|   | 
Details
   web
Records
Author (down) Kolev, S.; Sun, S.; Trenchev, G.; Wang, W.; Wang, H.; Bogaerts, A.
Title Quasi-Neutral Modeling of Gliding Arc Plasmas: Quasi-Neutral Modeling of Gliding Arc Plasmas Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600110
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The modelling of a gliding arc discharge (GAD) is studied by means of the quasineutral (QN) plasma modelling approach. The model is first evaluated for reliability and proper description of a gliding arc discharge at atmospheric pressure, by comparing with a more elaborate non-quasineutral (NQN) plasma model in two different geometries – a 2D axisymmetric and a Cartesian geometry. The NQN model is considered as a reference, since it provides a continuous self-consistent plasma description, including the near electrode regions. In general, the results of the QN model agree very well with those obtained from the NQN model. The small differences between both models are attributed to the approximations in the derivation of the QN model. The use of the QN model provides a substantial reduction of the computation time compared to the NQN model, which is crucial for the development of more complex models in three dimensions or with complicated chemistries. The latter is illustrated for (i) a reverse vortex flow(RVF) GAD in argon, and (ii) a GAD in CO2. The RVF discharge is modelled in three dimensions and the effect of the turbulent heat transport on the plasma and gas characteristics is

discussed. The GAD model in CO2 is in a 1D geometry with axial symmetry and provides results for the time evolution of the electron, gas and vibrational temperature of CO2, as well as for the molar fractions of the different species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403074000011 Publication Date 2016-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 9 Open Access Not_Open_Access
Notes Methusalem financing of the University of Antwerp; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:142982 Serial 4570
Permanent link to this record
 

 
Author (down) Kolev, S.; Paunska, T.; Trenchev, G.; Bogaerts, A.
Title Modeling the CO2 dissociation in pulsed atmospheric-pressure discharge Type P1 Proceeding
Year 2020 Publication Technologies Abbreviated Journal
Volume Issue Pages 012007
Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract CO2 dissociation and its subsequent conversion into added-value chemicals is a promising strategy for recycling CO2 gas into reusable products. One of the possible methods is direct plasma-induced dissociation. In this work we study the efficiency of CO2 dissociation in pulsed atmospheric-pressure gas discharge between two conducting electrodes by a 0-D numerical plasma model. The purpose of the study is to provide results on the optimal conditions of CO2 conversion with respect to the energy efficiency and dissociation by varying the maximum power density value and the pulse length. The power density is directly related to the discharge current and the reduced electric field in the discharge. We consider pulse lengths in the range from hundreds of nanosecond up to milliseconds. The results obtained show that the dissociation degree and energy efficiency are sensitive to the pulse length (duration) and the power density, so that a considerable improvement of the discharge performance can be achieved by fine-tuning these parameters. The study is intended to provide guidance in designing an experimental set-up and a power supply with the characteristics necessary to achieve optimal conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000593712900007 Publication Date 2020-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume 1492 Series Issue Edition
ISSN 1742-6588; 1742-6596 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:174447 Serial 6769
Permanent link to this record
 

 
Author (down) Kolev, S.; Bogaerts, A.
Title A 2D model for a gliding arc discharge Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 24 Issue 24 Pages 015025
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this study we report on a 2D fluid model of a gliding arc discharge in argon. Despite the 3D nature of the discharge, 2D models are found to be capable of providing very useful information about the operation of the discharge. We employ two modelsan axisymmetric and a Cartesian one. We show that for the considered experiment and the conditions of a low current arc (around 30 mA) in argon, there is no significant heating of the cathode surface and the discharge is sustained by field electron emission from the cathode accompanied by the formation of a cathode spot. The obtained discharge power and voltage are relatively sensitive to the surface properties and particularly to the surface roughness, causing effectively an amplification of the normal electric field. The arc body and anode region are not influenced by this and depend mainly on the current value. The gliding of the arc is modelled by means of a 2D Cartesian model. The arcelectrode contact points are analysed and the gliding mechanism along the electrode surface is discussed. Following experimental observations, the cathode spot is simulated as jumping from one point to another. A complete arc cycle is modelled from initial ignition to arc decay. The results show that there is no interaction between the successive gliding arcs.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000348298200026 Publication Date 2014-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 34 Open Access
Notes Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:122538 c:irua:122538 c:irua:122538 c:irua:122538 Serial 3
Permanent link to this record
 

 
Author (down) Kolev, S.; Bogaerts, A.
Title Similarities and differences between gliding glow and gliding arc discharges Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 24 Issue 24 Pages 065023
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work we have analyzed the properties of a gliding dc discharge in argon at atmospheric pressure. Despite the usual designation of these discharges as ‘gliding arc discharges’, it was found previously that they operate in two different regimes—glow and arc. Here we analyze the differences in both regimes by means of two dimensional fluid modeling. In order to address different aspects of the discharge operation, we use two models—Cartesian and axisymmetric in a cylindrical coordinate system. The obtained results show that the two types of discharges produce a similar plasma column for a similar discharge current. However, the different mechanisms of plasma channel attachment to the cathode could produce certain differences in the plasma parameters (i.e. arc elongation), and this can affect gas treatments applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368117100028 Publication Date 2015-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 12 Open Access
Notes This work is financially supported by the Methusalem financing and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:129214 Serial 3952
Permanent link to this record
 

 
Author (down) Kolev, S.; Bogaerts, A.
Title Three-dimensional modeling of energy transport in a gliding arc discharge in argon Type A1 Journal Article
Year 2018 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 27 Issue 12 Pages 125011
Keywords A1 Journal Article; gliding arc discharge, sliding arc discharge, energy transport, fluid plasma model, atmospheric pressure plasmas; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract In this work we study energy transport in a gliding arc discharge with two diverging flat

electrodes in argon gas at atmospheric pressure. The discharge is ignited at the shortest electrode

gap and it is pushed downstream by a forced gas flow. The current values considered are

relatively low and therefore a non-equilibrium plasma is produced. We consider two cases, i.e.

with high and low discharge current (28 mA and 2.8mA), and a constant gas flow of 10 lmin −1 ,

with a significant turbulent component to the velocity. The study presents an analysis of the

various energy transport mechanisms responsible for the redistribution of Joule heating to the

plasma species and the moving background gas. The objective of this work is to provide a

general understanding of the role of the different energy transport mechanisms in arc formation

and sustainment, which can be used to improve existing or new discharge designs. The work is

based on a three-dimensional numerical model, combining a fluid plasma model, the shear stress

transport Reynolds averaged Navier–Stokes turbulent gas flow model, and a model for gas

thermal balance. The obtained results show that at higher current the discharge is constricted

within a thin plasma column several hundred kelvin above room temperature, while in the low-

current discharge the combination of intense convective cooling and low Joule heating prevents

discharge contraction and the plasma column evolves to a static non-moving diffusive plasma,

continuously cooled by the flowing gas. As a result, the energy transport in the two cases is

determined by different mechanisms. At higher current and a constricted plasma column, the

plasma column is cooled mainly by turbulent transport, while at low current and an unconstricted

plasma, the major cooling mechanism is energy transport due to non-turbulent gas convection. In

general, the study also demonstrates the importance of turbulent energy transport in

redistributing the Joule heating in the arc and its significant role in arc cooling and the formation

of the gas temperature profile. In general, the turbulent energy transport lowers the average gas

temperature in the arc, thus allowing additional control of thermal non-equilibrium in the

discharge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454555600005 Publication Date 2018-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited Open Access Not_Open_Access
Notes This work was supported by the European Regional Devel- opment Fund within the Operational Programme ’Science and Education for Smart Growth 2014 – 2020’ under the Project CoE ’National center of mechatronics and clean technologies’ BG05M2OP001-1.001-0008-C01, and by the Flemish Fund for Scientific Research (FWO); grant no G.0383.16N. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:155973 Serial 5140
Permanent link to this record
 

 
Author (down) Kolev, I.; Bogaerts, A.; Gijbels, R.
Title Influence of electron recapture by the cathode upon the discharge characteristics in dc planar magnetrons Type A1 Journal article
Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
Volume 72 Issue Pages 056402,1-11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In dc magnetrons the electrons emitted from the cathode may return there due to the applied magnetic field. When that happens, they can be recaptured or reflected back into the discharge, depending on the value of the reflection coefficient (RC). A 2d3v (two-dimensional in coordinate and three-dimensional in velocity space) particle-in-cellMonte Carlo model, including an external circuit, is developed to determine the role of the electron recapture in the discharge processes. The detailed discharge structure as a function of RC for two pressures (4 and 25mtorr) is studied. The importance of electron recapture is clearly manifested, especially at low pressures. The results indicate that the discharge characteristics are dramatically changed with varying RC between 0 and 1. Thus, the electron recapture at the cathode appears to be a significant mechanism in magnetron discharges and RC a very important parameter in their correct quantitative description that should be dealt with cautiously.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000233603200089 Publication Date 2005-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited 29 Open Access
Notes Approved Most recent IF: 2.366; 2005 IF: 2.418
Call Number UA @ lucian @ c:irua:54667 Serial 1621
Permanent link to this record
 

 
Author (down) Kolev, I.; Bogaerts, A.
Title Calculation of gas heating in a dc sputter magnetron Type A1 Journal article
Year 2008 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 104 Issue 9 Pages 093301,1-093301,8
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The effect of gas heating in laboratory sputter magnetrons is investigated by means of numerical modeling. The model is two-dimensional in the coordinate space and three-dimensional in the velocity space based on the particle-in-cellMonte Carlo collisions technique. It is expanded in a way that allows the inclusion of the neutral plasma particles (fast gas atoms and sputtered atoms), which makes it possible to calculate the gas temperature and its influence on the discharge behavior in a completely self-consistent way. The results of the model are compared to experimental measurements and to other existing simulation results. The results show that gas heating is pressure dependent (rising with the increase in the gas pressure) and should be taken into consideration at pressures above 10 mTorr.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000260941700017 Publication Date 2008-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 19 Open Access
Notes Approved Most recent IF: 2.068; 2008 IF: 2.201
Call Number UA @ lucian @ c:irua:71286 Serial 267
Permanent link to this record
 

 
Author (down) Kolev, I.; Bogaerts, A.
Title Detailed numerical investigation of a DC sputter magnetron Type A1 Journal article
Year 2006 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci
Volume 34 Issue 3 Pages 886-894
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000238582700019 Publication Date 2006-06-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.052 Times cited 28 Open Access
Notes Approved Most recent IF: 1.052; 2006 IF: 1.144
Call Number UA @ lucian @ c:irua:58198 Serial 667
Permanent link to this record
 

 
Author (down) Kolev, I.; Bogaerts, A.
Title Numerical models of the planar magnetron glow discharges Type A1 Journal article
Year 2004 Publication Contributions to plasma physics Abbreviated Journal Contrib Plasm Phys
Volume 44 Issue 7/8 Pages 582-588
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000225541000003 Publication Date 2004-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0863-1042;1521-3986; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.44 Times cited 22 Open Access
Notes Approved Most recent IF: 1.44; 2004 IF: 0.701
Call Number UA @ lucian @ c:irua:49069 Serial 2402
Permanent link to this record
 

 
Author (down) Kolev, I.; Bogaerts, A.
Title Numerical study of the sputtering in a dc magnetron Type A1 Journal article
Year 2009 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Phys Chem C
Volume 27 Issue 1 Pages 20-28
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics simulations were used to investigate the size-dependent melting mechanism of nickel nanoclusters of various sizes. The melting process was monitored by the caloric curve, the overall cluster Lindemann index, and the atomic Lindemann index. Size-dependent melting temperatures were determined, and the correct linear dependence on inverse diameter was recovered. We found that the melting mechanism gradually changes from dynamic coexistence melting to surface melting with increasing cluster size. These findings are of importance in better understanding carbon nanotube growth by catalytic chemical vapor deposition as the phase state of the catalyst nanoparticle codetermines the growth mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000263299600018 Publication Date 2009-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 66 Open Access
Notes Approved Most recent IF: 4.536; 2009 IF: 4.224
Call Number UA @ lucian @ c:irua:71634 Serial 2411
Permanent link to this record
 

 
Author (down) Kolev, I.; Bogaerts, A.
Title PIC – MCC numerical simulation of a DC planar magnetron Type A1 Journal article
Year 2006 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 3 Issue 2 Pages 127-134
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000235628300005 Publication Date 2006-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 27 Open Access
Notes Approved Most recent IF: 2.846; 2006 IF: 2.298
Call Number UA @ lucian @ c:irua:56077 Serial 2621
Permanent link to this record
 

 
Author (down) Koelman, P.; Heijkers, S.; Tadayon Mousavi, S.; Graef, W.; Mihailova, D.; Kozak, T.; Bogaerts, A.; van Dijk, J.
Title A Comprehensive Chemical Model for the Splitting of CO2in Non-Equilibrium Plasmas: A Comprehensive Chemical Model for CO2Splitting Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 14 Pages 1600155
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An extensive CO2 plasmamodel is presented that is relevant for the production of ‘‘solar fuels.’’ It is based on reaction rate coefficients fromrigorously reviewed literature, and is augmented with reactionrate coefficients that are obtained fromscaling laws.The input data set,which is suitable for usage with the plasma simulation software Plasimo (https://plasimo.phys.tue.nl/), is available via the Plasimo and publisher’s websites.1 The correctness of this model implementation has been established by independent ZDPlasKin implementation (http://www.zdplaskin.

laplace.univ-tlse.fr/), to verify that the results agree. Results of these ‘‘global models’’ are presented for a DBD plasma reactor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403074000009 Publication Date 2016-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 21 Open Access Not_Open_Access
Notes Dutch Technology Foundation STW; Ministerie van Economische Zaken; Hercules Foundation; Acknowledgements: This research is supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organization for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs. Furthermore, we acknowledge financial support from the IAP/7 (Inter-university Attraction Pole) program PSI-Physical Chemistry of Plasma- Surface Interactions by the Belgian Federal Office for Science Policy (BELSPO). Part of the calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @ c:irua:142643 Serial 4565
Permanent link to this record
 

 
Author (down) Klinkhammer, C.; Verlackt, C.; Smilowicz, D.; Kogelheide, F.; Bogaerts, A.; Metzler-Nolte, N.; Stapelmann, K.; Havenith, M.; Lackmann, J.-W.
Title Elucidation of plasma-induced chemical modifications on glutathione and glutathione disulphide Type A1 Journal article
Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 7 Issue Pages 13828
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric pressure plasmas are gaining increased interest in the medical sector and clinical trials to treat skin diseases are underway. Plasmas are capable of producing several reactive oxygen and nitrogen species (RONS). However, there are open questions how plasma-generated RONS interact on a molecular level in a biological environment, e.g. cells or cell components. The redox pair glutathione (GSH) and glutathione disulphide (GSSG) forms the most important redox buffer in organisms responsible for detoxification of intracellular reactive species. We apply Raman spectroscopy, mass spectrometry, and molecular dynamics simulations to identify the time-dependent chemical modifications on GSH and GSSG that are caused by dielectric barrier discharge under ambient conditions. We find GSSG, S-oxidised glutathione species, and S-nitrosoglutathione as oxidation products with the latter two being the final products, while glutathione sulphenic acid, glutathione sulphinic acid, and GSSG are rather reaction intermediates. Experiments using stabilized pH conditions revealed the same main oxidation products as were found in unbuffered solution, indicating that the dominant oxidative or nitrosative reactions are not influenced by acidic pH. For more complex systems these results indicate that too long treatment times can cause difficult-to-handle modifications to the cellular redox buffer which can impair proper cellular function.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000413401300003 Publication Date 2017-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 17 Open Access OpenAccess
Notes Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:146666 Serial 4783
Permanent link to this record
 

 
Author (down) Khosravian, N.; Kamaraj, B.; Neyts, E.C.; Bogaerts, A.
Title Structural modification of P-glycoprotein induced by OH radicals: Insights from atomistic simulations Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue 6 Pages 19466
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This study reports on the possible effects of OH radical impact on the transmembrane domain 6 of P-glycoprotein, TM6, which plays a crucial role in drug binding in human cells. For the first time, we employ molecular dynamics (MD) simulations based on the self-consistent charge density functional tight binding (SCC-DFTB) method to elucidate the potential sites of fragmentation and mutation in this domain upon impact of OH radicals, and to obtain fundamental information about the underlying reaction mechanisms. Furthermore, we apply non-reactive MD simulations to investigate the long-term effect of this mutation, with possible implications for drug binding. Our simulations indicate that the interaction of OH radicals with TM6 might lead to the breaking of C-C and C-N peptide bonds, which eventually cause fragmentation of TM6. Moreover, according to our simulations, the OH radicals can yield mutation in the aromatic ring of phenylalanine in TM6, which in turn affects its structure. As TM6 plays an important role in the binding of a range of cytotoxic drugs with P-glycoprotein, any changes in its structure are likely to affect the response of the tumor cell in chemotherapy. This is crucial for cancer therapies based on reactive oxygen species, such as plasma treatment.
Address Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000369573900001 Publication Date 2016-02-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 7 Open Access
Notes The authors acknowledge financial support from the Fund for Scientific Research (FWO) Flanders, grant number G012413N. The calculations were performed in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen.” Approved Most recent IF: 4.259
Call Number c:irua:131610 Serial 4031
Permanent link to this record
 

 
Author (down) Khosravian, N.; Bogaerts, A.; Huygh, S.; Yusupov, M.; Neyts, E.C.
Title How do plasma-generated OH radicals react with biofilm components? Insights from atomic scale simulations Type A1 Journal article
Year 2015 Publication Biointerphases Abbreviated Journal Biointerphases
Volume 10 Issue 10 Pages 029501
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of nonthermal atmospheric pressure plasma is emerging as an alternative and efficient technique for the inactivation of bacterial biofilms. In this study, reactive molecular dynamics simulations were used to examine the reaction mechanisms of hydroxyl radicals, as key reactive oxygen plasma species in biological systems, with several organic molecules (i.e., alkane, alcohol, carboxylic acid, and amine), as prototypical components of biomolecules in the biofilm. Our results demonstrate that organic molecules containing hydroxyl and carboxyl groups may act as trapping agents for the OH radicals. Moreover, the impact of OH radicals on N-acetyl-glucosamine, as constituent component of staphylococcus epidermidis biofilms, was investigated. The results show how impacts of OH radicals lead to hydrogen abstraction and subsequent molecular damage. This study thus provides new data on the reaction mechanisms of plasma species, and particularly the OH radicals, with fundamental components of bacterial biofilms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000357195600019 Publication Date 2014-12-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1934-8630;1559-4106; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.603 Times cited 10 Open Access
Notes Approved Most recent IF: 2.603; 2015 IF: 3.374
Call Number c:irua:121371 Serial 1492
Permanent link to this record
 

 
Author (down) Khalilov, U.; Yusupov, M.; Bogaerts, A.; Neyts, E.C.
Title Selective Plasma Oxidation of Ultrasmall Si Nanowires Type A1 Journal article
Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 120 Issue 120 Pages 472-477
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Device performance of Si|SiOx core-shell based nanowires critically depends on the exact control over the oxide thickness. Low-temperature plasma oxidation is a highly promising alternative to thermal oxidation allowing for improved control over the oxidation process, in particular for ultrasmall Si nanowires. We here elucidate the room temperature plasma oxidation mechanisms of ultrasmall Si nanowires using hybrid molecular dynamics / force-bias Monte Carlo simulations. We demonstrate how the oxidation and concurrent water formation mechanisms are a function of the oxidizing plasma species and we demonstrate how the resulting core-shell oxide thickness can be controlled through these species. A new mechanism of water formation is discussed in detail. The results provide a detailed atomic level explanation of the oxidation process of highly curved Si surfaces. These results point out a route toward plasma-based formation of ultrathin core-shell Si|SiOx nanowires at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368562200057 Publication Date 2015-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 3 Open Access
Notes U.K. and M.Y. gratefully acknowledge financial support from the Research Foundation – Flanders (FWO), Grants 12M1315N and 1200216N. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 4.536
Call Number c:irua:130677 Serial 4002
Permanent link to this record
 

 
Author (down) Khalilov, U.; Pourtois, G.; Huygh, S.; van Duin, A.C.T.; Neyts, E.C.; Bogaerts, A.
Title New mechanism for oxidation of native silicon oxide Type A1 Journal article
Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 117 Issue 19 Pages 9819-9825
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Continued miniaturization of metal-oxide-semiconductor field-effect transistors (MOSFETs) requires an ever-decreasing thickness of the gate oxide. The structure of ultrathin silicon oxide films, however, critically depends on the oxidation mechanism. Using reactive atomistic simulations, we here demonstrate how the oxidation mechanism in hyperthermal oxidation of such structures may be controlled by the oxidation temperature and the oxidant energy. Specifically, we study the interaction of hyperthermal oxygen with energies of 15 eV with thin SiOx (x ≤ 2) films with a native oxide thickness of about 10 Å. We analyze the oxygen penetration depth probability and compare with results of the hyperthermal oxidation of a bare Si(100){2 × 1} (c-Si) surface. The temperature-dependent oxidation mechanisms are discussed in detail. Our results demonstrate that, at low (i.e., room) temperature, the penetrated oxygen mostly resides in the oxide region rather than at the SiOx|c-Si interface. However, at higher temperatures, starting at around 700 K, oxygen atoms are found to penetrate and to diffuse through the oxide layer followed by reaction at the c-Si boundary. We demonstrate that hyperthermal oxidation resembles thermal oxidation, which can be described by the DealGrove model at high temperatures. Furthermore, defect creation mechanisms that occur during the oxidation process are also analyzed. This study is useful for the fabrication of ultrathin silicon oxide gate oxides for metal-oxide-semiconductor devices as it links parameters that can be straightforwardly controlled in experiment (oxygen temperature, velocity) with the silicon oxide structure.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000319649100032 Publication Date 2013-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 24 Open Access
Notes Approved Most recent IF: 4.536; 2013 IF: 4.835
Call Number UA @ lucian @ c:irua:107989 Serial 2321
Permanent link to this record
 

 
Author (down) Khalilov, U.; Pourtois, G.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C.
Title Reactive molecular dynamics simulations on SiO2-coated ultra-small Si-nanowires Type A1 Journal article
Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 5 Issue 2 Pages 719-725
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of coreshell SiSiO2 nanowires as nanoelectronic devices strongly depends on their structure, which is difficult to tune precisely. In this work, we investigate the formation of the coreshell nanowires at the atomic scale, by reactive molecular dynamics simulations. The occurrence of two temperature-dependent oxidation mechanisms of ultra-small diameter Si-NWs is demonstrated. We found that control over the Si-core radius and the SiOx (x ≤ 2) oxide shell is possible by tuning the growth temperature and the initial Si-NW diameter. Two different structures were obtained, i.e., ultrathin SiO2 silica nanowires at high temperature and Si core|ultrathin SiO2 silica nanowires at low temperature. The transition temperature is found to linearly decrease with the nanowire curvature. Finally, the interfacial stress is found to be responsible for self-limiting oxidation, depending on both the initial Si-NW radius and the oxide growth temperature. These novel insights allow us to gain control over the exact morphology and structure of the wires, as is needed for their application in nanoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000313426200036 Publication Date 2012-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 17 Open Access
Notes Approved Most recent IF: 7.367; 2013 IF: 6.739
Call Number UA @ lucian @ c:irua:102584 Serial 2824
Permanent link to this record
 

 
Author (down) Khalilov, U.; Bogaerts, A.; Xu, B.; Kato, T.; Kaneko, T.; Neyts, E.C.
Title How the alignment of adsorbed ortho H pairs determines the onset of selective carbon nanotube etching Type A1 Journal article
Year 2017 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 9 Issue 9 Pages 1653-1661
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Unlocking the enormous technological potential of carbon nanotubes strongly depends on our ability to specifically produce metallic or semiconducting tubes. While selective etching of both has already been demonstrated, the underlying reasons, however, remain elusive as yet. We here present computational and experimental evidence on the operative mechanisms at the atomic scale. We demonstrate that during the adsorption of H atoms and their coalescence, the adsorbed ortho hydrogen pairs on single-walled carbon nanotubes induce higher shear stresses than axial stresses, leading to the elongation of HC–CH bonds as a function of their alignment with the tube chirality vector, which we denote as the γ-angle. As a result, the C–C cleavage occurs more rapidly in nanotubes containing ortho H-pairs with a small γ-angle. This phenomenon can explain the selective etching of small-diameter semiconductor nanotubes with a similar curvature. Both theoretical and experimental results strongly indicate the important role of the γ-angle in the selective etching mechanisms of carbon nanotubes, in addition to the nanotube curvature and metallicity effects and lead us to clearly understand the onset of selective synthesis/removal of CNT-based materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000395422800036 Publication Date 2016-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 6 Open Access OpenAccess
Notes U. K. gratefully acknowledges financial support from the Fund of Scientific Research Flanders (FWO), Belgium (Grant No. 12M1315N). This work was also supported in part by Grant-in- Aid for Young Scientists A (Grant No. 25706028), Grant-in-Aid for Scientific Research on Innovative Areas (Grant No. 26107502) from JSPS KAKENHI. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. The authors also thank Prof. A. C. T. van Duin for sharing the ReaxFF code and J. Razzokov for his assistance to perform the DFT calculations. Approved Most recent IF: 7.367
Call Number PLASMANT @ plasmant @ c:irua:140091 Serial 4417
Permanent link to this record
 

 
Author (down) Khalilov, U.; Bogaerts, A.; Neyts, E.C.
Title Microscopic mechanisms of vertical graphene and carbon nanotube cap nucleation from hydrocarbon growth precursors Type A1 Journal article
Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue 15 Pages 9206-9214
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Controlling and steering the growth of single walled carbon nanotubes is often believed to require controlling of the nucleation stage. Yet, little is known about the microscopic mechanisms governing the nucleation from hydrocarbon molecules. Specifically, we address here the dehydrogenation of hydrocarbon molecules and the formation of all-carbon graphitic islands on metallic nanoclusters from hydrocarbon molecules under conditions typical for carbon nanotube growth. Employing reactive molecular dynamics simulations, we demonstrate for the first time that the formation of a graphitic network occurs through the intermediate formation of vertically oriented, not fully dehydrogenated graphitic islands. Upon dehydrogenation of these vertical graphenes, the islands curve over the surface, thereby forming a carbon network covering the nanoparticle. The results indicate that controlling the extent of dehydrogenation offers an additional parameter to control the nucleation of carbon nanotubes.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000339861500103 Publication Date 2014-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 21 Open Access
Notes Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:117950 Serial 2027
Permanent link to this record
 

 
Author (down) Khalilov, U.; Bogaerts, A.; Neyts, E.C.
Title Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors Type A1 Journal article
Year 2015 Publication Nature communications Abbreviated Journal Nat Commun
Volume 6 Issue 6 Pages 10306
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level.
Address PLASMANT research group, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000367584500001 Publication Date 2015-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 37 Open Access
Notes The authors gratefully acknowledge financial support from the Fund of Scientific Research Flanders (FWO), Belgium, grant number 12M1315N. The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. We thank Professor Adri C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 12.124; 2015 IF: 11.470
Call Number c:irua:129975 Serial 3990
Permanent link to this record
 

 
Author (down) Khalilov, U.; Bogaerts, A.; Neyts, E.C.
Title Atomic-scale mechanisms of plasma-assisted elimination of nascent base-grown carbon nanotubes Type A1 Journal article
Year 2017 Publication Carbon Abbreviated Journal Carbon
Volume 118 Issue 118 Pages 452-457
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Selective etching allows for obtaining carbon nanotubes with a specific chirality. While plasma-assisted etching has already been used to separate metallic tubes from their semiconducting counterparts, little is known about the nanoscale mechanisms of the etching process. We combine (reactive) molecular dynamics (MD) and force-bias Monte Carlo (tfMC) simulations to study H-etching of CNTs. In particular, during the hydrogenation and subsequent etching of both the carbon cap and the tube, they sequentially transform to different carbon nanostructures, including carbon nanosheet, nanowall, and polyyne chains, before they are completely removed from the surface of a substrate-bound Ni-nanocluster.We also found that onset of the etching process is different in the cases of the cap and the tube, although the overall etching scenario is similar in both cases. The entire hydrogenation/etching process for both cases is analysed in detail, comparing with available theoretical and experimental evidences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000401120800053 Publication Date 2017-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 2 Open Access OpenAccess
Notes U. K. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), Belgium (Grant No. 12M1315N). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. The authors also thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 6.337
Call Number PLASMANT @ plasmant @ c:irua:141915 Serial 4531
Permanent link to this record
 

 
Author (down) Khalilov, U.; Bogaerts, A.; Neyts, E.C.
Title Toward the Understanding of Selective Si Nano-Oxidation by Atomic Scale Simulations Type A1 Journal article
Year 2017 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res
Volume 50 Issue 50 Pages 796-804
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The continuous miniaturization of nanodevices, such as transistors, solar cells, and optical fibers, requires the controlled synthesis of (ultra)thin gate oxides (<10 nm), including Si gate-oxide (SiO2) with high quality at the atomic scale. Traditional thermal growth of SiO2 on planar Si surfaces, however, does not allow one to obtain such ultrathin oxide due to either the high oxygen diffusivity at high temperature or the very low sticking ability of incident oxygen at low temperature. Two recent techniques, both operative at low (room) temperature, have been put forward to overcome these obstacles: (i) hyperthermal oxidation of planar Si surfaces and (ii) thermal or plasma-assisted oxidation of nonplanar Si surfaces, including Si nanowires (SiNWs). These nanooxidation processes are, however, often difficult to study experimentally, due to the key intermediate processes taking place on the nanosecond time scale.

In this Account, these Si nano-oxidation techniques are discussed from a computational point of view and compared to both hyperthermal and thermal oxidation experiments, as well as to well-known models of thermal oxidation, including the Deal−Grove, Cabrera−Mott, and Kao models and several alternative mechanisms. In our studies, we use reactive molecular dynamics (MD) and hybrid MD/Monte Carlo simulation techniques, applying the Reax force field. The incident energy of oxygen species is chosen in the range of 1−5 eV in hyperthermal oxidation of planar Si surfaces in order to prevent energy-induced damage. It turns out that hyperthermal growth allows for two growth modes, where the ultrathin oxide thickness depends on either (1) only the kinetic energy of the incident oxygen species at a growth temperature below Ttrans = 600 K, or (2) both the incident energy and the growth temperature at a growth temperature above Ttrans. These modes are specific to such ultrathin oxides, and are not observed in traditional thermal oxidation, nor theoretically considered by already existing models. In the case of thermal or plasma-assisted oxidation of small Si nanowires, on the other hand, the thickness of the ultrathin oxide is a function of the growth temperature and the nanowire diameter. Below Ttrans, which varies with the nanowire diameter, partially oxidized SiNW are formed, whereas complete oxidation to a SiO2 nanowire occurs only above Ttrans. In both nano-oxidation processes at lower temperature (T < Ttrans), final sandwich c-Si|SiOx|a-SiO2 structures are obtained due to a competition between overcoming the energy barrier to penetrate into Si subsurface layers and the compressive stress (∼2−3 GPa) at the Si crystal/oxide interface. The overall atomic-simulation results strongly indicate that the thickness of the intermediate SiOx (x < 2) region is very limited (∼0.5 nm) and constant irrespective of oxidation parameters. Thus, control over the ultrathin SiO2 thickness with good quality is indeed possible by accurately tuning the oxidant energy, oxidation temperature and surface curvature.

In general, we discuss and put in perspective these two oxidation mechanisms for obtaining controllable ultrathin gate-oxide films, offering a new route toward the fabrication of nanodevices via selective nano-oxidation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399859800016 Publication Date 2017-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 20.268 Times cited 5 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 12M1315N ; Approved Most recent IF: 20.268
Call Number PLASMANT @ plasmant @ c:irua:142638 Serial 4561
Permanent link to this record
 

 
Author (down) Khalilov, U.; Bogaerts, A.; Hussain, S.; Kovacevic, E.; Brault, P.; Boulmer-Leborgne, C.; Neyts, E.C.
Title Nanoscale mechanisms of CNT growth and etching in plasma environment Type A1 Journal article
Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 50 Issue 50 Pages 184001
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-enhanced chemical deposition (PECVD) of carbon nanotubes has already been shown to allow chirality control to some extent. In PECVD, however, etching may occur simultaneously with the growth, and the occurrence of intermediate processes further significantly complicates the growth process.

We here employ a computational approach with experimental support to study the plasma-based formation of Ni nanoclusters, Ni-catalyzed CNT growth and subsequent etching processes, in order to understand the underpinning nanoscale mechanisms. We find that hydrogen is the dominant factor in both the re-structuring of a Ni film and the subsequent appearance of Ni nanoclusters, as well as in the CNT nucleation and etching processes. The obtained results are compared with available theoretical and experimental studies and provide a deeper understanding of the occurring nanoscale mechanisms in plasma-assisted CNT nucleation and growth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398300900001 Publication Date 2017-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 6 Open Access OpenAccess
Notes UK gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), Belgium (Grant No. 12M1315N). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. The authors also thank Prof A C T van Duin for sharing the ReaxFF code. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @ c:irua:141918 Serial 4533
Permanent link to this record
 

 
Author (down) Kelly, S.; Verheyen, C.; Cowley, A.; Bogaerts, A.
Title Producing oxygen and fertilizer with the Martian atmosphere by using microwave plasma Type A1 Journal article
Year 2022 Publication Chem Abbreviated Journal Chem
Volume 8 Issue 10 Pages 2797-2816
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We explorethepotentialofmicrowave(MW)-plasma-based in situ

utilizationoftheMartianatmospherewithafocusonthenovelpos-

sibilityoffixingN2 forfertilizerproduction. Conversioninasimulant

plasma (i.e., 96% CO2, 2% N2, and 2% Ar),performedunderen-

ergyconditionssimilartothoseoftheMarsOxygen In Situ Resource

UtilizationExperiment(MOXIE),currentlyonboardNASA’sPerse-

verancerover,demonstratesthatO/O2 formedthroughCO2 dissociation

facilitatesthefixationoftheN2 fractionviaoxidationtoNOx.

PromisingproductionratesforO2, CO,andNOx of 47.0,76.1,and

1.25g/h,respectively,arerecordedwithcorrespondingenergy

costs of0.021,0.013,and0.79kWh/g,respectively.Notably,O2

productionratesare 30 timeshigherthanthosedemonstrated

by MOXIE,whiletheNOx production raterepresentsan 7% fixa-

tionoftheN2 fraction presentintheMartian atmosphere.MW-

plasma-basedconversionthereforeshowsgreatpotentialasan in

situ resourceutilization(ISRU)technologyonMarsinthatitsimulta-

neouslyfixesN2 and producesO2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000875346600005 Publication Date 2022-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2451-9294 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 23.5 Times cited Open Access OpenAccess
Notes the Euro- pean Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO grant no. GoF9618n and EOS no. 30505023). C.V. was supported by a FWO aspirant PhD fellowship (grant no. 1184820N). The calculations were per- formed with the Turing HPC infrastructure at the CalcUA core facility of the Univer- siteit Antwerpen (Uantwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish government (department EWI), and Uantwerpen. Approved Most recent IF: 23.5
Call Number PLASMANT @ plasmant @c:irua:192174 Serial 7243
Permanent link to this record
 

 
Author (down) Kelly, S.; van de Steeg, A.; Hughes, A.; van Rooij, G.; Bogaerts, A.
Title Thermal instability and volume contraction in a pulsed microwave N2plasma at sub-atmospheric pressure Type A1 Journal article
Year 2021 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 30 Issue 5 Pages 055005
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We studied the evolution of an isolated pulsed plasma in a vortex flow stabilised microwave (MW) discharge in N2 at 25 mbar via the combination of 0D kinetics modelling, iCCD imaging and laser scattering diagnostics. Quenching of electronically excited N2 results in fast gas heating and the onset of a thermal-ionisation instability, contracting the discharge volume. The onset of a thermal-ionisation instability driven by vibrational excitation pathways is found to facilitate significantly higher N2 conversion (i.e. dissociation to atomic N2 ) compared to pre-instability conditions, emphasizing the potential utility of this dynamic in future fixation applications. The instability onset is found to be instigated by super-elastic heating of the electron energy distribution tail via vibrationally excited N2 . Radial contraction of the discharge to the skin depth is found to occur post instability, while the axial elongation is found to be temporarily contracted during the thermal instability onset. An increase in power reflection during the thermal instability onset eventually limits the destabilising effects of exothermic electronically excited N2 quenching. Translational and vibrational temperature reach a quasi-non-equilibrium after the discharge contraction, with translational temperatures reaching ∼1200 K at the pulse end, while vibrational temperatures are found in near equilibrium with the electron energy (1 eV, or ∼11 600 K). This first description of the importance of electronically excited N2 quenching in thermal instabilities gives an additional fundamental understanding of N2 plasma behaviour in pulsed MW context, and thereby brings the eventual implementation of this novel N2 fixation method one step closer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000648710900001 Publication Date 2021-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited Open Access OpenAccess
Notes Stichting voor de Technische Wetenschappen, 733.000.002 ; Fonds Wetenschappelijk Onderzoek, 30505023 GoF9618n ; H2020 European Research Council, 810182 ; H2020 Marie Skłodowska-Curie Actions, 813393 838181 ; SK & AB acknowledge financial support by the European Marie Skłodowska-Curie Individual Fellowship ‘PENFIX’ within Horizon 2020 (Grant No. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 810182—SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO Grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. SK and AB would like to thank Mr Luc van ’t dack, Dr Karen Leyssens and Ing. Karel Venken for their technical assistance. AvdS, AH and GvR are grateful to Ampleon for the use of their solid-state microwave amplifier units and acknowledge financial support from the Netherlands Organisation for Scientific Research (NWO Grant No. 733.000.002) in the framework of the CO2 -to-products programme with kind support from Shell, and the ENW PPP Fund for the top sectors. This project has been partially funded by the European Union’s Horizon 2020 research and innovation programme ‘Pioneer’ under the Marie Skłodowska-Curie Grant Agreement No. 813393. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:178122 Serial 6759
Permanent link to this record
 

 
Author (down) Kelly, S.; Mercer, E.; Gorbanev, Y.; Fedirchyk, I.; Verheyen, C.; Werner, K.; Pullumbi, P.; Cowley, A.; Bogaerts, A.
Title Plasma-based conversion of martian atmosphere into life-sustaining chemicals: The benefits of utilizing martian ambient pressure Type A1 Journal Article
Year 2024 Publication Journal of CO2 utilization Abbreviated Journal Journal of CO2 Utilization
Volume 80 Issue Pages 102668
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We explored the potential of plasma-based In-Situ Resource Utilization (ISRU) for Mars through the conversion of Martian atmosphere (~96% CO2, 2% N2, and 2% Ar) into life-sustaining chemicals. As the Martian surface pressure is about 1% of the Earth’s surface pressure, it is an ideal environment for plasma-based gas conversion using microwave reactors. At 1000 W and 10 Ln/min (normal liters per minute), we produced ~76 g/h of O2 and ~3 g/h of NOx using a 2.45 GHz waveguided reactor at 25 mbar, which is ~3.5 times Mars ambient pressure. The energy cost required to produce O2 was ~0.013 kWh/g, which is very promising compared to recently concluded MOXIE experiments on the Mars surface. This marks a crucial step towards realizing the extension of human exploration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001156084300001 Publication Date 2024-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record
Impact Factor 7.7 Times cited Open Access Not_Open_Access
Notes We acknowledge financial support by a European Space Agency (ESA) Open Science Innovation Platform study (contract no. 4000137001/21/NL/GLC/ov), the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), the Excellence of Science FWOFNRS PLASyntH2 project (FWO grant no. G0I1822N and EOS no. 4000751) and the Methusalem project of the University of Antwerp. Approved Most recent IF: 7.7; 2024 IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:202389 Serial 8986
Permanent link to this record
 

 
Author (down) Kelly, S.; Mercer, E.; De Meyer, R.; Ciocarlan, R.-G.; Bals, S.; Bogaerts, A.
Title Microwave plasma-based dry reforming of methane: Reaction performance and carbon formation Type A1 Journal article
Year 2023 Publication Journal of CO2 utilization Abbreviated Journal Journal of CO2 Utilization
Volume 75 Issue Pages 102564
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract e investigate atmospheric pressure microwave (MW) plasma (2.45 GHz) conversion in CO2 and CH4 mixtures (i.e., dry reforming of methane, DRM) focusing on reaction performance and carbon formation. Promising energy costs of ~2.8–3.0 eV/molecule or ~11.1–11.9 kJ/L are amongst the best performance to date considering the current state-of-the-art for plasma-based DRM for all types of plasma. The conversion is in the range of ~46–49% and ~55–67% for CO2 and CH4, respectively, producing primarily syngas (i.e., H2 and CO) with H2/CO ratios of ~0.6–1 at CH4 fractions ranging from 30% to 45%. Water is the largest byproduct with levels ranging ~7–14% in the exhaust. Carbon particles visibly impact the plasma at higher CH4 fractions (> 30%), where they become heated and incandescent. Particle luminosity increases with increasing CH4 fractions, with the plasma becoming unstable near a 1:1 mixture (i.e., > 45% CH4). Electron microscopy of the carbon material reveals an agglomerated morphology of pure carbon nanoparticles. The mean particle size is determined as ~20 nm, free of any metal contamination, consistent with the electrode-less MW design.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001065310000001 Publication Date 2023-08-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.7 Times cited 6 Open Access OpenAccess
Notes We acknowledge financial support by a European Space Agency (ESA) Open Science Innovation Platform study (contract no. 4000137001/21/NL/GLC/ov), the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), the Excellence of Science FWOFNRS PLASyntH2 project (FWO grant no. G0I1822N and EOS no. 4000751) and the Methusalem project of the University of Antwerp Approved Most recent IF: 7.7; 2023 IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:198155 Serial 8807
Permanent link to this record
 

 
Author (down) Kelly, S.; Bogaerts, A.
Title Nitrogen fixation in an electrode-free microwave plasma Type A1 Journal Article
Year 2021 Publication Joule Abbreviated Journal Joule
Volume 5 Issue 11 Pages 3006-3030
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma-based gas conversion has great potential for enabling carbon-free fertilizer production powered by renewable electricity. Sustaining an energy-efficient plasma process without eroding the containment vessel is currently a significant challenge, limiting scaling to higher powers and throughputs. Isolation of the plasma from contact with any solid surfaces is an advantage, which both limits energy loss to the walls and prevents material erosion that could lead to disastrous soil contamination. This paper presents highly energy-efficient nitrogen fixation from air into NOx by microwave plasma, with the plasma filament isolated at the center of a quartz tube using a vortex gas flow. NOx production is found to scale very efficiently when increasing both gas flow rate and absorbed power. The lowest energy cost recorded of ~2 MJ/mol, for a total NOx production of ~3.8%, is the lowest reported up to now for atmospheric pressure plasmas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000723010700018 Publication Date 2021-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4351 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes We acknowledge financial support by the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 810182 – SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. We thank Dr. Waldo Bongers and Dr. Floran Peeters of the DIFFER institute for their help and advice in the initial phase of the project, as well as Mr. Luc van‘t Dack, Dr. Karen Leyssens and Ing. Karel Venken for their technical assistance. We thank Dr. Klaus Werner, executive director of the RF Energy Alliance, for his extensive expertise and helpful discourse regarding solid-state MW technology. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:184250 Serial 6835
Permanent link to this record
 

 
Author (down) Kamaraj, B.; Bogaerts, A.
Title Structure and function of p53-DNA complexes with inactivation and rescue mutations : a molecular dynamics simulation study Type A1 Journal article
Year 2015 Publication PLoS ONE Abbreviated Journal Plos One
Volume 10 Issue 10 Pages e0134638
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The tumor suppressor protein p53 can lose its function upon DNA-contact mutations (R273C and R273H) in the core DNA-binding domain. The activity can be restored by second-site suppressor or rescue mutations (R273CT284R, R273HT284R, and R273HS240R). In this paper, we elucidate the structural and functional consequence of p53 proteins upon DNA-contact mutations and rescue mutations and the underlying mechanisms at the atomic level by means of molecular dynamics simulations. Furthermore, we also apply the docking approach to investigate the binding phenomena between the p53 protein and DNA upon DNA-contact mutations and rescue mutations. This study clearly illustrates that, due to DNA-contact mutants, the p53 structure loses its stability and becomes more rigid than the native protein. This structural loss might affect the p53-DNA interaction and leads to inhibition of the cancer suppression. Rescue mutants (R273CT284R, R273HT284R and R273HS240R) can restore the functional activity of the p53 protein upon DNA-contact mutations and show a good interaction between the p53 protein and a DNA molecule, which may lead to reactivate the cancer suppression function. Understanding the effects of p53 cancer and rescue mutations at the molecular level will be helpful for designing drugs for p53 associated cancer diseases. These drugs should be designed so that they can help to inhibit the abnormal function of the p53 protein and to reactivate the p53 function (cell apoptosis) to treat human cancer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000359061400096 Publication Date 2015-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.806 Times cited Open Access
Notes Approved Most recent IF: 2.806; 2015 IF: 3.234
Call Number c:irua:126779 Serial 3278
Permanent link to this record