

 
Author (down) Andersen, Ja.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. pdf  url
doi  openurl
  Title Plasma-catalytic dry reforming of methane: Screening of catalytic materials in a coaxial packed-bed DBD reactor Type A1 Journal article
  Year 2020 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 397 Issue Pages 125519  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The combination of catalysis with non-thermal plasma is a promising alternative to thermal catalysis. A dielectric-barrier discharge reactor was used to study plasma-catalytic dry reforming of methane at ambient pressure and temperature and a fixed plasma power of 45 W. The effect of different catalytic packing materials was evaluated in terms of conversion, product selectivity, and energy efficiency. The conversion of CO2 (~22%) and CH4 (~33%) were found to be similar in plasma-only and when introducing packing materials in plasma. The main reason is the shorter residence time of the gas due to packing geometry, when compared at identical flow rates. H2, CO, C2-C4 hydrocarbons, and oxygenates were identified in the product gas. High selectivity towards H2 and CO were found for all catalysts and plasma-only, with a H2/CO molar ratio of ~0.9. The lowest syngas selectivity was obtained with Cu/Al2O3 (~66%), which instead, had the highest alcohol selectivity (~3.6%).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000542296100011 Publication Date 2020-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access  
  Notes Department of Chemical and Biochemical Engineering, Technical University of Denmark; We thank Haldor Topsoe A/S for providing all the catalytic materials used and the Department of Chemical and Biochemical Engineering, Technical University of Denmark, for funding this project. Approved Most recent IF: 15.1; 2020 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:170613 Serial 6406  
Permanent link to this record
 

 
Author (down) Andelkovic, M.; Milovanović, S.P.; Covaci, L.; Peeters, F.M. url  doi
openurl 
  Title Double moiré with a twist : supermoiré in encapsulated graphene Type A1 Journal article
  Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 20 Issue 2 Pages 979  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract A periodic spatial modulation, as created by a moire pattern, has been extensively studied with the view to engineer and tune the properties of graphene. Graphene encapsulated by hexagonal boron nitride (hBN) when slightly misaligned with the top and bottom hBN layers experiences two interfering moire patterns, resulting in a so-called supermoire (SM). This leads to a lattice and electronic spectrum reconstruction. A geometrical construction of the nonrelaxed SM patterns allows us to indicate qualitatively the induced changes in the electronic properties and to locate the SM features in the density of states and in the conductivity. To emphasize the effect of lattice relaxation, we report band gaps at all Dirac-like points in the hole doped part of the reconstructed spectrum, which are expected to be enhanced when including interaction effects. Our result is able to distinguish effects due to lattice relaxation and due to the interfering SM and provides a clear picture on the origin of recently experimentally observed effects in such trilayer heterostuctures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000514255400021 Publication Date 2020-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 33 Open Access OpenAccess  
  Notes ; This work was funded by FLAGERA project TRANS2DTMD and the Flemish Science Foundation (FWO-Vl) through a postdoc fellowship for S.P.M. The authors acknowledge useful discussions with W. Zihao and K. Novoselov. ; Approved Most recent IF: 10.8; 2020 IF: 12.712  
  Call Number UA @ admin @ c:irua:168685 Serial 6490  
Permanent link to this record
 

 
Author (down) Anastasiou, I.; Van Velthoven, N.; Tomarelli, E.; Lombi, A.; Lanari, D.; Liu, P.; Bals, S.; De Vos, D.E.; Vaccaro, L. pdf  doi
openurl 
  Title C2-H arylation of indoles catalyzed by palladium-containing metal-organic-framework in γ-valerolactone Type A1 Journal article
  Year 2020 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume 13 Issue 10 Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract An efficient and selective procedure was developed for the direct C2-H arylation of indoles using a Pd-loaded metal-organic framework (MOF) as a heterogeneous catalyst and the nontoxic biomass-derived solvent gamma-valerolactone (GVL) as a reaction medium. The developed method allows for excellent yields and C-2 selectivity to be achieved and tolerates various substituents on the indole scaffold. The established conditions ensure the stability of the catalyst as well as recoverability, reusability, and low metal leaching into the solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000520285700001 Publication Date 2020-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited 22 Open Access Not_Open_Access  
  Notes ; The research leading to these results has received funding from the NMBP-01-2016 Programme of the European Union's Horizon 2020 Framework Programme H2020/2014-2020/under grant agreement no [720996]. The Universit degli Studi di Perugia and MIUR are acknowledged for financial support to the project AMIS, through the program “Dipartimenti di Eccellenza -2018-2022”. The XAS experiments were performed on beamline BM26A at the European Synchrotron Radiation Facility (ESRF), Grenoble (France). We are grateful to D. Banerjee at the ESRF for providing assistance in using beamline BM26A. Niels Van Velthoven and Dirk E. De Vos also thank FWO for funding. ; Approved Most recent IF: 8.4; 2020 IF: 7.226  
  Call Number UA @ admin @ c:irua:167678 Serial 6465  
Permanent link to this record
 

 
Author (down) Anaf, W.; Cabal, A.; Robbe, M.; Schalm, O. url  doi
openurl 
  Title Real-time wood behaviour : the use of strain gauges for preventive conservation applications Type A1 Journal article
  Year 2020 Publication Sensors Abbreviated Journal  
  Volume 20 Issue 1 Pages 305  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract Within the heritage field, the application of strain gauges on wood surfaces is a little-explored but inexpensive and effective method to analyse the environmental appropriateness of rooms for the wooden heritage collections they contain. This contribution proposes a wood sensor connected to a data logger to identify short moments with an elevated risk of harm. Two experiments were performed to obtain insights pertaining to the applicability of wood sensors to evaluate preservation conditions. (1) The representativeness of strain gauges on dummies was tested for their use in evaluating the preservation conditions of a range of wooden objects exposed to the same environment. For this, three situations were mimicked: a bare wood surface, a wood surface covered with a preparation layer, and a wood surface covered with a preparation and varnish layer. (2) The usability of strain gauges to monitor the wood behaviour in real-time measurements was tested with a monitoring campaign of almost two years in a church where a new heating system was installed. The results of both experiments are promising, and the authors encourage a broader application of strain gauges in the heritage field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000510493100305 Publication Date 2020-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes ; This research was funded by the Belgian Federal Public Planning Service Science Policy (BELSPO) under project number BR/132/A6/AIRCHECQ. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:166595 Serial 6592  
Permanent link to this record
 

 
Author (down) Alvarez-Martin, A.; McHugh, K.; Martin, C.; Kavich, G.; Kaczkowski, R. pdf  doi
openurl 
  Title Understanding air-tight case environments at the National Museum of the American Indian (Smithsonian Institution) by SPME-GC-MS analysis Type A1 Journal article
  Year 2020 Publication Journal Of Cultural Heritage Abbreviated Journal J Cult Herit  
  Volume 44 Issue Pages 38-46  
  Keywords A1 Journal article; Art; History; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Some volatile organic compounds (VOCs), generated and accumulated in exhibition cases, are capable of inducing degradation in historical artifacts. In this context, it is of special importance to distinguish between VOCs emitted by the construction materials and/or the historical objects, with the ultimate goal of proposing an appropriate mitigation strategy. To pursue this goal, a comprehensive analysis based on solid phase microextraction (SPME) coupled to gas chromatography-mass spectrometry (GC-MS) has been optimized. The sampling setup used in this study does not require any modification of the exhibition design, and the testing remained nearly invisible and unobtrusive to museum visitors. This methodology has been applied to an issue encountered at the National Museum of the American Indian (Smithsonian Institution), where an unpleasant smell was detected in airtight exhibition cases already on display containing sensitive historical objects. The analysis of the volatiles emitted by construction materials allowed for identification of characteristic markers emitted by each material, and the ability to identify their overall contribution in the exhibition case. Via this method, SPME-GC-MS confirmed via the detection of some specific markers that the unpleasant smell was released by one of the construction materials and had accumulated in the exhibition case. In addition, due to the measurements taken in different positions around the exhibition cases, results were useful to point out the range of efficiency of the sorbent material placed in some of the exhibition cases as a first attempt of mitigation technique. (C) 2020 Elsevier Masson SAS. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000560473700004 Publication Date 2020-02-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1296-2074 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.1 Times cited Open Access  
  Notes Approved Most recent IF: 3.1; 2020 IF: 1.838  
  Call Number UA @ admin @ c:irua:181927 Serial 8706  
Permanent link to this record
 

 
Author (down) Alvarez-Martin, A.; George, J.; Kaplan, E.; Osmond, L.; Bright, L.; Newsome, G.A.; Kaczkowski, R.; Vanmeert, F.; Kavich, G.; Heald, S. url  doi
openurl 
  Title Identifying VOCs in exhibition cases and efflorescence on museum objects exhibited at Smithsonian’s National Museum of the American Indian-New York Type A1 Journal article
  Year 2020 Publication Heritage science Abbreviated Journal  
  Volume 8 Issue 1 Pages 115  
  Keywords A1 Journal article; Engineering sciences. Technology; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Two mass spectrometry (MS) methods, solid-phase microextraction gas chromatography (SPME–GC–MS) and direct analysis in real time (DART-MS), have been explored to investigate widespread efflorescence observed on exhibited objects at the Smithsonian’s National Museum of the American Indian in New York (NMAI-NY). Both methods show great potential, in terms of speed of analysis and level of information, for identifying the organic component of the efflorescence as 2,2,6,6-tetramethyl-4-piperidinol (TMP-ol) emitted by the structural adhesive (Terostat MS 937) used for exhibit case construction. The utility of DART-MS was proven by detecting the presence of TMP-ol in construction materials in a fraction of the time and effort required for SPME–GC–MS analysis. In parallel, an unobtrusive SPME sampling strategy was used to detect volatile organic compounds (VOCs) accumulated in the exhibition cases. This sampling technique can be performed by collections and conservation staff at the museum and shipped to an off-site laboratory for analysis. This broadens the accessibility of MS techniques to museums without access to instrumentation or in-house analysis capabilities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000589423700001 Publication Date 2020-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7445 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.5 Times cited Open Access  
  Notes Approved Most recent IF: 2.5; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:181925 Serial 8056  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: