toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Chen, Y.; Shanenko, A.A.; Perali, A.; Peeters, F.M. pdf  doi
openurl 
  Title Superconducting nanofilms : molecule-like pairing induced by quantum confinement Type A1 Journal article
  Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 24 Issue 18 Pages 185701-185701,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantum confinement of the perpendicular motion of electrons in single-crystalline metallic superconducting nanofilms splits the conduction band into a series of single-electron subbands. A distinctive feature of such a nanoscale multi-band superconductor is that the energetic position of each subband can vary significantly with changing nanofilm thickness, substrate material, protective cover and other details of the fabrication process. It can occur that the bottom of one of the available subbands is situated in the vicinity of the Fermi level. We demonstrate that the character of the superconducting pairing in such a subband changes dramatically and exhibits a clear molecule-like trend, which is very similar to the well-known crossover from the Bardeen-Cooper-Schrieffer regime to Bose-Einstein condensation (BCS-BEC) observed in trapped ultracold fermions. For Pb nanofilms with thicknesses of 4 and 5 monolayers (MLs) this will lead to a spectacular scenario: up to half of all the Cooper pairs nearly collapse, shrinking in the lateral size (parallel to the nanofilm) down to a few nanometers. As a result, the superconducting condensate will be a coherent mixture of almost molecule-like fermionic pairs with ordinary, extended Cooper pairs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000303500900018 Publication Date 2012-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 26 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). AAS thanks A Bianconi, M D Croitoru and A V Vagov for useful discussions. AAS acknowledges the hospitality and fruitful interactions with G C Strinati, P Pieri and D Neilson during his visit to the University of Camerino, supported by the School of Advanced Studies of the University of Camerino. ; Approved Most recent IF: 2.649; 2012 IF: 2.355  
  Call Number UA @ lucian @ c:irua:98223 Serial 3357  
Permanent link to this record
 

 
Author (up) Chen, Y.Y.; Pourtois, G.; Adelmann, C.; Goux, L.; Govoreanu, B.; Degreave, R.; Jurczak, M.; Kittl, J.A.; Groeseneken, G.; Wouters, D.J. doi  openurl
  Title Insights into Ni-filament formation in unipolar-switching Ni/HfO2/TiN resistive random access memory device Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 100 Issue 11 Pages 113513-113513,4  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this letter, CMOS-compatible Ni/HfO2/TiN resistive random access memory stacks demonstrated attractive unipolar switching properties, showing >10(3) endurance and long retention at 150 degrees C. The Ni bottom electrode (BE) improved the switching yield over the NiSiPt BE. To better understand the unipolar forming mechanism, ab initio simulation and time of flight-secondary ion mass spectroscopy were utilized. Compared to the NiSiPt BE, Ni BE gives larger Ni diffusion in the HfO2 and lower formation enthalpy of Ni2+ species during electrical forming. Both the electrical and physical results supported a Ni-injection mechanism for the filament formation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695078]  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000302204900091 Publication Date 2012-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 29 Open Access  
  Notes Approved Most recent IF: 3.411; 2012 IF: 3.794  
  Call Number UA @ lucian @ c:irua:98295 Serial 1674  
Permanent link to this record
 

 
Author (up) Chen, Y.Z.; Trier, F.; Wijnands, T.; Green, R.J.; Gauquelin, N.; Egoavil, R.; Christensen, D.V.; Koster, G.; Huijben, M.; Bovet, N.; Macke, S.; He, F.; Sutarto, R.; Andersen, N.H.; Sulpizio, J.A.; Honig, M.; Prawiroatmodjo, G.E.D.K.; Jespersen, T.S.; Linderoth, S.; Ilani, S.; Verbeeck, J.; Van Tendeloo, G.; Rijnders, G.; Sawatzky, G.A.; Pryds, N. pdf  url
doi  openurl
  Title Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping Type A1 Journal article
  Year 2015 Publication Nature materials Abbreviated Journal Nat Mater  
  Volume 14 Issue 14 Pages 801-806  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Two-dimensional electron gases (2DEGs) formed at the interface of insulating complex oxides promise the development of all-oxide electronic devices. These 2DEGs involve many-body interactions that give rise to a variety of physical phenomena such as superconductivity, magnetism, tunable metalinsulator transitions and phase separation. Increasing the mobility of the 2DEG, however, remains a major challenge. Here, we show that the electron mobility is enhanced by more than two orders of magnitude by inserting a single-unit-cell insulating layer of polar La1−xSrxMnO3 (x = 0, 1/8, and 1/3) at the interface between disordered LaAlO3 and crystalline SrTiO3 produced at room temperature. Resonant X-ray spectroscopy and transmission electron microscopy show that the manganite layer undergoes unambiguous electronic reconstruction, leading to modulation doping of such atomically engineered complex oxide heterointerfaces. At low temperatures, the modulation-doped 2DEG exhibits Shubnikovde Haas oscillations and fingerprints of the quantum Hall effect, demonstrating unprecedented high mobility and low electron density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000358530100022 Publication Date 2015-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 170 Open Access  
  Notes 246102 IFOX; 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; FWO G004413N; esteem2jra3 ECASJO; Approved Most recent IF: 39.737; 2015 IF: 36.503  
  Call Number c:irua:127184 c:irua:127184UA @ admin @ c:irua:127184 Serial 1163  
Permanent link to this record
 

 
Author (up) Chen, Z.; Feng, X.; Xu, Y.; Yu, M.Y. pdf  doi
openurl 
  Title Optical bistability and multistability in four-level systems Type A1 Journal article
  Year 2003 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume 68 Issue 3 Pages 199-204  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The optical behavior of a four-level system in a ring cavity driven by two coherent laser fields is studied. One laser field is treated as the incident field and the other the control field, respectively. It is found that there is optical transparency when the difference between the two frequency detunings of the incident and control fields from the corresponding atomic transition frequencies is zero. Optical bistability can be produced and controlled by increasing the magnitude of the frequency difference. The bistable hysteresis becomes larger when the frequency difference is increased. Further increase of the latter can lead to onset of multistability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000185204400005 Publication Date 2003-08-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited 8 Open Access  
  Notes Approved Most recent IF: 1.28; 2003 IF: 0.688  
  Call Number UA @ lucian @ c:irua:94844 Serial 2471  
Permanent link to this record
 

 
Author (up) Chen, Z.; Kong, M.; Milošević, M.V.; Wu, Y. doi  openurl
  Title Ground state configurations of two-dimensional plasma crystals under long-range attractive particle interaction force Type A1 Journal article
  Year 2003 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume 67 Issue 5 Pages 439  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000183154800014 Publication Date 2003-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited 4 Open Access  
  Notes Approved Most recent IF: 1.28; 2003 IF: 0.688  
  Call Number UA @ lucian @ c:irua:57249 Serial 1385  
Permanent link to this record
 

 
Author (up) Chen, Z.; Yu, M.Y.; Luo, H. doi  openurl
  Title Molecular dynamics simulation of dust clusters in plasmas Type A1 Journal article
  Year 2005 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume 71 Issue 6 Pages 638-643  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Finite and infinite three-dimensional dust systems and their configurational and transport properties are investigated by Molecular Dynamics simulation. The model dust-dust interaction potential includes an attraction part. Spherical dust clusters or balls are found and their structural and transport properties studied. Qualitatively, the cluster structure agrees well with recent experimental results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos 000230087300010 Publication Date 2006-01-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.28 Times cited 13 Open Access  
  Notes Approved Most recent IF: 1.28; 2005 IF: 1.240  
  Call Number UA @ lucian @ c:irua:95096 Serial 2169  
Permanent link to this record
 

 
Author (up) Cheng, J.-P.; McCombe, B.D.; Shi, J.M.; Peeters, F.M.; Devreese, J.T. openurl 
  Title Magnetopolaron effect on shallow donors in GaAs Type A1 Journal article
  Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 48 Issue Pages 7910-7914  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1993LY66500018 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.736 Times cited 46 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:5783 Serial 1925  
Permanent link to this record
 

 
Author (up) Cheng, K.; Degroote, S.; Leys, M.; van Daele, B.; Germain, M.; Van Tendeloo, G.; Borghs, G. doi  openurl
  Title Single crystalline GaN grown on porous Si(111) by MOVPE Type P1 Proceeding
  Year 2007 Publication Physica status solidi: C: conferences and critical reviews Abbreviated Journal  
  Volume 4 Issue 6 Pages 1908-1912  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract In this work, GaN growth on porous Si(111) will be reported. The porosity of the substrates was 30% or 50%. In the latter case, various thicknesses, from 0.6 mu m to 10 mu m, were investigated. The morphology of the GaN surfaces was analyzed by optical interference microscopy. The crystalline quality of the epitaxial layers was characterized by High Resolution X-Ray Diffraction (HR-XRD) and cross-sectional Transmission Electron Microscopy (TEM). A Full Width at Half Maximum (FWHM) of the X-ray symmetric rocking curve (0002) 2 theta – omega scan of 290 arc see was obtained for a 1 mu m thick GaN layer, which is comparable with that of GaN grown on bulk Si(111) substrates. (c) 2007 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000247421800020 Publication Date 2007-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1610-1634;1610-1642; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:94664 Serial 3019  
Permanent link to this record
 

 
Author (up) Cheng, K.; Leys, M.; Degroote, S.; van Daele, B.; Boeykens, S.; Derluyn, J.; Germain, M.; Van Tendeloo, G.; Engelen, J.; Borghs, G. doi  openurl
  Title Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers Type A1 Journal article
  Year 2006 Publication Journal of electronic materials Abbreviated Journal J Electron Mater  
  Volume 35 Issue 4 Pages 592-598  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Boston, Mass. Editor  
  Language Wos 000237101800016 Publication Date 2007-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0361-5235;1543-186X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.579 Times cited 102 Open Access  
  Notes Approved Most recent IF: 1.579; 2006 IF: 1.504  
  Call Number UA @ lucian @ c:irua:58238 Serial 1223  
Permanent link to this record
 

 
Author (up) Cheng, X.; Xu, W.; Wen, H.; Zhang, J.; Zhang, H.; Li, H.; Peeters, F.M.; Chen, Q. pdf  url
doi  openurl
  Title Electronic properties of 2H-stacking bilayer MoS₂ measured by terahertz time-domain spectroscopy Type A1 Journal article
  Year 2023 Publication Frontiers of physics Abbreviated Journal  
  Volume 18 Issue 5 Pages 53303-53311  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Bilayer (BL) molybdenum disulfide (MoS2) is one of the most important electronic structures not only in valleytronics but also in realizing twistronic systems on the basis of the topological mosaics in moire superlattices. In this work, BL MoS2 on sapphire substrate with 2H-stacking structure is fabricated. We apply the terahertz (THz) time-domain spectroscopy (TDS) for examining the basic optoelectronic properties of this kind of BL MoS2. The optical conductivity of BL MoS2 is obtained in temperature regime from 80 K to 280 K. Through fitting the experimental data with the theoretical formula, the key sample parameters of BL MoS2 can be determined, such as the electron density, the electronic relaxation time and the electronic localization factor. The temperature dependence of these parameters is examined and analyzed. We find that, similar to monolayer (ML) MoS2, BL MoS2 with 2H-stacking can respond strongly to THz radiation field and show semiconductor-like optoelectronic features. The theoretical calculations using density functional theory (DFT) can help us to further understand why the THz optoelectronic properties of BL MoS2 differ from those observed for ML MoS2. The results obtained from this study indicate that the THz TDS can be applied suitably to study the optoelectronic properties of BL MoS2 based twistronic systems for novel applications as optical and optoelectronic materials and devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000991955300002 Publication Date 2023-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-0462; 2095-0470 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.5 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.5; 2023 IF: 2.579  
  Call Number UA @ admin @ c:irua:197398 Serial 8818  
Permanent link to this record
 

 
Author (up) Cherigui, E.A.M.; Şentosun, K.; Mamme, M.H.; Lukaczynska, M.; Terryn, H.; Bals, S.; Ustarroz, J. url  doi
openurl 
  Title On the control and effect of water content during the electrodeposition of Ni nanostructures from deep eutectic solvents Type A1 Journal article
  Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 122 Issue 122 Pages 23129-23142  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride urea deep eutectic solvent (DES) containing different amounts of water. By combining electrochemical techniques, with ex situ field emission scanning electron microscopy, high-angle annular dark field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, the effect of water content on the electrochemical processes occurring during nickel deposition was better understood. At highly negative potentials and depending on water content, Ni growth is halted due to water splitting and formation of a mixed layer of Ni/NiOx(OH)(2(1-x)(ads)). Moreover, under certain conditions, the DES components can also be (electro)chemically reduced at the electrode surface, blocking further three-dimensional growth of the Ni NPs. Hence, a two-dimensional crystalline Ni-containing network can be formed in the interparticle region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000447471700038 Publication Date 2018-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 27 Open Access OpenAccess  
  Notes ; E.A.M.C. and M.H.M. acknowledge funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S.B. acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). Finally, J.U. acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). ; ecas_sara Approved Most recent IF: 4.536  
  Call Number UA @ lucian @ c:irua:154731 Serial 5121  
Permanent link to this record
 

 
Author (up) Chernozem, R., V; Romanyuk, K.N.; Grubova, I.; Chernozem, P., V.; Surmeneva, M.A.; Mukhortova, Y.R.; Wilhelm, M.; Ludwig, T.; Mathur, S.; Kholkin, A.L.; Neyts, E.; Parakhonskiy, B.; Skirtach, A.G.; Surmenev, R.A. pdf  doi
openurl 
  Title Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering Type A1 Journal article
  Year 2021 Publication Nano Energy Abbreviated Journal Nano Energy  
  Volume 89 Issue B Pages 106473  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Piezoelectricity is considered to be one of the key functionalities in biomaterials to boost bone tissue regeneration, however, integrating biocompatibility, biodegradability and 3D structure with pronounced piezoresponse remains a material challenge. Herein, novel hybrid biocompatible 3D scaffolds based on biodegradable poly(3-hydroxybutyrate) (PHB) and reduced graphene oxide (rGO) flakes have been developed. Nanoscale insights revealed a more homogenous distribution and superior surface potential values of PHB fibers (33 +/- 29 mV) with increasing rGO content up to 1.0 wt% (314 +/- 31 mV). The maximum effective piezoresponse was detected at 0.7 wt% rGO content, demonstrating 2.5 and 1.7 times higher out-of-plane and in-plane values, respectively, than that for pure PHB fibers. The rGO addition led to enhanced zigzag chain formation between paired lamellae in PHB fibers. In contrast, a further increase in rGO content reduced the alpha-crystal size and prevented zigzag chain conformation. A corresponding model explaining structural and molecular changes caused by rGO addition in electrospun PHB fibers is proposed. In addition, finite element analysis revealed a negligible vertical piezoresponse compared to lateral piezoresponse in uniaxially oriented PHB fibers based on alpha-phase (P2(1)2(1)2(1) space group). Thus, the present study demonstrates promising results for the development of biodegradable hybrid 3D scaffolds with an enhanced piezoresponse for various tissue engineering applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000703592700002 Publication Date 2021-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.343 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 12.343  
  Call Number UA @ admin @ c:irua:182579 Serial 7914  
Permanent link to this record
 

 
Author (up) Chiapperino, M.A.; Bia, P.; Caratelli, D.; Gielis, J.; Mescia, L.; Dermol-Cerne, J.; Miklavcic, D. pdf  doi
openurl 
  Title Nonlinear dispersive model of electroporation for irregular nucleated cells Type A1 Journal article
  Year 2019 Publication Bioelectromagnetics Abbreviated Journal  
  Volume 40 Issue 5 Pages 331-342  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In this work, the electroporation phenomenon induced by pulsed electric field on different nucleated biological cells is studied. A nonlinear, non-local, dispersive, and space-time multiphysics model based on Maxwell's and asymptotic Smoluchowski's equations has been developed to calculate the transmembrane voltage and pore density on both plasma and nuclear membrane perimeters. The irregular cell shape has been modeled by incorporating in the numerical algorithm the analytical functions pertaining to Gielis curves. The dielectric dispersion of the cell media has been modeled considering the multi-relaxation Debye-based relationship. Two different irregular nucleated cells have been investigated and their response has been studied applying both the dispersive and non-dispersive models. By a comparison of the obtained results, differences can be highlighted confirming the need to make use of the dispersive model to effectively investigate the cell response in terms of transmembrane voltages, pore densities, and electroporation opening angle, especially when irregular cell shapes and short electric pulses are considered. Bioelectromagnetics. 2019;40:331-342. (c) 2019 Wiley Periodicals, Inc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472568200004 Publication Date 2019-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0197-8462 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:161282 Serial 8315  
Permanent link to this record
 

 
Author (up) Chin, C.-M.; Battle, P.D.; Blundell, S.J.; Hunter, E.; Lang, F.; Hendrickx, M.; Sena, R.P.; Hadermann, J. pdf  doi
openurl 
  Title Comparative study of the magnetic properties of La3Ni2B'O9 for B' = Nb, Ta or Sb Type A1 Journal article
  Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 258 Issue 258 Pages 825-834  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline samples of La3Ni2NbO9 and La3Ni2TaO9 have been characterised by X-ray and neutron diffraction, electron microscopy, magnetometry and muon spin relaxation (mu SR); the latter technique was also applied to La3Ni2SbO9. On the length scale of a neutron diffraction experiment, the six-coordinate sites of the monoclinic perovskite structure are occupied in a 1:1 ordered manner by Ni and a random 1/3Ni/2/3B' mixture. Electron microscopy demonstrated that this 1:1 ordering is maintained over microscopic distances, although diffuse scattering indicative of short-range ordering on the mixed site was observed. No magnetic Bragg scattering was observed in neutron diffraction patterns collected from La3Ni2B'O-9 (B' = Nb or Ta) at 5 K although in each case mu SR identified the presence of static spins below 30 K. Magnetometry showed that La3Ni2NbO9 behaves as a spin glass below 29 K but significant short-range interactions are present in La3Ni2NbO9 below 85 K. The contrasting properties of these compounds are discussed in terms of their microstructure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000423650400107 Publication Date 2017-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 6 Open Access Not_Open_Access  
  Notes ; We thank EPSRC for funding through Grants EP/M0189541 and EP/N023803. CMC thanks the Croucher Foundation and Oxford University for a graduate scholarship. We are grateful E. Suard for experimental assistance at ILL. ; Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:149284 Serial 4928  
Permanent link to this record
 

 
Author (up) Chin, C.-M.; Battle, P.D.; Hunter, E.C.; Avdeev, M.; Hendrickx, M.; Hadermann, J. url  doi
openurl 
  Title Stabilisation of magnetic ordering in La3Ni2-xCuxB'O9(B'=Sb,Ta,Nb) by the introduction of Cu2+ Type A1 Journal article
  Year 2019 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 276 Issue 276 Pages 164-172  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract La3Ni2-xCuxB'O-9 (x = 0.25; B' = Sb, Ta, Nb: x = 0.5; B' = Nb) have been synthesized and characterised by transmission electron microscopy, neutron diffraction and magnetometry. Each adopts a perovskite-like structure (space group P2(1)/n) with two crystallographically-distinct six-coordinate sites, one occupied by a disordered arrangement of Ni2+ and Cu2+ and the other by a disordered similar to 1:2 distribution of Ni2+ and B'(5+), although some Cu2+ is found on the latter site when x = 0.5. Each composition undergoes a magnetic transition in the range 90 <= T/K <= 130 and shows a spontaneous magnetisation at 5 K; the transition temperature always exceeds that of the x = 0 composition by >= 30 K. A long-range ordered G-type ferrimagnetic structure is present in each composition, but small relaxor domains are also present. This contrasts with the pure relaxor and spin-glass behaviour of x = 0, B' = Ta, Nb, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000473372400023 Publication Date 2019-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 2 Open Access  
  Notes ; We thank EPSRC for funding through grant EP/M0189541. CMC thanks the Croucher Foundation and the University of Oxford for the award of a graduate scholarship. ; Approved Most recent IF: 2.299  
  Call Number UA @ admin @ c:irua:161199 Serial 5396  
Permanent link to this record
 

 
Author (up) Chin, C.-M.; Sena, R.P.; Hunter, E.C.; Hadermann, J.; Battle, P.D. url  doi
openurl 
  Title Interplay of structural chemistry and magnetism in perovskites : a study of CaLn2Ni2WO9: Ln=La, Pr, Nd Type A1 Journal article
  Year 2017 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 251 Issue Pages 224-232  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Polycrystalline samples of CaLn(2)Ni(2)WO(9) (Ln=La, Pr, Nd) have been synthesized and characterised by a combination of X-ray and neutron diffraction, electron microscopy and magnetometry. Each composition adopts a perovskite-like structure with a similar to 5.50, b similar to 5.56, c similar to 7.78 angstrom beta similar to 90.1 degrees in space group P2(1)/n. Of the two crystallographically distinct six-coordinate sites, one is occupied entirely (Ln=Pr) or predominantly (Ln=La, Nd) by Ni2+ and the other by Ni2+ and W6+ in a ratio of approximately 1:2. None of the compounds shows long-range magnetic order at 5 K. The magnetometry data show that the magnetic moments of the Ni2+ cations form a spin glass below 30 K in each case. The Pr3+ moments in CaPr2Ni2WO9 also freeze but the Nd3+ moments in CaNd2Ni2WO9 do not. This behaviour is contrasted with that observed in other (A,A')B2B'O-9 perovskites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000402581200030 Publication Date 2017-04-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 5 Open Access OpenAccess  
  Notes ; We thank EPSRC for funding through grant EP/M0189541. CMC thanks the Croucher Foundation and Oxford University for a graduate scholarship. We are grateful to Ivan da Silva who provided experimental assistance at ISIS and to Maria Batuk for help with the STEM-EDX analysis. ; Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:144179 Serial 4664  
Permanent link to this record
 

 
Author (up) Chin, C.–M.; Battle, P.D.; Hunter, E.C.; Avdeev, M.; Hendrickx, M.; Hadermann, J. pdf  url
doi  openurl
  Title Magnetic properties of La3Ni2Sb Ta Nb1––O9; from relaxor to spin glass Type A1 Journal article
  Year 2019 Publication Journal of solid state chemistry (Print) Abbreviated Journal Journal of Solid State Chemistry  
  Volume 273 Issue Pages 175-185  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Neutron diffraction experiments conducted at 5 K in a magnetic field 0 < H/kOe < 50 have shown that the monoclinic perovskite La3Ni2TaO9 behaves as a relaxor ferromagnet. Compositions in the series La3Ni2SbxTayNb1–x–yO9 have been synthesized in polycrystalline form. Electron microscopy, X–ray diffraction and neutron diffraction have shown that the solid solutions are largely homogeneous and monophasic. Magnetometry and neutron diffraction have shown that the relaxor magnetisation persists in low fields when x + y = 1 but is rapidly diminished by the introduction of niobium. This change in magnetic behaviour is ascribed to the differences in the d–orbital energies of Sb5+, Nb5+ and Ta5+.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466261100026 Publication Date 2019-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes We thank EPSRC for funding through grant EP/M0189541. CMC thanks the Croucher Foundation and the University of Oxford for the award of a graduate scholarship. Approved no  
  Call Number EMAT @ emat @c:irua:166445 Serial 6346  
Permanent link to this record
 

 
Author (up) Chinchilla, L.E.; Olmos, C.; Kurttepeli, M.; Bals, S.; Van Tendeloo, G.; Villa, A.; Prati, L.; Blanco, G.; Calvino, J.J.; Chen, X.; Hungría, A.B. pdf  url
doi  openurl
  Title Combined macroscopic, nanoscopic, and atomic-scale characterization of gold-ruthenium bimetallic catalysts for octanol oxidation Type A1 Journal article
  Year 2016 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 33 Issue 33 Pages 419-437  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A series of gold-ruthenium bimetallic catalysts of increasing Au:Ru molar ratios supported on a Ce0.62Zr0.38O2 mixed oxide are prepared and their structural and chemical features characterized by a combination of macroscopic and atomic-scale techniques based on scanning transmission electron microscopy. The influence of the temperature of the final reduction treatment used as activation step (350-700 degrees C range) is also investigated. The preparation method used allows catalysts to be successfully prepared where a major fraction of the metal nanoparticles is in the size range below 5 nm. The structural complexities characteristic of this type of catalysts are evidenced, as well as the capabilities and limitations of both the macroscopic and microscopic techniques in the characterization of the system of metal nanoparticles. A positive influence of the addition of Ru on both the resistance against sintering and the catalytic performance of the starting supported Au catalyst is evidenced.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000379970000011 Publication Date 2016-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 7 Open Access OpenAccess  
  Notes ; This work was supported by the Ministry of Science and Innovation of Spain/ FEDER Program of the EU (Project Nos.: MAT 2013-40823-R and CSD2009-00013), ESTEEM2 (FP7-INFRASTUCTURE-2012-1-312493), Junta de Andalucia (FQM334 and FQM110 and Project: FQM3994). S.B. acknowledges the European Research Council, ERC grant No. 335078 – Colouratom. M.K. is grateful to the Fund for Scientific Research Flanders. X.C. thanks the Ramon y Cajal Program. ; ecas_sara Approved Most recent IF: 4.474  
  Call Number UA @ lucian @ c:irua:134958 Serial 4150  
Permanent link to this record
 

 
Author (up) Chirayath, V.A.; Callewaert, V.; Fairchild, A.J.; Chrysler, M.D.; Gladen, R.W.; Mcdonald, A.D.; Imam, S.K.; Shastry, K.; Koymen, A.R.; Saniz, R.; Barbiellini, B.; Rajeshwar, K.; Partoens, B.; Weiss, A.H. pdf  url
doi  openurl
  Title Auger electron emission initiated by the creation of valence-band holes in graphene by positron annihilation Type A1 Journal article
  Year 2017 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 8 Issue 8 Pages 16116  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Auger processes involving the filling of holes in the valence band are thought to make important contributions to the low-energy photoelectron and secondary electron spectrum from many solids. However, measurements of the energy spectrum and the efficiency with which electrons are emitted in this process remain elusive due to a large unrelated background resulting from primary beam-induced secondary electrons. Here, we report the direct measurement of the energy spectra of electrons emitted from single layer graphene as a result of the decay of deep holes in the valence band. These measurements were made possible by eliminating competing backgrounds by employing low-energy positrons (<1.25 eV) to create valence-band holes by annihilation. Our experimental results, supported by theoretical calculations, indicate that between 80 and 100% of the deep valence-band holes in graphene are filled via an Auger transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405398200001 Publication Date 2017-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 20 Open Access  
  Notes The experiments in this work were supported by the grant NSF DMR 1508719. A.H.W and A.R.K. gratefully acknowledge support for the building of advanced positron beam through the grant NSF DMR MRI 1338130. V.C. and R.S. were supported by the FWO-Vlaanderen through Project No. G. 0224.14N. The computational resources and services used in this work were in part provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the Hercules Foundation and the Flemish Government (EWI Department). The work at Northeastern University was supported by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences grant number DE-FG02-07ER46352 (core research), and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), the NERSC supercomputing center through DOE grant number DE-AC02-05CH11231, and support (applications to layered materials) from the DOE EFRC: Center for the Computational Design of Functional Layered Materials (CCDM) under DE-SC0012575. Approved Most recent IF: 12.124  
  Call Number CMT @ cmt @ c:irua:144625 Serial 4627  
Permanent link to this record
 

 
Author (up) Chirumamilla, C.S.; Palagani, A.; Kamaraj, B.; Declerck, K.; Verbeek, M.W.C.; Ryabtsova, O.; De Bosscher, K.; Bougarne, N.; Ruttens, B.; Gevaert, K.; Houtman, R.; De Vos, W.H.; Joossens, J.; van der Veken, P.; Augustyns, K.; van Ostade, X.; Bogaerts, A.; De Winter, H.; Vanden Berghe, W. url  doi
openurl 
  Title Selective glucocorticoid receptor properties of GSK866 analogs with cysteine reactive warheads Type Administrative Services
  Year 2017 Publication Frontiers in immunology Abbreviated Journal Front Immunol  
  Volume 8 Issue Pages 1324  
  Keywords Administrative Services; A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Medicinal Chemistry (UAMC)  
  Abstract Synthetic glucocorticoids (GC) are the mainstay therapy for treatment of acute and chronic inflammatory disorders. Due to the high adverse effects associated with long-term use, GC pharmacology has focused since the nineties on more selective GC ligand-binding strategies, classified as selective glucocorticoid receptor (GR) agonists (SEGRAs) or selective glucocorticoid receptor modulators (SEGRMs). In the current study, GSK866 analogs with electrophilic covalent-binding warheads were developed with potential SEGRA properties to improve their clinical safety profile for long-lasting topical skin disease applications. Since the off-rate of a covalently binding drug is negligible compared to that of a non-covalent drug, its therapeutic effects can be prolonged and typically, smaller doses of the drug are necessary to reach the same level of therapeutic efficacy, thereby potentially reducing systemic side effects. Different analogs of SEGRA GSK866 coupled to cysteine reactive warheads were characterized for GR potency and selectivity in various biochemical and cellular assays. GR- and NFκB-dependent reporter gene studies show favorable anti-inflammatory properties with reduced GR transactivation of two non-steroidal GSK866 analogs UAMC-1217 and UAMC-1218, whereas UAMC-1158 and UAMC-1159 compounds failed to modulate cellular GR activity. These results were further supported by GR immuno-localization and S211 phospho-GR western analysis, illustrating significant GR phosphoactivation and nuclear translocation upon treatment of GSK866, UAMC-1217, or UAMC-1218, but not in case of UAMC-1158 or UAMC-1159. Furthermore, mass spectrometry analysis of tryptic peptides of recombinant GR ligand-binding domain (LBD) bound to UAMC-1217 or UAMC-1218 confirmed covalent cysteine-dependent GR binding. Finally, molecular dynamics simulations, as well as glucocorticoid receptor ligand-binding domain (GR-LBD) coregulator interaction profiling of the GR-LBD bound to GSK866 or its covalently binding analogs UAMC-1217 or UAMC-1218 revealed subtle conformational differences that might underlie their SEGRA properties. Altogether, GSK866 analogs UAMC-1217 and UAMC-1218 hold promise as a novel class of covalent-binding SEGRA ligands for the treatment of topical inflammatory skin disorders.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Place of publication unknown Editor  
  Language Wos 000414136300001 Publication Date 2017-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-3224 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.429 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 6.429  
  Call Number UA @ lucian @ c:irua:146485 Serial 4750  
Permanent link to this record
 

 
Author (up) Chizhov, A.; Vasiliev, R.; Rumyantseva, M.; Krylov, I.; Drozdov, K.; Batuk, M.; Hadermann, J.; Abakumov, A.; Gaskov, A. url  doi
openurl 
  Title Light-activated sub-ppm NO2 detection by hybrid ZnO/QD nanomaterials vs. charge localization in core-shell QD Type A1 Journal article
  Year 2019 Publication Frontiers in materials Abbreviated Journal  
  Volume 6 Issue 6 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New hybrid materials-photosensitized nanocomposites containing nanocrystal heterostructures with spatial charge separation, show high response for practically important sub-ppm level NO2 detection at room temperature. Nanocomposites ZnO/CdSe, ZnO/(CdS@CdSe), and ZnO/(ZnSe@CdS) were obtained by the immobilization of nanocrystals-colloidal quantum dots (QDs), on the matrix of nanocrystalline ZnO. The formation of crystalline core-shell structure of QDs was confirmed by HAADF-STEM coupled with EELS mapping. Optical properties of photosensitizers have been investigated by optical absorption and luminescence spectroscopy combined with spectral dependences of photoconductivity, which proved different charge localization regimes. Photoelectrical and gas sensor properties of nanocomposites have been studied at room temperature under green light (max = 535 nm) illumination in the presence of 0.12-2 ppm NO2 in air. It has been demonstrated that sensitization with type II heterostructure ZnSe@CdS with staggered gap provides the rapid growth of effective photoresponse with the increase in the NO2 concentration in air and the highest sensor sensitivity toward NO2. We believe that the use of core-shell QDs with spatial charge separation opens new possibilities in the development of light-activated gas sensors working without thermal heating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000487641600002 Publication Date 2019-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes ; This work was financially supported by RFBR grant No. 1653-76001 (RFBR – ERA.Net FONSENS 096) and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 26520408). AC acknowledges support from the RFBR grant No. 18-33-01004. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:163776 Serial 5390  
Permanent link to this record
 

 
Author (up) Chizhov, A.S.; Rumyantseva, M.N.; Vasiliev, R.B.; Filatova, D.G.; Drozdov, K.A.; Krylov, I.V.; Abakumov, A.M.; Gaskov, A.M. doi  openurl
  Title Visible light activated room temperature gas sensors based on nanocrystalline ZnO sensitized with CdSe quantum dots Type A1 Journal article
  Year 2014 Publication Sensors and actuators : B : chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 205 Issue Pages 305-312  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This work reports the study of photoconductivity and visible light activated room temperature gas sensors properties of nanocrystalline ZnO thick films sensitized with colloidal CdSe quantum dots (QDs). Nanocrystalline zinc oxide (ZnO) was synthesized by the precipitation method. Colloidal CdSe quantum dots were obtained by high temperature colloidal synthesis. Sensitization was effectuated by three different procedures including direct adsorption of CdSe QDs stabilized with oleic acid on ZnO surface, anchoring to the ZnO surface through a bifunctional molecule of mercaptopropionic acid (MPA), and coating of CdSe QDs with a monolayer of MPA with subsequent adsorption on ZnO surface. Sensor measurements demonstrated that obtained QD CdSe/ZnO nanocomposites can be used for NO2 detection under visible (green) light illumination at room temperature without any thermal heating. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000343117600041 Publication Date 2014-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited 36 Open Access  
  Notes Approved Most recent IF: 5.401; 2014 IF: 4.097  
  Call Number UA @ lucian @ c:irua:121107 Serial 3848  
Permanent link to this record
 

 
Author (up) Chizhov, A.S.; Rumyantseva, M.N.; Vasiliev, R.B.; Filatova, D.G.; Drozdov, K.A.; Krylov, I.V.; Marchevsky, A.V.; Karakulina, O.M.; Abakumov, A.M.; Gaskov, A.M. pdf  url
doi  openurl
  Title Visible light activation of room temperature NO2 gas sensors based on ZnO, SnO2 and In2O3 sensitized with CdSe quantum dots Type A1 Journal article
  Year 2016 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 618 Issue 618 Pages 253-262  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This work reports the analysis of visible light activation of room temperature NO2 gas sensitivity of metal oxide semiconductors (MOS): blank and CdSe quantum dots (QDs) sensitized nanocrystallinematrixes ZnO, SnO2 and In2O3. Nanocrystalline metal oxides (MOx) ZnO, SnO2, In2O3 were synthesized by the precipitation method. Colloidal CdSe QDs were obtained by high temperature colloidal synthesis. Sensitization was effectuated by direct adsorption of CdSe QDs stabilized with oleic acid on MOx surface. The role of illumination consists in generation of electrons, which can be transferred into MOx conduction band, and holes that can recombine with the electrons previously trapped by the chemisorbed acceptor species and thus activate desorption of analyte molecules. Under green light illumination for blank SnO2 and In2O3 matrixes the indirect consequential mechanism for the generation of holes is proposed. Anothermechanismis realized in the presence of CdSe QDs. In this case the electron-hole pair is generated in the CdSe quantum dot. Sensor measurements demonstrated that synthesizedmaterials can be used for NO2 detection under visible (green) light illumination at room temperature without any thermal heating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000389164400005 Publication Date 2016-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-6090 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.879 Times cited 19 Open Access  
  Notes The work was financially supported by Russian Foundation for Basic Research grant no. 15-03-03026. Approved Most recent IF: 1.879  
  Call Number EMAT @ emat @ c:irua:138598 Serial 4321  
Permanent link to this record
 

 
Author (up) Chizhov, As.; Rumyantseva, Mn.; Drozdov, Ka.; Krylov, Iv.; Batuk, M.; Hadermann, J.; Filatova, Dg.; Khmelevsky, No.; Kozlovsky, Vf.; Maltseva, Ln.; Gaskov, Am. pdf  url
doi  openurl
  Title Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 329 Issue Pages 129035  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The development of sensor materials of which gas sensitivity activates under light illumination is of great importance for the design of portable gas analyzers with low power consumption. In the present work a ZnO/CsPbBr3 nanocomposite based on nanocrystalline ZnO and colloidal cubic-shaped perovskite CsPbBr3 nanocrystals (NCs) capped by oleic acide and oleylamine was synthesized. The individual materials and obtained nanocomposite are characterized by x-ray diffraction, low-temperature nitrogen adsorption, x-ray photoelectron spectroscopy, high angle annular dark field scanning transmission electron microscopy with energy-dispersive Xray spectroscopy mapping and UV-vis absorption spectroscopy. The spectral dependence of the photoconductivity of the ZnO/CsPbBr3 nanocomposite reveals a well-defined peak that strongly correlates with the its optical absorption spectrum. The nanocomposite ZnO/CsPbBr3 shows enhanced photoresponse under visible light illumination (lambda(max) = 470 nm, 8 mW/cm(2)) in air, oxygen and argone, compared with pure nanocrystalline ZnO. Under periodic illumination in the temperature range of 25-100 degrees C, the ZnO/CsPbBr3 nanocomposite shows a sensor response to 0.5-3.0 ppm NO2, unlike pure nanocrystalline ZnO matrix, which demonstrates sensor sensitivity to NO2 under the same conditions above 100 degrees C. The effects of humidity on the sensor signal and photoresponse are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000612060700009 Publication Date 2020-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes The reported study was funded by RFBR according to the research project N◦ 18-33-01004 and in part by a grant from the St. Petersburg State University – Event 3-2018 (id: 46380300). Element mapping for sensors were supported by M.V. Lomonosov Moscow State University Program of Development (X-ray fluorescence spectrometer Tornado M4 plus). Approved Most recent IF: 5.401  
  Call Number EMAT @ emat @c:irua:176123 Serial 6707  
Permanent link to this record
 

 
Author (up) Choël, M.; Deboudt, K.; Osán, J.; Flament, P.; Van Grieken, R. doi  openurl
  Title Quantitative determination of low-Z elements in single atmospheric particles on boron substrates by automated scanning electron microscopy: energy-dispersive X-ray spectrometry Type A1 Journal article
  Year 2005 Publication Analytical chemistry Abbreviated Journal  
  Volume 77 Issue 17 Pages 5686-5692  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000231652300046 Publication Date 2005-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:53593 Serial 8443  
Permanent link to this record
 

 
Author (up) Choisez, L.; Ding, L.; Marteleur, M.; Idrissi, H.; Pardoen, T.; Jacques, P.J. url  doi
openurl 
  Title High temperature rise dominated cracking mechanisms in ultra-ductile and tough titanium alloy Type A1 Journal article
  Year 2020 Publication Nature Communications Abbreviated Journal Nat Commun  
  Volume 11 Issue 1 Pages 2110  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Extensive use of titanium alloys is partly hindered by a lack of ductility, strain hardening, and fracture toughness. Recently, several beta -metastable titanium alloys were designed to simultaneously activate both transformation-induced plasticity and twinning-induced plasticity effects, resulting in significant improvements to their strain hardening capacity and resistance to plastic localization. Here, we report an ultra-large fracture resistance in a Ti-12Mo alloy (wt.%), that results from a high resistance to damage nucleation, with an unexpected fracture phenomenology under quasi-static loading. Necking develops at a large uniform true strain of 0.3 while fracture initiates at a true fracture strain of 1.0 by intense through-thickness shear within a thin localized shear band. Transmission electron microscopy reveals that dynamic recrystallization occurs in this band, while local partial melting is observed on the fracture surface. Shear band temperatures of 1250-2450 degrees C are estimated by the fusible coating method. The reported high ductility combined to the unconventional fracture process opens alternative avenues toward Ti alloys toughening. Specific titanium alloys combine transformation-induced plasticity and twinning-induced plasticity for improved work hardening. Here, the authors show that these alloys also have an ultra-large fracture resistance and an unexpected fracture mechanism via dynamic recrystallization and local melting in a deformation band.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000558816700010 Publication Date 2020-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 1 Open Access OpenAccess  
  Notes ; The Fonds National de Recherche Scientifique FNRS is gratefully acknowledged for the grant no. T.0127.19, the research grant of L.C. and the research mandate of H.I. The authors are thankful to J. Adrien and E. Maire for their help with the X-ray tomography analysis, to J.D. Embury for the fruitful discussions and to F. Prima for provisioning the material. ; Approved Most recent IF: 16.6; 2020 IF: 12.124  
  Call Number UA @ admin @ c:irua:171318 Serial 6536  
Permanent link to this record
 

 
Author (up) Choisez, L.; Ding, L.; Marteleur, M.; Kashiwar, A.; Idrissi, H.; Jacques, P.J. pdf  url
doi  openurl
  Title Shear banding-activated dynamic recrystallization and phase transformation during quasi-static loading of β-metastable Ti – 12 wt % Mo alloy Type A1 Journal article
  Year 2022 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 235 Issue Pages 118088-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Dynamic recrystallization (DRX) within adiabatic shear bands forming during the fracture of TRIP-TWIP β−metastable Ti-12Mo (wt %) alloy was recently reported. The formation of 1-3 µm thick-adiabatic shear bands, and of dynamic recrystallization, was quite surprising as their occurrence generally requires high temperature and/or high strain rate loading while these samples were loaded in quasi-static conditions at room temperature. To better understand the fracture mechanism and associated microstructural evolution, thin foils representative of different stages of the fracture process were machined from the fracture surface by Focused Ion Beam (FIB) and analyzed by Transmission Electron Microscopy (TEM) and Automated Crystal Orientation mapping (ACOM-TEM). Complex microstructure transformations involving severe plastic deformed nano-structuration, crystalline rotation and local precipitation of the omega phase were identified. The spatial and temporal evolution of the microstructure during the propagation of the crack was explained through dynamic recovery and continuous dynamic recrystallization, and linked to the modelled distribution of temperature and strain level where TEM samples were extracted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000814729300005 Publication Date 2022-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.4  
  Call Number UA @ admin @ c:irua:188505 Serial 7096  
Permanent link to this record
 

 
Author (up) Cholewa, M.; Legge, G.J.F.; Eeckhaoudt, S.; Van Grieken, R. openurl 
  Title A study of aluminium-exposed fish using a scanning proton microprobe Type P3 Proceeding
  Year 1994 Publication Proceedings of the Australian Conference on Nuclear Techniques of Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:9517 Serial 8594  
Permanent link to this record
 

 
Author (up) Chou, L.; Harlay, J.; Roevros, N.; Lannuzel, D.; Rebreanu, L.; van der Zee, C.; Lapernat, P.-E.; Daro, M.-H.; Aerts, K.; Godoi, R.; Van Grieken, R. openurl 
  Title Role of oceanic production and dissolution of calcium carbonate in climate change (CCCC): final report Type Minutes and reports
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Minutes and reports; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:80696 Serial 8486  
Permanent link to this record
 

 
Author (up) Choudhary, K.; Bercx, M.; Jiang, J.; Pachter, R.; Lamoen, D.; Tavazza, F. pdf  url
doi  openurl
  Title Accelerated Discovery of Efficient Solar Cell Materials Using Quantum and Machine-Learning Methods Type A1 Journal article
  Year 2019 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 31 Issue 15 Pages 5900-5908  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solar energy plays an important role in solving serious environmental

problems and meeting the high energy demand. However, the lack of suitable

materials hinders further progress of this technology. Here, we present the largest

inorganic solar cell material search till date using density functional theory (DFT) and

machine-learning approaches. We calculated the spectroscopic limited maximum

efficiency (SLME) using the Tran−Blaha-modified Becke−Johnson potential for 5097

nonmetallic materials and identified 1997 candidates with an SLME higher than 10%,

including 934 candidates with a suitable convex-hull stability and an effective carrier

mass. Screening for two-dimensional-layered cases, we found 58 potential materials

and performed G0W0 calculations on a subset to estimate the prediction uncertainty. As the above DFT methods are still computationally expensive, we developed a high accuracy machine-learning model to prescreen efficient materials and applied it to over a million materials. Our results provide a general framework and universal strategy for the design of high-efficiency solar

cell materials. The data and tools are publicly distributed at: https://www.ctcms.nist.gov/~knc6/JVASP.html, https://www.

ctcms.nist.gov/jarvisml/, https://jarvis.nist.gov/, and https://github.com/usnistgov/jarvis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000480826900060 Publication Date 2019-08-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access  
  Notes ; ; Approved Most recent IF: 9.466  
  Call Number EMAT @ emat @c:irua:161814 Serial 5291  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: