toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Janyavula, S.; Lawson, N.; Çakir, D.; Beck, P.; Ramp, L.C.; Burgess, J.O. doi  openurl
  Title The wear of polished and glazed zirconia against enamel Type A1 Journal article
  Year 2013 Publication Journal Of Prosthetic Dentistry Abbreviated Journal J Prosthet Dent  
  Volume 109 Issue 1 Pages 22-29  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Statement of problem. The wear of tooth structure opposing anatomically contoured zirconia crowns requires further investigation. Purpose. The purpose of this in vitro study was to measure the roughness and wear of polished, glazed, and polished then reglazed zirconia against human enamel antagonists and compare the measurements to those of veneering porcelain and natural enamel. Material and methods. Zirconia specimens were divided into polished, glazed, and polished then reglazed groups (n=8). A veneering porcelain (Ceramco3) and enamel were used as controls. The surface roughness of all pretest specimens was measured. Wear testing was performed in the newly designed Alabama wear testing device. The mesiobuccal cusps of extracted molars were standardized and used as antagonists. Three-dimensional (3D) scans of the specimens and antagonists were obtained at baseline and after 200 000 and 400 000 cycles with a profilometer. The baseline scans were superimposed on the posttesting scans to determine volumetric wear. Data were analyzed with a 1-way ANOVA and Tukey Honestly Significant Difference (HSD) post hoc tests (alpha=.05) Results. Surface roughness ranked in order of least rough to roughest was: polished zirconia, glazed zirconia, polished then reglazed zirconia, veneering porcelain, and enamel. For ceramic, there was no measureable loss on polished zirconia, moderate loss on the surface of enamel, and significant loss on glazed and polished then reglazed zirconia. The highest ceramic wear was exhibited by the veneering ceramic. For enamel antagonists, polished zirconia caused the least wear, and enamel caused moderate wear. Glazed and polished then reglazed zirconia showed significant opposing enamel wear, and veneering porcelain demonstrated the most. Conclusions. Within the limitations of the study, polished zirconia is wear-friendly to the opposing tooth. Glazed zirconia causes more material and antagonist wear than polished zirconia. The surface roughness of the zirconia aided in predicting the wear of the opposing dentition. (J Prosthet Dent 2013;109:22-29)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication St. Louis, Mo. Editor  
  Language Wos 000313934900004 Publication Date 2013-01-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3913 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.095 Times cited 89 Open Access  
  Notes ; ; Approved Most recent IF: 2.095; 2013 IF: 1.419  
  Call Number UA @ lucian @ c:irua:128327 Serial 4612  
Permanent link to this record
 

 
Author (up) Jardali, F.; Van Alphen, S.; Creel, J.; Ahmadi Eshtehardi, H.; Axelsson, M.; Ingels, R.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title NOxproduction in a rotating gliding arc plasma: potential avenue for sustainable nitrogen fixation Type A1 Journal article
  Year 2021 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 23 Issue 4 Pages 1748-1757  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The fast growing world population demands food to survive, and nitrogen-based fertilizers are essential to ensure sufficient food production. Today, fertilizers are mainly produced from non-sustainable fossil fuels<italic>via</italic>the Haber–Bosch process, leading to serious environmental problems. We propose here a novel rotating gliding arc plasma, operating in air, for direct NO<sub>x</sub>production, which can yield high nitrogen content organic fertilizers without pollution associated with ammonia emission. We explored the efficiency of NO<sub>x</sub>production in a wide range of feed gas ratios, and for two arc modes: rotating and steady. When the arc is in steady mode, record-value NO<sub>x</sub>concentrations up to 5.5% are achieved which are 1.7 times higher than the maximum concentration obtained by the rotating arc mode, and with an energy consumption of 2.5 MJ mol<sup>−1</sup>(or<italic>ca.</italic>50 kW h kN<sup>−1</sup>);<italic>i.e.</italic>the lowest value so far achieved by atmospheric pressure plasma reactors. Computer modelling, using a combination of five different complementary approaches, provides a comprehensive picture of NO<sub>x</sub>formation in both arc modes; in particular, the higher NO<sub>x</sub>production in the steady arc mode is due to the combined thermal and vibrationally-promoted Zeldovich mechanisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000629630600021 Publication Date 2021-01-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.125 Times cited Open Access OpenAccess  
  Notes Fonds Wetenschappelijk Onderzoek, GoF9618n 30505023 ; H2020 European Research Council, 810182 ; This research was supported by a Bilateral Project with N2 Applied, the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 810182 – SCOPE ERC Synergy project). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. We also thank J.-L. Liu for the RGA design, L. Van ‘t dack and K. Leyssens for MS calibration and practical support, and K. Van ‘t Veer for the fruitful discussions on plasma kinetic modelling and for calculating the electron energy losses. Approved Most recent IF: 9.125  
  Call Number PLASMANT @ plasmant @c:irua:176022 Serial 6678  
Permanent link to this record
 

 
Author (up) Jaroszewicz, J.; de Nolf, W.; Janssens, K.; Claussen-Kjerre, L.; Lind, O.C.; Salbu, B.; Falkenberg, G. openurl 
  Title Combined use of μ-XRF and μ-XRD for characterization of radioactive particle clusters released during the Chernobyl reactor incident Type H3 Book chapter
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:64599 Serial 5523  
Permanent link to this record
 

 
Author (up) Jaroszewicz, J.; de Nolf, W.; Janssens, K.; Michalski, A.; Falkenberg, G. doi  openurl
  Title Advantages of combined mu-XRF and mu-XRD for phase characterization of Ti-B-C ceramics compared with conventional X-ray diffraction Type A1 Journal article
  Year 2008 Publication Analytical and bioanalytical chemistry Abbreviated Journal Anal Bioanal Chem  
  Volume 391 Issue 4 Pages 1129-1133  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000256088700005 Publication Date 2008-05-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.431 Times cited 7 Open Access  
  Notes Approved Most recent IF: 3.431; 2008 IF: 3.328  
  Call Number UA @ admin @ c:irua:69317 Serial 5459  
Permanent link to this record
 

 
Author (up) Jaroszewicz, J.; de Nolf, W.; Janssens, K.; Michalski, A.; Falkenberg, G. openurl 
  Title Combined use of μ-XRF and μ-XRD to determine the heterogeneity, the chemical and phase composition of Ti-B-C ceramics prepared by the pulse plasma sintering (PPS) method Type H3 Book chapter
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords H3 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:64596 Serial 5524  
Permanent link to this record
 

 
Author (up) Javdani, Z.; Hassani, N.; Faraji, F.; Zhou, R.; Sun, C.; Radha, B.; Neyts, E.; Peeters, F.M.; Neek-Amal, M. pdf  url
doi  openurl
  Title Clogging and unclogging of hydrocarbon-contaminated nanochannels Type A1 Journal article
  Year 2022 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett  
  Volume 13 Issue 49 Pages 11454-11463  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The recent advantages of the fabrication of artificial nanochannels enabled new research on the molecular transport, permeance, and selectivity of various gases and molecules. However, the physisorption/chemisorption of the unwanted molecules (usually hydrocarbons) inside nanochannels results in the alteration of the functionality of the nanochannels. We investigated contamination due to hydrocarbon molecules, nanochannels made of graphene, hexagonal boron nitride, BC2N, and molybdenum disulfide using molecular dynamics simulations. We found that for a certain size of nanochannel (i.e., h = 0.7 nm), as a result of the anomalous hydrophilic nature of nanochannels made of graphene, the hydrocarbons are fully adsorbed in the nanochannel, giving rise to full uptake. An increasing temperature plays an important role in unclogging, while pressure does not have a significant role. The results of our pioneering work contribute to a better understanding and highlight the important factors in alleviating the contamination and unclogging of nanochannels, which are in good agreement with the results of recent experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000893147700001 Publication Date 2022-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.7  
  Call Number UA @ admin @ c:irua:192815 Serial 7263  
Permanent link to this record
 

 
Author (up) Javon, E.; Gaceur, M.; Dachraoui, W.; Margeat, O.; Ackermann, J.; Ilenia Saba, M.; Delugas, P.; Mattoni, A.; Bals, S.; Van Tendeloo, G. pdf  url
doi  openurl
  Title Competing forces in the self-assembly of coupled ZnO nanopyramids Type A1 Journal article
  Year 2015 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 9 Issue 9 Pages 3685-3694  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Self-assembly (SA) of nanostructures has recently gained increasing interest. A clear understanding of the process is not straightforward since SA of nanoparticles is a complex multiscale phenomenon including different driving forces. Here, we study the SA between aluminum doped ZnO nanopyramids into couples by combining inorganic chemistry and advanced electron microscopy techniques with atomistic simulations. Our results show that the SA of the coupled nanopyramids is controlled first by morphology, as coupling only occurs in the case of pyramids with well-developed facets of the basal planes. The combination of electron microscopy and atomistic modeling reveals that the coupling is further driven by strong ligandligand interaction between the bases of the pyramids as dominant force, while screening effects due to Al doping or solvent as well as corecore interaction are only minor contributions. Our combined approach provides a deeper understanding of the complex interplay between the interactions at work in the coupled SA of ZnO nanopyramids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000353867000030 Publication Date 2015-03-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 21 Open Access OpenAccess  
  Notes Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2015 IF: 12.881  
  Call Number c:irua:125978 Serial 434  
Permanent link to this record
 

 
Author (up) Javon, E.; Lubk; Cours, R.; Reboh, S.; Cherkashin, N.; Houdellier, F.; Gatel, C.; Hytch, M.J. doi  openurl
  Title Dynamical effects in strain measurements by dark-field electron holography Type A1 Journal article
  Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 147 Issue Pages 70-85  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Here, we study the effect of dynamic scattering on the projected geometric phase and strain maps reconstructed using dark-field electron holography (DFEH) for non-uniformly strained crystals. The investigated structure consists of a {SiGe/Si} superlattice grown on a (001)-Si substrate. The three dimensional strain held within the thin TEM lamella is modelled by the finite element method. The observed projected strain is simulated in two ways by multiplying the strain at each depth in the crystal by a weighting function determined from a recently developed analytical two-beam dynamical theory, and by simply taking the average value. We demonstrate that the experimental results need to be understood in terms of the dynamical theory and good agreement is found between the experimental and simulated results. Discrepancies do remain for certain cases and are likely to be from an imprecision in the actual two-beam diffraction conditions, notably the deviation parameter, and points to limitations in the 2-beam approximation. Finally, a route towards a 3D reconstruction of strain fields is proposed. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000343157400009 Publication Date 2014-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 10 Open Access  
  Notes Approved Most recent IF: 2.843; 2014 IF: 2.436  
  Call Number UA @ lucian @ c:irua:121108 Serial 769  
Permanent link to this record
 

 
Author (up) Jeanloz, S.; Lizin, S.; Beenaerts, N.; Brouwer, R.; Van Passel, S.; Witters, N. pdf  url
doi  openurl
  Title Towards a more structured selection process for attributes and levels in choice experiments : a study in a Belgian protected area Type A1 Journal article
  Year 2016 Publication Ecosystem Services Abbreviated Journal Ecosyst Serv  
  Volume 18 Issue Pages 45-57  
  Keywords A1 Journal article; Engineering Management (ENM)  
  Abstract The process of selecting attributes for inclusion in choice experiments frequently involves qualitative methods such as focus groups and interviews. In order for a choice experiment to be successful and the results to be valid, this qualitative selection process is essential. It often lacks rigour and is poorly described, particularly in environmental choice experiments. We propose a meticulous attribute and attribute-level selection process consisting of a scoring exercise and an interactive discussion. This paper provides a case study describing how attributes and attribute-levels were identified and selected for the National Park Hoge Kempen in Belgium. We carried out four focus groups and thirteen semi-structured interviews with various park stakeholders to select attributes from six categories: the four categories of ecosystem services (supporting, provisioning, regulating, cultural), infrastructure, and land use types. The top-ranked characteristics were nature conservation, natural forests, biodiversity refuge, wetlands, landscape variety, heathlands, air purification, and education. Both the scoring exercise and the interactive discussion contributed to the attributes selected for the CE. Following these, an ultimate expert consultation stage is recommended to approve both the attribute and attribute-level selection. The semi-qualitative protocol proposed in this paper can help practitioners and demonstrates how the results guide choice experiment design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375213800004 Publication Date 2016-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0416 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.072 Times cited 10 Open Access  
  Notes ; We would like to thank study informants, focus group participants and interviewees, as well as Tom Kuppens, Silvie Daniels, Janka Vanschoenwinkel and Michele Moretti of the Environmental Economics Research group of Hasselt University. Johan Van den Bosch, project leader at Regional Landschap Kempen en Maasland (RLKM), and Rolinde Demeyer from the Research Institute for Nature and Forest (INBO) have provided this study with valuable assistance and comments. Sarah Jeanloz was funded by the INTERREG IVB NEW program (Grant no. D1941/ 56200), Nele Witters (Grant no. 12B2913N) and Sebastien Lizin (Grant no. 12G5415N) are funded by Research Foundation- Flanders (FWD). Finally, we thank all reviewers for their constructive and insightful comments, and for their time. ; Approved Most recent IF: 4.072  
  Call Number UA @ admin @ c:irua:134332 Serial 6272  
Permanent link to this record
 

 
Author (up) Jehanathan, N.; Georgieva, V.; Saraiva, M.; Depla, D.; Bogaerts, A.; Van Tendeloo, G. pdf  doi
openurl 
  Title The influence of Cr and Y on the micro structural evolution of Mg―Cr―O and Mg―Y―O thin films Type A1 Journal article
  Year 2011 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films  
  Volume 519 Issue 16 Pages 5388-5396  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Electron microscopy for materials research (EMAT)  
  Abstract The compositional influence of Cr and Y on the microstructure of Mg―Cr―O, and Mg―Y―O films synthesized by reactive magnetron sputtering has been investigated by transmission electron microscopy, X-ray diffraction and molecular dynamics simulations. A decrease in crystallinity is observed in these films as the M (Cr or Y) content is increased. It is found that M forms a solid solution with MgO for metal ratios up to ~ 70% and ~ 50% for Cr and Y respectively. Above ~ 70% Cr metal ratio the Mg―Cr―O films are found to be completely amorphous. The Mg―Y―O films are composed of Mg(Y)O and Y2O3 nano crystallites, up to ~ 50% Y metal ratio. Above this ratio, only Y2O3 nano crystallites are found. The preferential < 111> MgO grain alignment is strongly affected by the increase in M content. For M metal ratios up to ~ 50%, there is a selective promotion of the < 100> MgO grain alignments and a decline in the < 111> grain alignments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000292573500013 Publication Date 2011-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.879 Times cited 4 Open Access  
  Notes Iwt Approved Most recent IF: 1.879; 2011 IF: 1.890  
  Call Number UA @ lucian @ c:irua:89516 Serial 1618  
Permanent link to this record
 

 
Author (up) Jehanathan, N.; Lebedev, O.; Gélard, I.; Dubourdieu, C.; Van Tendeloo, G. pdf  doi
openurl 
  Title Structure and defect characterization of multiferroic <tex>ReMnO$3 films and multilayers by TEM Type A1 Journal article
  Year 2010 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 21 Issue 7 Pages 075705,1-075705,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial rare earth manganite thin films (ReMnO3; Re = Tb, Ho, Er, and Y) and multilayers were grown by liquid injection metal organic chemical vapor deposition (MOCVD) on YSZ(111) and the same systems were grown c-oriented on Pt(111) buffered Si substrates. They have been structurally investigated by electron diffraction (ED) and high resolution transmission electron microscopy (HRTEM). Nanodomains of secondary orientation are observed in the hexagonal YMnO3 films. They are related to a YSZ(111) and Pt(111) misorientation. The epitaxial film thickness has an influence on the defect formation. TbO2 and Er2O3 inclusions are observed in the TbMnO3 and ErMnO3 films respectively. The structure and orientation of these inclusions are correlated to the resembling symmetry and structure of film and substrate. The type of defect formed in the YMnO3/HoMnO3 and YMnO3/ErMnO3 multilayers is also influenced by the type of substrate they are grown on. In our work, atomic growth models for the interface between the film/substrate are proposed and verified by comparison with observed and computer simulated images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000273824500018 Publication Date 2010-01-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 15 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 3.44; 2010 IF: 3.652  
  Call Number UA @ lucian @ c:irua:80436 Serial 3274  
Permanent link to this record
 

 
Author (up) Jelić, Ž. url  openurl
  Title Emergent vortex phenomena in spatially and temporally modulated superconducting condensates Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Doctoral thesis; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Liège Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:149394 Serial 4932  
Permanent link to this record
 

 
Author (up) Jelić, Ž. url  openurl
  Title Emergent vortex phenomena in spatially and temporally modulated superconducting condensates Type Doctoral thesis
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages 181 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:149394 Serial 5209  
Permanent link to this record
 

 
Author (up) Jelić, Z.L.; Milošević, M.V.; Silhanek, A.V. doi  openurl
  Title Velocimetry of superconducting vortices based on stroboscopic resonances Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue Pages 35687  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract An experimental determination of the mean vortex velocity in superconductors mostly relies on the measurement of flux-flow resistance with magnetic field, temperature, or driving current. In the present work we introduce a method combining conventional transport measurements and a frequency-tuned flashing pinning potential to obtain reliable estimates of the vortex velocity. The proposed device is characterized using the time-dependent Ginzburg-Landau formalism, where the velocimetry method exploits the resonances in mean vortex dissipation when temporal commensuration occurs between the vortex crossings and the flashing potential. We discuss the sensitivity of the proposed technique on applied current, temperature and heat diffusion, as well as the vortex core deformations during fast motion.  
  Address  
  Corporate Author Thesis  
  Publisher Nature Publishing Group Place of Publication London Editor  
  Language Wos 000385919600001 Publication Date 2016-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 22 Open Access  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO) and EU COST action MP1201. The work of Z.L.J. and A.V.S. was partially supported by “Mandat d'Impulsion Scientifique” MIS F.4527.13 of the F.R.S.-FNRS. ; Approved Most recent IF: 4.259  
  Call Number UA @ lucian @ c:irua:144636 Serial 4701  
Permanent link to this record
 

 
Author (up) Jelić, Ž.L.; Milošević, M.V.; Van de Vondel, J.; Silhanek, A.V. pdf  url
doi  openurl
  Title Stroboscopic phenomena in superconductors with dynamic pinning landscape Type A1 Journal article
  Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 5 Issue 5 Pages 14604  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Introducing artificial pinning centers is a well established strategy to trap quantum vortices and increase the maximal magnetic field and applied electric current that a superconductor can sustain without dissipation. In case of spatially periodic pinning, a clear enhancement of the superconducting critical current arises when commensurability between the vortex configurations and the pinning landscape occurs. With recent achievements in (ultrafast) optics and nanoengineered plasmonics it has become possible to exploit the interaction of light with superconductivity, and create not only spatially periodic imprints on the superconducting condensate, but also temporally periodic ones. Here we show that in the latter case, temporal matching phenomena develop, caused by stroboscopic commensurability between the characteristic frequency of the vortex motion under applied current and the frequency of the dynamic pinning. The matching resonances persist in a broad parameter space, including magnetic field, driving current, or material purity, giving rise to unusual features such as externally variable resistance/impedance and Shapiro steps in current-voltage characteristics. All features are tunable by the frequency of the dynamic pinning landscape. These findings open further exploration avenues for using flashing, spatially engineered, and/or mobile excitations on superconductors, permitting us to achieve advanced functionalities.  
  Address Departement de Physique, Universite de Liege, Allee du 6-Aout 17, B-4000 Liege, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000362082500001 Publication Date 2015-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 29 Open Access  
  Notes Acknowledgements: This work was supported by the Methusalem Funding of the Flemish Government, the Research Foundation-Flanders (FWO) and the COST Action MP1201. The work of Ž.L.J. and A.V.S. was partially supported by “Mandat d’Impulsion Scientifique” of the F.R.S.-FNRS. Approved Most recent IF: 4.259; 2015 IF: 5.578  
  Call Number c:irua:129807 c:irua:129807 Serial 3980  
Permanent link to this record
 

 
Author (up) Jembrih-Simbürger, D.; Neelmeijer, C.; Schalm, O.; Fredrickx, P.; Schreiner, M.; De Vis, K.; Mäder, M.; Schryvers, D.; Caen, J. pdf  doi
openurl 
  Title The colour of silver stained glass : analytical investigations carried out with XRF, SEM/EDX, TEM and IBA Type A1 Journal article
  Year 2002 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 17 Issue Pages 321-328  
  Keywords A1 Journal article; Art; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Glass treated on its surface with silver compounds and an aluminosilicate, such as ochre or clay, at higher temperatures (between 550 and 650 °C) accepts a wide variety of a yellow colour. It is the aim of this study to investigate the parameters of the manufacturing process affecting the final colour of silver stained glass and to correlate them with the final colour and colour intensity. Therefore, defined mixtures of ochre and a silver compound (AgCl, AgNO3, Ag2SO4, Ag3PO4, Ag2O) were prepared and applied on soda-lime glass. The firing process was modified within the range from 563 to 630 °C and glass samples were analysed after treatment with energy dispersive X-ray fluorescence analysis (EDXRF), scanning electron microscopy (SEM/EDX), transmission electron microscopy (TEM), as well as ion beam analysis (IBA) with an external beam. Within the scope of IBA simultaneous measurements using particle-induced X-ray emission (PIXE), particle-induced gamma-ray emission (PIGE), and Rutherford backscattering spectrometry (RBS) were carried out in order to obtain the thickness of the Ag-rich surface layer and the depth distribution of Ag. By means of TEM the microstructure of the silver particles was visualised. XRF results show that the lowest amount of Ag could be detected on glass samples treated with silver stain mixtures containing AgCl and Ag2O. A low kiln temperature (e.g. 563 °C) results in a higher silver concentration at the surface and lower penetration depths. Furthermore, the results obtained with SEM/EDX at cross-sections of the glass samples could be confirmed by PIXE, PIGE, RBS, and TEM.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000175158900001 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 42 Open Access  
  Notes Approved Most recent IF: 3.379; 2002 IF: 4.250  
  Call Number UA @ lucian @ c:irua:48775 Serial 395  
Permanent link to this record
 

 
Author (up) Jenett, H.; Grallath, E.; Riedel, R.; Strecker, K.; Gijbels, R.; Kennis, P. openurl 
  Title Comparative bulk, surface and depth profile analyses on AIN and SiC-coated B4C powders Type A3 Journal article
  Year 1991 Publication Fres J. Anal. Chem. Abbreviated Journal  
  Volume 341 Issue Pages 265-271  
  Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1991GJ55000022 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 135/271 Q2 # PHYSICS, APPLIED 70/145 Q2 # PHYSICS, CONDENSED MATTER 40/67 Q3 #  
  Call Number UA @ lucian @ c:irua:701 Serial 416  
Permanent link to this record
 

 
Author (up) Jenkinson, K.; Liz-Marzan, L.M.; Bals, S. pdf  url
doi  openurl
  Title Multimode electron tomography sheds light on synthesis, structure, and properties of complex metal-based nanoparticles Type A1 Journal article
  Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 34 Issue 36 Pages 2110394-19  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electron tomography has become a cornerstone technique for the visualization of nanoparticle morphology in three dimensions. However, to obtain in-depth information about a nanoparticle beyond surface faceting and morphology, different electron microscopy signals must be combined. The most notable examples of these combined signals include annular dark-field scanning transmission electron microscopy (ADF-STEM) with different collection angles and the combination of ADF-STEM with energy-dispersive X-ray or electron energy loss spectroscopies. Here, the experimental and computational development of various multimode tomography techniques in connection to the fundamental materials science challenges that multimode tomography has been instrumental to overcoming are summarized. Although the techniques can be applied to a wide variety of compositions, the study is restricted to metal and metal oxide nanoparticles for the sake of simplicity. Current challenges and future directions of multimode tomography are additionally discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000831332200001 Publication Date 2022-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 29.4 Times cited 10 Open Access OpenAccess  
  Notes The authors thank the financial support of the European Research Council (ERC-AdG-2017 787510, ERC-CoG-2019 815128) and of the European Commission (EUSMI, Grant 731019 and ESTEEM3, Grant 823717). Approved Most recent IF: 29.4  
  Call Number UA @ admin @ c:irua:189616 Serial 7087  
Permanent link to this record
 

 
Author (up) Jenkinson, K.; Spadaro, M.C.; Golovanova, V.; Andreu, T.; Morante, J.R.; Arbiol, J.; Bals, S. url  doi
openurl 
  Title Direct operando visualization of metal support interactions induced by hydrogen spillover during CO₂ hydrogenation Type A1 Journal article
  Year 2023 Publication Advanced materials Abbreviated Journal  
  Volume 35 Issue 51 Pages 2306447-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The understanding of catalyst active sites is a fundamental challenge for the future rational design of optimized and bespoke catalysts. For instance, the partial reduction of Ce4+ surface sites to Ce3+ and the formation of oxygen vacancies are critical for CO2 hydrogenation, CO oxidation, and the water gas shift reaction. Furthermore, metal nanoparticles, the reducible support, and metal support interactions are prone to evolve under reaction conditions; therefore a catalyst structure must be characterized under operando conditions to identify active states and deduce structure-activity relationships. In the present work, temperature-induced morphological and chemical changes in Ni nanoparticle-decorated mesoporous CeO2 by means of in situ quantitative multimode electron tomography and in situ heating electron energy loss spectroscopy, respectively, are investigated. Moreover, operando electron energy loss spectroscopy is employed using a windowed gas cell and reveals the role of Ni-induced hydrogen spillover on active Ce3+ site formation and enhancement of the overall catalytic performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001106139400001 Publication Date 2023-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 29.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 29.4; 2023 IF: 19.791  
  Call Number UA @ admin @ c:irua:201143 Serial 9022  
Permanent link to this record
 

 
Author (up) Jha, P.K.; Subramanian, V.; Sitasawad, R.; Van Grieken, R. pdf  doi
openurl 
  Title Heavy metals in sediments of the Yamura River (a tributary of the Ganges), India Type A1 Journal article
  Year 1990 Publication The science of the total environment Abbreviated Journal  
  Volume 95 Issue Pages 7-27  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Yamuna River sediments are more enriched in metals than those of the Ganges and average Indian river sediments. Variation of metals in suspended, bed and core sediment are due to the varying proportions of grain size and mineral content. Iron, Mn and Pb show a preference for the oxide fraction, whereas Cu and Zn are predominant in organic and carbonate fractions of sediments. Of the total elemental content, 80% Mn, 78% Fe, 69% Pb, 67% Cu and 55% Zn are available in chemically mobile phases of the sediments. The high partition coefficient of metals with respect to Mn suggests similar chemical mobility and preferences for solid phases. River sediments in the vicinity of Delhi show an increase in sorption of metals downstream, consequently metals are retained in sediments. The high correlation coefficient and significant regression relation among the metals indicate their similar behaviour during transport. At Allahabad, the contribution of the Yamuna to the Ganges is 3200 t Pb year−1, 12 100 t Zn year−1 and 8500 t Cu year−1 in particulate form.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1990DP94300002 Publication Date 2003-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116655 Serial 8026  
Permanent link to this record
 

 
Author (up) Ji, G.; Tan, Z.; Lu, Y.; Schryvers, D.; Li, Z.; Zhang, D. pdf  url
doi  openurl
  Title Heterogeneous interfacial chemical nature and bonds in a W-coated diamond/Al composite Type A1 Journal article
  Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact  
  Volume 112 Issue 112 Pages 129-133  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Heterogeneous Al/Al4C3/Al2O3/diamond{111}, Al/nanolayered Al4C3/diamond{111} and Al12W particle/Al4C3/Al2O3/diamond{111} multi-interfaces have been developed at the nanoscale in a W-coated diamond/Al composite produced by vacuum hot pressing. The formation of nanoscale Al4C3 crystals is strongly associated with local O enrichment and can be further promoted by Al12W interfacial particles. The latter effectively contributes to enhance interfacial chemical bonding reducing interfacial thermal resistance and, in turn, enhancing thermal conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370109200015 Publication Date 2015-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 7 Open Access  
  Notes This work is financially supported by the FWO project of Belgium (No. U2 FA 070100/3506), the travel funding BQR (No. R8DIV AUE) provided by Université Lille 1, the National Natural Science Foundation of China (Grant No. 51401123) and the China Postdoctoral Science Foundation (Grant No. 2014 M561469) for Dr. Z.Q. Tan. Dr. W.G. Grünewald (LeicaMicrosystems, Germany) is also thanked for the assistance of surface preparation. Approved Most recent IF: 2.714  
  Call Number c:irua:129976 Serial 3987  
Permanent link to this record
 

 
Author (up) Ji, G.; Tan, Z.; Shabadi, R.; Li, Z.; Grünewald, W.; Addad, A.; Schryvers, D.; Zhang, D. pdf  doi
openurl 
  Title Triple ion beam cutting of diamond/Al composites for interface characterization Type A1 Journal article
  Year 2014 Publication Materials characterization Abbreviated Journal Mater Charact  
  Volume 89 Issue Pages 132-137  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel triple ion beam cutting technique was employed to prepare high-quality surfaces of diamond/Al composites for interfacial characterization, which has been unachievable so far. Near-perfect and artifact-free surfaces were obtained without mechanical pre-polishing. Hence, the as-prepared surfaces are readily available for further study and also, ready to be employed in a focus ion beam system for preferential selection of transmission electron microscopy samples. Dramatically different diamond/Al interface configurations – sub-micrometer Al2O3 particles and clean interfaces were unambiguously revealed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000333513400015 Publication Date 2014-01-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 9 Open Access  
  Notes Fwo Approved Most recent IF: 2.714; 2014 IF: 1.845  
  Call Number UA @ lucian @ c:irua:113394 Serial 3735  
Permanent link to this record
 

 
Author (up) Ji, Z.; Wang, H.; Canossa, S.; Wuttke, S.; Yaghi, O.M. url  doi
openurl 
  Title Pore Chemistry of Metal–Organic Frameworks Type A1 Journal article
  Year 2020 Publication Advanced Functional Materials Abbreviated Journal Adv Funct Mater  
  Volume 30 Issue 41 Pages 2000238  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is enabled by the architectural, thermal, and chemical robustness of the frameworks and the ability to characterize them by many diffraction and spectroscopic techniques. The pore chemistry of MOFs is articulated in terms of site isolation, coupling, and cooperation and relate that to their functions in guest recognition, catalysis, ion and electron transport, energy transfer, pore‐dynamic modulation, and interface construction. It is envisioned that the ultimate control of pore chemistry requires arranging functionalities into defined sequences and developing techniques for reading and writing such sequences within the pores.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000532830900001 Publication Date 2020-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19 Times cited Open Access OpenAccess  
  Notes (Not present) Approved Most recent IF: 19; 2020 IF: 12.124  
  Call Number EMAT @ emat @c:irua:169485 Serial 6422  
Permanent link to this record
 

 
Author (up) Jia, W.-Z.; Zhang, Q.-Z.; Wang, X.-F.; Song, Y.-H.; Zhang, Y.-Y.; Wang, Y.-N. pdf  url
doi  openurl
  Title Effect of dust particle size on the plasma characteristics in a radio frequency capacitively coupled silane plasma Type A1 Journal article
  Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 52 Issue 1 Pages 015206  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Compared with dust-free plasmas, the existence of dust particles in plasmas may greatly influence the plasma properties. such as the plasma density, electron temperature, sheath properties, electron energy distribution function (EEDF) as well as the heating mechanism. In this work, a 1D hybrid fluid/MC model has been developed to investigate the interaction between dust and plasma in a low-pressure silane discharge sustained in a radio frequency capacitively coupled plasma, in which we assume spherical dust particles with a given radius are generated by taking the sum of the production rate of Si2H4- and Si2H5- as the nucleation rate. From our simulation, the plasma may experience definite perturbation by dust particles with a certain radius (more than 50nm) with an increase in electron temperature first, which further induces a rapid rise in the positive and negative ion densities. Then, the densities begin to decline due to the gradual lack of sufficient seed electrons. In addition, as the dust radius increases, the high energy tails of the EEDFs will be enhanced for discharge maintenance, accompanied by a decline in the population of low-energy electrons in comparison with those of pristine plasma. Furthermore, an obvious bulk heating is observed apart from the a-mode and local field reversal heating. This may contribute to the enhanced bulk electric field (also called the drift field) as a result of electron depletion via the dust. In addition, large-sized dust particles that accumulate near the sheaths tend to form two stable density peaks with their positions largely influenced by the time-averaged sheath thickness. A detailed study of the effects of the external parameters, including pressure, voltage and frequency, on the spatial distribution of dust particles is also conducted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000448423800002 Publication Date 2018-10-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.588  
  Call Number UA @ admin @ c:irua:155361 Serial 5271  
Permanent link to this record
 

 
Author (up) Jian-Ping, N.; Xiao-Dan, L.; Cheng-Li, Z.; You-Min, Q.; Ping-Ni, H.; Bogaerts, A.; Fu-Jun, G. openurl 
  Title Molecular dynamics simulation of temperature effects on CF(3)(+) etching of Si surface Type A1 Journal article
  Year 2010 Publication Wuli xuebao Abbreviated Journal Acta Phys Sin-Ch Ed  
  Volume 59 Issue 10 Pages 7225-7231  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics method was employed to investigate the effects of the reaction layer formed near the surface region on CF(3)(+) etching of Si at different temperatures. The simulation results show that the coverages of F and C are sensitive to the surface temperature. With increasing temperature, the physical etching is enhanced, while the chemical etching is weakened. It is found that with increasing surface temperature, the etching rate of Si increases. As to the etching products, the yields of SiF and SiF(2) increase with temperature, whereas the yield of SiF(3) is not sensitive to the surface temperature. And the increase of the etching yield is mainly due to the increased desorption of SiF and SiF(2). The comparison shows that the reactive layer plays an important part in the subsequeat impacting, which enhances the etching rate of Si and weakens the chemical etching intensity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1000-3290 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.624 Times cited Open Access  
  Notes Approved Most recent IF: 0.624; 2010 IF: 1.259  
  Call Number UA @ lucian @ c:irua:95564 Serial 2171  
Permanent link to this record
 

 
Author (up) Jiang, J. file  openurl
  Title Ginzburg-Landau dynamical simulations on the nonreciprocal transport properties of two-dimensional superconductors Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages XII, 79 p.  
  Keywords Doctoral thesis; Condensed Matter Theory (CMT)  
  Abstract The nonreciprocal charge transport property which depends on the polarity of the applied current, such as the diode effect and the rectification effect, is of great importance for both theoretical research and engineering application. The nonreciprocal transport property in superconductors generally requires to break both the spatial inversion symmetry and the time-reversal symmetry, and therefore becomes one of the fundamental issues in superconductivity. Of particular interest, the superconducting diode effect, which exhibits one-way superconductivity, can potentially be applied to dissipationless diode devices, as a consequence has received extensive attention in recent years. In this Ph. D thesis, we simulate vortex dynamics with heat dissipation by numerically solving time-dependent Ginzburg-Landau equations and heat transfer equation. The nonreciprocal transport properties of the following three superconducting systems are studied. We study a superconducting film patterned with a conformal pinning array and find a giant rectification effect which is consistent with the experimental observation. In presence of the funneling effect due to the geometry of the conformal pinning array, Joule heating of the accumulating vortices creates hot spots and drives the sample to the normal state. Meanwhile, the density gradient of vortex does not match the gradient of pinning. The two mechanisms together lead to the giant rectification effect. We study the nonreciprocal charge transport property in a pinning-free superconducting nano-ring. We systematically calculate the response of the ratchet signal to various parameters in both D.C. and A.C. currents. By analyzing the vortex potential, we find that the nonreciprocal transport property is caused by the asymmetry potential barriers for vortex entry and exit. We study a superconductor/nanoscale-magnetic-dot hybrid structure. It takes advantage of the external current to control the nucleation of vortex-antivortex pairs, and can produce superconducting diode effect without applied magnetic fields. Our vortex dynamics simulation details the progress of the superconducting-normal phase transition due to motion of vortex pairs and heat dissipation. The nonreciprocal transport properties of the above three systems are all based on the broken symmetry of spatial inversion, which is caused by the anisotropic pinning array, the asymmetric geometry, and the nonuniform distribution of the magnetic field, respectively. The mechanisms we discuss in this thesis do not require special property of the materials and thus can be applied to any kinds of conventional superconductors. The present studies would provide solid theoretical basis for the future design and application of the dissipationless superconducting devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:188525 Serial 7168  
Permanent link to this record
 

 
Author (up) Jiang, J.; Milošević, M.V.; Wang, Y.-L.; Xiao, Z.-L.; Peeters, F.M.; Chen, Q.-H. url  doi
openurl 
  Title Field-free superconducting diode in a magnetically nanostructured superconductor Type A1 Journal article
  Year 2022 Publication Physical review applied Abbreviated Journal Phys Rev Appl  
  Volume 18 Issue 3 Pages 034064-34069  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A strong superconducting diode effect (SDE) is revealed in a thin superconducting film periodically nanostructured with magnetic dots. The SDE is caused by the current-activated dissipation mitigated by vortex-antivortex pairs (VAPs), which periodically nucleate under the dots, move and annihilate in the superconductor-eventually driving the system to the high-resistive state. Inversing the polarity of the applied current destimulates the nucleation of VAPs, the system remains superconducting up to far larger currents, leading to the pronounced diodic response. Our dissipative Ginzburg-Landau simulations detail the involved processes, and provide reliable geometric and parametric ranges for the experimental realiza-tion of such a nonvolatile superconducting diode, which operates in the absence of any applied magnetic field while being fluxonic by design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000870234200001 Publication Date 2022-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:191539 Serial 7307  
Permanent link to this record
 

 
Author (up) Jiang, J.; Wang, Y.-L.; Milošević, M.V.; Xiao, Z.-L.; Peeters, F.M.; Chen, Q.-H. url  doi
openurl 
  Title Reversible ratchet effects in a narrow superconducting ring Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 103 Issue 1 Pages 014502  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the ratchet effect in a narrow pinning-free superconductive ring based on time-dependent Ginzburg-Landau (TDGL) equations. Voltage responses to external dc and ac currents at various magnetic fields are studied. Due to asymmetric barriers for flux penetration and flux exit in the ring-shaped superconductor, the critical current above which the flux-flow state is reached, as well as the critical current for the transition to the normal state, are different for the two directions of applied current. These effects cooperatively cause ratchet signal reversal at high magnetic fields, which has not been reported to date in a pinning-free system. The ratchet signal found here is larger than those induced by asymmetric pinning potentials. Our results also demonstrate the feasibility of using mesoscopic superconductors to employ a superconducting diode effect in versatile superconducting devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000604821500003 Publication Date 2021-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 2 Open Access OpenAccess  
  Notes ; We are grateful to G. Berdiyorov for useful suggestions and comments. Q.-H.C. thanks Beiyi Zhu for helpful discussions during the early stage of this work. This work is supported in part by the National Key Research and Development Program of China, Grants No. 2017YFA0303002 (Q.-H.C. and J.J.), and No. 2018YFA0209002 (Y.-L.W.), and the National Natural Science Foundation of China Grants No. 11834005, No. 11674285, No. 61771235, and No. 61727805. Z.-L.X. acknowledges support by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering and the National Science Foundation under Grant No. DMR-1901843. F.M.P. and M.V.M. acknowledge support by the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:174984 Serial 6697  
Permanent link to this record
 

 
Author (up) Jiang, W.; Zhang, Y.; Bogaerts, A. url  doi
openurl 
  Title Numerical characterization of local electrical breakdown in sub-micrometer metallized film capacitors Type A1 Journal article
  Year 2014 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 16 Issue Pages 113036  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In metallized film capacitors, there exists an air gap of about 0.2 μm between the films, with a pressure ranging generally from 130 atm. Because of the created potential difference between the two films, a microdischarge is formed in this gap. In this paper, we use an implicit particle-in-cell Monte Carlo collision simulation method to study the discharge properties in this direct-current microdischarge with 0.2 μm gap in a range of different voltages and pressures. The discharge process is significantly different from a conventional high pressure discharge. Indeed, the high electric field due to the small gap sustains the discharge by field emission. At low applied voltage (~15 V), only the electrons are generated by field emission, while both electrons and ions are generated as a stable glow discharge at medium applied voltage (~50 V). At still higher applied voltage (~100 V), the number of electrons and ions rapidly multiplies, the electric field reverses, and the discharge changes from a glow to an arc regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000346763400006 Publication Date 2014-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited Open Access  
  Notes Approved Most recent IF: 3.786; 2014 IF: 3.558  
  Call Number UA @ lucian @ c:irua:120455 Serial 2393  
Permanent link to this record
 

 
Author (up) Jiang, Y.; Mao, J.; Moldovan, D.; Masir, M.R.; Li, G.; Watanabe, K.; Taniguchi, T.; Peeters, F.M.; Andrei, E.Y. doi  openurl
  Title Tuning a circular p-n junction in graphene from quantum confinement to optical guiding Type A1 Journal article
  Year 2017 Publication Nature nanotechnology Abbreviated Journal Nat Nanotechnol  
  Volume 12 Issue 11 Pages 1045-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The photon-like propagation of the Dirac electrons in graphene, together with its record-high electronic mobility(1-3), can lead to applications based on ultrafast electronic response and low dissipation(4-6). However, the chiral nature of the charge carriers that is responsible for the high mobility also makes it difficult to control their motion and prevents electronic switching. Here, we show how to manipulate the charge carriers by using a circular p-n junction whose size can be continuously tuned from the nanometre to the micrometre scale(7,8). The junction size is controlled with a dual-gate device consisting of a planar back gate and a point-like top gate made by decorating a scanning tunnelling microscope tip with a gold nanowire. The nanometre-scale junction is defined by a deep potential well created by the tip-induced charge. It traps the Dirac electrons in quantum-confined states, which are the graphene equivalent of the atomic collapse states (ACSs) predicted to occur at supercritically charged nuclei(9-13). As the junction size increases, the transition to the optical regime is signalled by the emergence of whispering-gallery modes(14-16), similar to those observed at the perimeter of acoustic or optical resonators, and by the appearance of a Fabry-Perot interference pattern(17-20) for junctions close to a boundary.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000414531800011 Publication Date 2017-09-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3387; 1748-3395 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 38.986 Times cited 65 Open Access  
  Notes ; The authors acknowledge funding provided by DOE-FG02-99ER45742 (STM/STS) and NSF DMR 1708158 (fabrication). Theoretical work was supported by ESF-EUROCORES-EuroGRAPHENE, FWO VI and the Methusalem program of the Flemish government. ; Approved Most recent IF: 38.986  
  Call Number UA @ lucian @ c:irua:147406 Serial 4902  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: