toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Andersen, J.A.; Christensen, J.M.; Østberg, M.; Bogaerts, A.; Jensen, A.D. url  doi
openurl 
  Title Plasma-catalytic ammonia decomposition using a packed-bed dielectric barrier discharge reactor Type A1 Journal article
  Year 2022 Publication International Journal Of Hydrogen Energy Abbreviated Journal Int J Hydrogen Energ  
  Volume 47 Issue 75 Pages 32081-32091  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-catalytic ammonia decomposition as a method for producing hydrogen was studied in a packed-bed dielectric barrier discharge (DBD) reactor at ambient pressure and a fixed plasma power. The influence of packing the plasma zone with various dielectric materials, typically used as catalyst supports, was examined. At conditions (21 W, 75 Nml/min NH3) where an NH3 conversion of 5% was achieved with plasma alone, an improved decomposition was found when introducing dielectric materials with dielectric constants between 4 and 30. Of the tested materials, MgAl2O4 yielded the highest conversion (15.1%). The particle size (0.3-1.4 mm) of the MgAl2O4 packing was found to have a modest influence on the conversion, which dropped from 15.1% to 12.6% with increasing particle size. Impregnation of MgAl2O4 with different metals was found to decrease the NH3 conversion, with the Ni impregnation still showing an improved conversion (7%) compared to plasma-only. The plasma-assisted ammonia decomposition occurs in the gas phase due to micro-discharges, as evident from a linear correlation between the conversion and the frequency of micro-discharges for both plasma alone and with the various solid packing materials. The primary function of the solid is thus to facilitate the gas phase reaction by assisting the creation of micro-discharges. Lastly, insulation of the reactor to raise the temperature to 230 degrees C in the plasma zone was found to have a negative effect on the conversion, as a change from volume discharges to surface discharges occurred. The study shows that NH3 can be decomposed to provide hydrogen by exposure to a non-thermal plasma, but further developments are needed for it to become an energy efficient technology. (C)2022 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000865421200012 Publication Date 2022-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 7.2  
  Call Number UA @ admin @ c:irua:191512 Serial 7191  
Permanent link to this record
 

 
Author (up) Andersen, Ja.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. pdf  url
doi  openurl
  Title Plasma-catalytic dry reforming of methane: Screening of catalytic materials in a coaxial packed-bed DBD reactor Type A1 Journal article
  Year 2020 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J  
  Volume 397 Issue Pages 125519  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The combination of catalysis with non-thermal plasma is a promising alternative to thermal catalysis. A dielectric-barrier discharge reactor was used to study plasma-catalytic dry reforming of methane at ambient pressure and temperature and a fixed plasma power of 45 W. The effect of different catalytic packing materials was evaluated in terms of conversion, product selectivity, and energy efficiency. The conversion of CO2 (~22%) and CH4 (~33%) were found to be similar in plasma-only and when introducing packing materials in plasma. The main reason is the shorter residence time of the gas due to packing geometry, when compared at identical flow rates. H2, CO, C2-C4 hydrocarbons, and oxygenates were identified in the product gas. High selectivity towards H2 and CO were found for all catalysts and plasma-only, with a H2/CO molar ratio of ~0.9. The lowest syngas selectivity was obtained with Cu/Al2O3 (~66%), which instead, had the highest alcohol selectivity (~3.6%).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000542296100011 Publication Date 2020-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access  
  Notes Department of Chemical and Biochemical Engineering, Technical University of Denmark; We thank Haldor Topsoe A/S for providing all the catalytic materials used and the Department of Chemical and Biochemical Engineering, Technical University of Denmark, for funding this project. Approved Most recent IF: 15.1; 2020 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:170613 Serial 6406  
Permanent link to this record
 

 
Author (up) Andersen, Ja.; Holm, Mc.; van 't Veer, K.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. url  doi
openurl 
  Title Plasma-catalytic ammonia synthesis in a dielectric barrier discharge reactor: A combined experimental study and kinetic modeling Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 457 Issue Pages 141294  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Plasma-catalytic ammonia synthesis in a dielectric barrier discharge reactor has emerged as a possible route for electrification of nitrogen fixation. In this study, we use a combination of experiments and a plasma kinetic model to investigate the ammonia synthesis from N2 and H2, both with and without a solid packing material in the plasma zone. The effect of plasma power, feed flow rate, N2:H2 feed ratio, gas residence time, temperature, and packing material (MgAl2O4 alone or impregnated with Co or Ru) on the ammonia synthesis rate were examined in the experiments. The kinetic model was employed to improve our understanding of the ammonia formation pathways and identify possible changes in these pathways when altering the N2:H2 feed ratio. A higher NH3 synthesis rate was achieved when increasing the feed flow rate, as well as when increasing the gas tem-perature from 100 to 200 ◦C when a packing material was present in the plasma. At the elevated temperature of 200 ◦C, an optimum in the NH3 synthesis rate was observed at an equimolar feed ratio (N2:H2 =1:1) for the plasma alone and MgAl2O4, while a N2-rich feed was favored for Ru/MgAl2O4 and Co/MgAl2O4. The optimum in the synthesis rate with the N2-rich feed, where high energy electrons are more likely to collide with N2, suggests that the rate-limiting step is the dissociation of N2 in the gas phase. This is supported by the kinetic model when packing material was used. However, for the plasma alone, the model found that the N2 dissociation is only rate limiting in H2-rich feeds, whereas the limited access to H in N2-rich feeds makes the hydrogenation of N species limiting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001058978000001 Publication Date 2023-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes We thank Topsoe A/S for providing the catalytic materials used in the study, the research group PLASMANT (University of Antwerp) for sharing their plasma kinetic model and allocating time on their cluster for the calculations, and the Department of Chemical and Biochemical Engineering (Technical University of Denmark) for funding the project. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195877 Serial 7234  
Permanent link to this record
 

 
Author (up) Andersen, Ja.; van 't Veer, K.; Christensen, Jm.; Østberg, M.; Bogaerts, A.; Jensen, Ad. url  doi
openurl 
  Title Ammonia decomposition in a dielectric barrier discharge plasma: Insights from experiments and kinetic modeling Type A1 Journal article
  Year 2023 Publication Chemical engineering science Abbreviated Journal  
  Volume 271 Issue Pages 118550  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Utilizing ammonia as a storage medium for hydrogen is currently receiving increased attention. A possible method to retrieve the hydrogen is by plasma-catalytic decomposition. In this work, we combined an experimental study, using a dielectric barrier discharge plasma reactor, with a plasma kinetic model, to get insights into the decomposition mechanism. The experimental results revealed a similar effect on the ammonia conversion when changing the flow rate and power, where increasing the specific energy input (higher power or lower flow rate) gave an increased conversion. A conversion as high as 82 % was achieved at a specific energy input of 18 kJ/Nl. Furthermore, when changing the discharge volume from 31 to 10 cm3, a change in the plasma distribution factor from 0.2 to 0.1 was needed in the model to best describe the conversions of the experiments. This means that a smaller plasma volume caused a higher transfer of energy through micro-discharges (non-uniform plasma), which was found to promote the decomposition of ammonia. These results indicate that it is the collisions between NH3 and the high-energy electrons that initiate the decomposition. Moreover, the rate of ammonia destruction was found by the model to be in the order of 1022 molecules/(cm3 s) during the micro-discharges, which is 5 to 6 orders of magnitude higher than in the afterglows. A considerable re-formation of ammonia was found to take place in the afterglows, limiting the overall conversion. In addition, the model revealed that implementation of packing material in the plasma introduced high concentrations of surface-bound hydrogen atoms, which introduced an additional ammonia re-formation pathway through an Eley-Rideal reaction with gas phase NH2. Furthermore, a more uniform plasma is predicted in the presence of MgAl2O4, which leads to a lower average electron energy during micro-discharges and a lower conversion (37 %) at a comparable residence time for the plasma alone (51 %).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000946293200001 Publication Date 2023-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2509 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited Open Access OpenAccess  
  Notes We thank Topsoe A/S for providing the packing material used, the research group PLASMANT (UAntwerpen) for sharing their plasma kinetic model and allowing us to perform the calculations on their clusters, and the Department of Chemical and Biochemical Engineering, Technical University of Denmark, for funding this project. Approved Most recent IF: 4.7; 2023 IF: 2.895  
  Call Number PLASMANT @ plasmant @c:irua:195204 Serial 7237  
Permanent link to this record
 

 
Author (up) Angeli, J.; Bengtson, A.; Bogaerts, A.; Hoffmann, V.; Hodoroaba, V.-D.; Steers, E. doi  openurl
  Title Glow discharge optical emission spectrometry: moving towards reliable thin film analysis: a short review Type A1 Journal article
  Year 2003 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 18 Issue Pages 670-679  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000183300800023 Publication Date 2003-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 75 Open Access  
  Notes Approved Most recent IF: 3.379; 2003 IF: 3.200  
  Call Number UA @ lucian @ c:irua:44018 Serial 1351  
Permanent link to this record
 

 
Author (up) Ariskin, D.A.; Schweigert, I.V.; Alexandrov, A.L.; Bogaerts, A.; Peeters, F.M. doi  openurl
  Title Modeling of chemical processes in the low pressure capacitive radio frequency discharges in a mixture of Ar/C2H2 Type A1 Journal article
  Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 105 Issue 6 Pages 063305,1-063305,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We study the properties of a capacitive 13.56 MHz discharge with a mixture of Ar/C<sub>2</sub>H<sub>2</sub> taking into account the plasmochemistry and growth of heavy hydrocarbons. A hybrid model was developed to combine the kinetic description for electron motion and the fluid approach for negative and positive ion transports and plasmochemical processes. A significant change in plasma parameters related to injection of 5.8% portion of acetylene in argon was observed and analyzed. We found that the electronegativity of the mixture is about 30%. The densities of negatively and positively charged heavy hydrocarbons are sufficiently large to be precursors for the formation of nanoparticles in the discharge volume.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000264774000059 Publication Date 2009-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 21 Open Access  
  Notes Approved Most recent IF: 2.068; 2009 IF: 2.072  
  Call Number UA @ lucian @ c:irua:74496 Serial 2121  
Permanent link to this record
 

 
Author (up) Attri, P.; Bogaerts, A. pdf  url
doi  openurl
  Title Perspectives of Plasma-treated Solutions as Anticancer Drugs Type A1 Journal article
  Year 2019 Publication Anti-cancer agents in medicinal chemistry Abbreviated Journal Anti-Cancer Agent Me  
  Volume 19 Issue 4 Pages 436-438  
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472726300001 Publication Date 2019-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1871-5206 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.598 Times cited 2 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.598  
  Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160694 Serial 5189  
Permanent link to this record
 

 
Author (up) Attri, P.; Han, J.; Choi, S.; Choi, E.H.; Bogaerts, A.; Lee, W. url  doi
openurl 
  Title CAP modifies the structure of a model protein from thermophilic bacteria: mechanisms of CAP-mediated inactivation Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue 1 Pages 10218  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold atmospheric plasma (CAP) has great potential for sterilization in the food industry, by deactivation of thermophilic bacteria, but the underlying mechanisms are largely unknown. Therefore, we investigate here whether CAP is able to denature/modify protein from thermophilic bacteria. We focus on MTH1880 (MTH) from Methanobacterium thermoautotrophicum as model protein, which we treated with dielectric barrier discharge (DBD) plasma operating in air for 10, 15 and 20 mins. We analysed the structural changes of MTH using circular dichroism, fluorescence and NMR spectroscopy, as well as the thermal and chemical denaturation, upon CAP treatment. Additionally, we performed molecular dynamics (MD) simulations to determine the stability, flexibility and solvent accessible surface area (SASA) of both the native and oxidised protein.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000437414500004 Publication Date 2018-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 6 Open Access OpenAccess  
  Notes We gratefully acknowledge the European Marie Skłodowska-Curie Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). This work was also supported by NRF-2017R1A2B2008483 to W.L. through the National Research Foundation of Korea (NRF) and BK+ program (J.H.). E.H.C. acknowledges the NRF (NRF-2016K1A4A3914113 and No. 20100027963). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:152817c:irua:152431 Serial 5002  
Permanent link to this record
 

 
Author (up) Attri, P.; Kaushik, N.K.; Kaushik, N.; Hammerschmid, D.; Privat-Maldonado, A.; De Backer, J.; Shiratani, M.; Choi, E.H.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma treatment causes structural modifications in lysozyme, and increases cytotoxicity towards cancer cells Type A1 Journal Article
  Year 2021 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol  
  Volume 182 Issue Pages 1724-1736  
  Keywords A1 Journal Article; Lysozyme; Cold atmospheric plasma; Cancer cell death; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Bacterial and mammalian proteins, such as lysozyme, are gaining increasing interest as anticancer drugs. This study aims to modify the lysozyme structure using cold atmospheric plasma to boost its cancer cell killing effect. We investigated the structure at acidic and neutral pH using various experimental techniques (circular dichroism, fluorescence, and mass spectrometry) and molecular dynamics simulations. The controlled structural modification of lysozyme at neutral pH enhances its activity, while the activity was lost at acidic pH at the same treatment conditions. Indeed, a larger number of amino acids were oxidized at acidic pH after plasma treatment, which results in a greater distortion of the lysozyme structure, whereas only limited structural changes were observed in lysozyme after plasma treatment at neutral pH. We found that the plasma-treated lysozyme significantly induced apoptosis to the cancer cells. Our results reveal that plasma-treated lysozyme could have potential as a new cancer cell killing drug.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000675794700005 Publication Date 2021-05-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.671 Times cited Open Access OpenAccess  
  Notes Japan Society for the Promotion of Science; We gratefully acknowledge the European H2020 Marie SkłodowskaCurie Actions Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). This work was also supported by JSPS-KAKENHI grant number 20K14454. NK thanks to National Research Foundation of Korea under Ministry of Science and ICT (NRF2021R1C1C1013875) of Korean Government. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.671  
  Call Number PLASMANT @ plasmant @c:irua:178813 Serial 6792  
Permanent link to this record
 

 
Author (up) Attri, P.; Park, J.-H.; De Backer, J.; Kim, M.; Yun, J.-H.; Heo, Y.; Dewilde, S.; Shiratani, M.; Choi, E.H.; Lee, W.; Bogaerts, A. pdf  url
doi  openurl
  Title Structural modification of NADPH oxidase activator (Noxa 1) by oxidative stress: An experimental and computational study Type A1 Journal article
  Year 2020 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol  
  Volume 163 Issue Pages 2405-2414  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract NADPH oxidases 1 (NOX1) derived reactive oxygen species (ROS) play an important role in the progression of cancer through signaling pathways. Therefore, in this paper, we demonstrate the effect of cold atmospheric plasma (CAP) on the structural changes of Noxa1 SH3 protein, one of the regulatory subunits of NOX1. For this purpose, firstly we purified the Noxa1 SH3 protein and analyzed the structure using X-ray crystallography, and subsequently, we treated the protein with two types of CAP reactors such as pulsed dielectric barrier discharge (DBD) and Soft Jet for different time intervals. The structural deformation of Noxa1 SH3 protein was analyzed by various experimental methods (circular dichroism, fluorescence, and NMR spectroscopy) and by MD simulations. Additionally, we demonstrate the effect of CAP (DBD and Soft Jet) on the viability and expression of NOX1 in A375 cancer cells. Our results are useful to understand the structural modification/oxidation occur in protein due to reactive oxygen and nitrogen (RONS) species generated by CAP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000579839600233 Publication Date 2020-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.2 Times cited Open Access  
  Notes European Marie Skłodowska-Curie Individual Fellowship, 743546 ; JSPS, 20K14454 ; National Research Foundation of Korea, 2019M3A9F6021810 NRF-2017M3A9F6029753 NRF-2019M3E5D6063903 NRF-2016R1A6A3A04010213 ; Brain Korea 21; MSIT, NRF-2016K1A4A3914113 ; Hercules Foundation; Flemish Government; UA; We gratefully acknowledge the European Marie SkłodowskaCurie Individual Fellowship “Anticancer-PAM” within Horizon 2020 (grant number 743546). This work was also supported by JSPS-KAKENHI grant number 20K14454. Additionally, work was supported by several grants (2019M3A9F6021810, NRF2017M3A9F6029753, NRF-2019M3E5D6063903 to W. Lee), Basic Science Research Program (NRF-2016R1A6A3A04010213 to J.H. Yun) through the National Research Foundation of Korea and in part by the Brain Korea 21 (BK21) PLUS program (J.H.P.). EHC is thankful to National Research Foundation (NRF) of Korea, funded by the Korea government (MSIT) under the grant number (NRF2016K1A4A3914113). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 8.2; 2020 IF: 3.671  
  Call Number PLASMANT @ plasmant @c:irua:172451 Serial 6419  
Permanent link to this record
 

 
Author (up) Attri, P.; Razzokov, J.; Yusupov, M.; Koga, K.; Shiratani, M.; Bogaerts, A. pdf  url
doi  openurl
  Title Influence of osmolytes and ionic liquids on the Bacteriorhodopsin structure in the absence and presence of oxidative stress: A combined experimental and computational study Type A1 Journal article
  Year 2020 Publication International Journal Of Biological Macromolecules Abbreviated Journal Int J Biol Macromol  
  Volume 148 Issue Pages 657-665  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Understanding the folding and stability of membrane proteins is of great importance in protein science. Recently, osmolytes and ionic liquids (ILs) are increasingly being used as drug delivery systems in the biopharmaceutical industry. However, the stability of membrane proteins in the presence of osmolytes and ILs is not yet fully understood. Besides, the effect of oxidative stress on membrane proteins with osmolytes or ILs has not been investigated. Therefore, we studied the influence of osmolytes and ILs as co-solvents on the stability of a model membrane protein (i.e., Bacteriorhodopsin in purple membrane of Halobacterium salinarum), using UV–Vis spectroscopy and molecular dynamics (MD) simulations. The MD simulations allowed us to determine the flexibility and solvent accessible surface area (SASA) of Bacteriorhodopsin protein in the presence and/or absence of cosolvents, as well as to carry out principal component analysis (PCA) to identify the most important movements in this protein. In addition, by means of UV–Vis spectroscopy we studied the effect of oxidative stress generated by cold atmospheric plasma on the stability of Bacteriorhodopsin in the presence and/or absence of co-solvents. This study is important for a better understanding of the stability of proteins in the presence of oxidative stress.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000522094600066 Publication Date 2020-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0141-8130 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.2 Times cited Open Access  
  Notes Horizon2020, 743546 ; JSPS, 19H05462 16H03895 ; Nagoya University; We gratefully acknowledge the European Marie Skłodowska-Curie Individual Fellowship “Anticancer-PAM” within Horizon2020 (grant number 743546). This work was also supported by JSPS-KAKENHI 19H05462 and 16H03895, the joint usage/research program of Center for Low-temperature Plasma Science, Nagoya University and also supported by JSPS and RCL under the Japan-Lithuania Research Cooperative Program. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 8.2; 2020 IF: 3.671  
  Call Number PLASMANT @ plasmant @c:irua:165585 Serial 5444  
Permanent link to this record
 

 
Author (up) Attri, P.; Yusupov, M.; Park, J.H.; Lingamdinne, L.P.; Koduru, J.R.; Shiratani, M.; Choi, E.H.; Bogaerts, A. pdf  url
doi  openurl
  Title Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 34419  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Purified water supply for human use, agriculture and industry is the major global priority nowadays. The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been used for purification of wastewater, although the underlying mechanisms of degradation of organic pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the treatment of methylene blue, methyl orange and congo red dyes, for two different times (i.e., 20 min and 30 min). Specifically, we study the decolorization/degradation of all three dyes using the above mentioned plasma sources, by means of UV-Vis spectroscopy, HPLC and a density meter. We also employ mass spectroscopy to verify whether only decolorization or also degradation takes place after treatment of the dyes by the NTP jets. Additionally, we analyze the interaction of OH radicals with all three dyes using reactive molecular dynamics simulations, based on the density functional-tight binding method. This investigation represents the first report on the degradation of these three different dyes by two types of NTP setups, analyzed by various methods, and based on both experimental and computational studies.  
  Address Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000385172300001 Publication Date 2016-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 23 Open Access  
  Notes We gratefully acknowledge the grant received from the SRC program of the National Research Foundation of Korea (NRF), funded by the Korean Government (MEST) (No. 20100029418). PA is thankful to FY 2015 Japan Society for the Promotion of Science (JSPS) invitation fellowship. This work was partly supported by MEXT KAKENHI Grant Number 24108009 and JSPS KAKENHI Grant Number JP16H03895. M. Y. gratefully acknowledges financial support from the Research Foundation – Flanders (FWO), grant number 1200216N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @ c:irua:135847 Serial 4283  
Permanent link to this record
 

 
Author (up) Autrique, D.; Bogaerts, A.; Lindner, H.; Garcia, C.C.; Niemax, K. doi  openurl
  Title Design analysis of a laser ablation cell for inductively coupled plasma mass spectrometry by numerical simulation Type A1 Journal article
  Year 2008 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 63 Issue 2 Pages 257-270  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000254038900016 Publication Date 2007-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 26 Open Access  
  Notes Approved Most recent IF: 3.241; 2008 IF: 2.853  
  Call Number UA @ lucian @ c:irua:67086 Serial 656  
Permanent link to this record
 

 
Author (up) Autrique, D.; Clair, G.; L'Hermite, D.; Alexiades, V.; Bogaerts, A.; Rethfeld, B. pdf  doi
openurl 
  Title The role of mass removal mechanisms in the onset of ns-laser induced plasma formation Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 114 Issue 2 Pages 023301-23310  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The present study focuses on the role of mass removal mechanisms in ns-laser ablation. A copper sample is placed in argon, initially set at standard pressure and temperature. Calculations are performed for a 6 ns laser pulse with a wavelength of 532 nm and laser fluences up to 10 J/cm2. The transient behavior in and above the copper target is described by a hydrodynamic model. Transmission profiles and ablation depths are compared with experimental results and similar trends are found. Our calculations reveal an interesting self-inhibiting mechanism: volumetric mass removal in the supercritical region triggers plasma shielding and therefore stops proceeding. This self-limiting process indicates that volumetric mass removal does not necessarily result in large ablation depths.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000321761600006 Publication Date 2013-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 31 Open Access  
  Notes Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:109237 Serial 2915  
Permanent link to this record
 

 
Author (up) Autrique, D.; Gornushkin, I.; Alexiades, V.; Chen, Z.; Bogaerts, A.; Rethfeld, B. pdf  doi
openurl 
  Title Revisiting the interplay between ablation, collisional, and radiative processes during ns-laser ablation Type A1 Journal article
  Year 2013 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 103 Issue 17 Pages 174102-174105  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A study of ns-laser ablation is presented, which focuses on the transient behavior of the physical processes that act in and above a copper sample. A dimensionless multiphase collisional radiative model describes the interplay between the ablation, collisional, and radiative mechanisms. Calculations are done for a 6 ns-Nd:YAG laser pulse operating at 532 nm and fluences up to 15 J/cm2. Temporal intensity profiles as well as transmissivities are in good agreement with experimental results. It is found that volumetric ablation mechanisms and photo-processes both play an essential role in the onset of ns-laser induced breakdown.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000326455100107 Publication Date 2013-10-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.411; 2013 IF: 3.515  
  Call Number UA @ lucian @ c:irua:110944 Serial 2906  
Permanent link to this record
 

 
Author (up) Baguer, N.; Bogaerts, A. doi  openurl
  Title Study of the sputtered Cu atoms and Cu+ ions in a hollow cathode glow discharge using a hybrid model Type A1 Journal article
  Year 2005 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 98 Issue 3 Pages 033303,1-033303,11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The role of the Cu atoms sputtered from the cathode material in a cylindrical hollow cathode discharge (HCD) and the corresponding Cu+ ions are studied with a self-consistent model based on the principle of Monte Carlo (MC) and fluid simulations. In order to obtain a more realistic view of the discharge processes, this model is coupled with other submodels, which describe the behavior of electrons, fast Ar atoms, Ar+ ions, and Ar metastable atoms, also based on the principles of MC and fluid simulations. Typical results are, among others, the thermalization profile of the Cu atoms, the fast Cu atom, the thermal Cu atom and Cu+ ion fluxes and densities, and the energy distribution of the Cu+ ions. It was found that the contribution of the Ar+ ions to the sputtering was the most significant, followed by the fast Ar atoms. At the cathode bottom, there was no net sputtered flux but a net amount of redeposition. Throughout the discharge volume, at all the conditions investigated, the largest concentration of Cu atoms was found in the lower half of the HCD, close to the bottom. Penning ionization was found the main ionization mechanism for the Cu atoms. The ionization degree of copper atoms was found to be in the same order as for the argon atoms (10-4). (c) 2005 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000231246100007 Publication Date 2005-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 18 Open Access  
  Notes Approved Most recent IF: 2.068; 2005 IF: 2.498  
  Call Number UA @ lucian @ c:irua:54597 Serial 3340  
Permanent link to this record
 

 
Author (up) Baguer, N.; Bogaerts, A.; Donko, Z.; Gijbels, R.; Sadeghi, N. doi  openurl
  Title Study of the Ar metastable atom population in a hollow cathode discharge by means of a hybrid model and spectrometric measurements Type A1 Journal article
  Year 2005 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 97 Issue Pages 123305,1-12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000230278100014 Publication Date 2005-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 40 Open Access  
  Notes Approved Most recent IF: 2.068; 2005 IF: 2.498  
  Call Number UA @ lucian @ c:irua:53102 Serial 3334  
Permanent link to this record
 

 
Author (up) Baguer, N.; Bogaerts, A.; Gijbels, R. doi  openurl
  Title Hybrid model for a cylindrical hollow cathode glow discharge and comparison with experiments Type A1 Journal article
  Year 2002 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 57 Issue Pages 311-326  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000174639800008 Publication Date 2002-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 31 Open Access  
  Notes Approved Most recent IF: 3.241; 2002 IF: 2.695  
  Call Number UA @ lucian @ c:irua:40180 Serial 1521  
Permanent link to this record
 

 
Author (up) Baguer, N.; Bogaerts, A.; Gijbels, R. doi  openurl
  Title Role of the fast Ar atoms, Ar+ ions and metastable Ar atoms in a hollow cathode glow discharge: study by a hybrid model Type A1 Journal article
  Year 2003 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 94 Issue Pages 2212-2222  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000184469800011 Publication Date 2003-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 19 Open Access  
  Notes Approved Most recent IF: 2.068; 2003 IF: 2.171  
  Call Number UA @ lucian @ c:irua:44013 Serial 2926  
Permanent link to this record
 

 
Author (up) Baguer, N.; Bogaerts, A.; Gijbels, R. openurl 
  Title A self-consistent mathematical model of a hollow cathode glow discharge Type P1 Proceeding
  Year 1999 Publication Abbreviated Journal  
  Volume Issue Pages 157-158  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Polish Academyn of Sciences, Space Research Centre Place of Publication Warsaw Editor  
  Language Wos 000165992500079 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103981 Serial 2972  
Permanent link to this record
 

 
Author (up) Baguer, N.; Bogaerts, A.; Gijbels, R. doi  openurl
  Title Study of a hollow cathode glow discharge in He: Monte Carlo-fluid model combined with a transport model for the metastable atoms Type A1 Journal article
  Year 2003 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 93 Issue Pages 47-55  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000180002500009 Publication Date 2002-12-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 24 Open Access  
  Notes Approved Most recent IF: 2.068; 2003 IF: 2.171  
  Call Number UA @ lucian @ c:irua:44010 Serial 3324  
Permanent link to this record
 

 
Author (up) Baguer, N.; Georgieva, V.; Calderin, L.; Todorov, I.T.; van Gils, S.; Bogaerts, A. doi  openurl
  Title Study of the nucleation and growth of TiO2 and ZnO thin films by means of molecular dynamics simulations Type A1 Journal article
  Year 2009 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth  
  Volume 311 Issue 16 Pages 4034-4043  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The nucleation and growth of titanium dioxide (TiO2) and zinc oxide (ZnO) thin films on Fe2O3 (hematite), Al2O3 (á-alumina) and SiO2 (á-quartz) are studied by molecular dynamics simulations. The results show the formation of a strong interface region between the substrate and the film in the six systems studied here. A combination of polycrystalline and amorphous phases are observed in the TiO2 films grown on the three substrates. ZnO deposition on the Fe2O3 and Al2O3 crystals yields a monocrystalline film growth. The ZnO film deposited on the SiO2 crystal exhibits less crystallinity. The simulation results are compared with experimental results available in the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000269580100012 Publication Date 2009-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.751 Times cited 23 Open Access  
  Notes Approved Most recent IF: 1.751; 2009 IF: 1.534  
  Call Number UA @ lucian @ c:irua:77453 Serial 3338  
Permanent link to this record
 

 
Author (up) Baguer, N.; Neyts, E.; van Gils, S.; Bogaerts, A. doi  openurl
  Title Study of atmospheric MOCVD of TiO2 thin films by means of computational fluid dynamics simulations Type A1 Journal article
  Year 2008 Publication Chemical vapor deposition Abbreviated Journal Chem Vapor Depos  
  Volume 14 Issue 11/12 Pages 339-346  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper presents the computational study of the metal-organic (MO) CVD of titanium dioxide (TiO2) films grown using titanium tetraisopropoxide (TTIP) as a precursor and nitrogen as a carrier gas. The TiO2 films are deposited under atmospheric pressure. The effects of the precursor concentration, the substrate temperature, and the hydrolysis reaction on the deposition process are investigated. It is found that hydrolysis of the TTIP decreases the onset temperature of the gas-phase thermal decomposition, and that the deposition rate increases with the precursor concentration and with the decrease of substrate temperature. Concerning the mechanism responsible for the film growth, the model shows that at the lowest precursor concentration, the direct adsorption of the precursor is dominant, while at higher precursor concentrations, the monomer deposition becomes more important.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000262215800003 Publication Date 2008-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0948-1907;1521-3862; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.333 Times cited 14 Open Access  
  Notes Approved Most recent IF: 1.333; 2008 IF: 1.483  
  Call Number UA @ lucian @ c:irua:71905 Serial 3325  
Permanent link to this record
 

 
Author (up) Bahnamiri, O.S.; Verheyen, C.; Snyders, R.; Bogaerts, A.; Britun, N. pdf  url
doi  openurl
  Title Nitrogen fixation in pulsed microwave discharge studied by infrared absorption combined with modelling Type A1 Journal Article;nitrogen fixation
  Year 2021 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T  
  Volume 30 Issue 6 Pages 065007  
  Keywords A1 Journal Article;nitrogen fixation; pulsed microwave discharge; FTIR spectroscopy; discharge modelling; vibrational excitation; NO yield; energy cost; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract A pulsed microwave surfaguide discharge operating at 2.45 GHz was used for the conversion of molecular nitrogen into valuable compounds in several gas mixtures: N2 :O2 , N2 :O2 :CO2 and N2 :CO2 . The ro-vibrational absorption bands of the molecular species were monitored by a Fourier transform infrared apparatus in the post-discharge region in order to evaluate the relative number density of species, specifically NO production. The effects of specific energy input, pulse frequency, gas flow fraction, gas admixture and gas flow rate were studied for better understanding and optimization of the NO production yield and the corresponding energy cost (EC). By both the experiment and modelling, a highest NO yield is obtained at N2 :O2 (1:1) gas ratio in N2 :O2 mixture. The NO yield reveals a small growth followed by saturation when pulse repetition frequency increases. The energy efficiency start decreasing after the energy input reaches about 5 eV/molec, whereas the NO yield rises steadily at the same time. The lowest EC of about 8 MJ mol−1 corresponding to the yield and the energy efficiency of about 7% and 1% are found, respectively, in an optimum discharge condition in our case.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000659671000001 Publication Date 2021-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited Open Access OpenAccess  
  Notes Fonds De La Recherche Scientifique—FNRS, EOS O005118F ; The research is supported by the FNRS-FWO project ‘NITROPLASM’, EOS O005118F. O Samadi also acknowledges PhD student F Manaigo for cooperation in doing the additional measurements. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:179170 Serial 6798  
Permanent link to this record
 

 
Author (up) Bal, K.M.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title Ensemble-Based Molecular Simulation of Chemical Reactions under Vibrational Nonequilibrium Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett  
  Volume 11 Issue 2 Pages 401-406  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We present an approach to incorporate the effect of vibrational nonequilibrium in molecular dynamics (MD) simulations. A perturbed canonical ensemble, in which selected modes are excited to higher temperature while all others remain equilibrated at low temperature, is simulated by applying a specifically tailored bias potential. Our method can be readily applied to any (classical or quantum mechanical) MD setup at virtually no additional computational cost and allows the study of reactions of vibrationally excited molecules in nonequilibrium environments such as plasmas. In combination with enhanced sampling methods, the vibrational efficacy and mode selectivity of vibrationally stimulated reactions can then be quantified in terms of chemically relevant observables, such as reaction rates and apparent free energy barriers. We first validate our method for the prototypical hydrogen exchange reaction and then show how it can capture the effect of vibrational excitation on a symmetric SN2 reaction and radical addition on CO2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000508473400008 Publication Date 2020-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited Open Access  
  Notes Universiteit Antwerpen; Fonds Wetenschappelijk Onderzoek, 12ZI420N ; Departement Economie, Wetenschap en Innovatie van de Vlaamse Overheid; K.M.B. was funded as a junior postdoctoral fellow of the FWO (Research Foundation − Flanders), Grant 12ZI420N, and through a TOP-BOF research project of the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government− department EWI. Approved Most recent IF: 5.7; 2020 IF: 9.353  
  Call Number PLASMANT @ plasmant @c:irua:165587 Serial 5442  
Permanent link to this record
 

 
Author (up) Bal, K.M.; Huygh, S.; Bogaerts, A.; Neyts, E.C. pdf  url
doi  openurl
  Title Effect of plasma-induced surface charging on catalytic processes: application to CO2activation Type A1 Journal article
  Year 2018 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 27 Issue 2 Pages 024001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Understanding the nature and effect of the multitude of plasma–surface interactions in plasma catalysis is a crucial requirement for further process development and improvement. A particularly intriguing and rather unique property of a plasma-catalytic setup is the ability of the plasma to modify the electronic structure, and hence chemical properties, of the catalyst through charging, i.e. the absorption of excess electrons. In this work, we develop a quantum chemical model based on density functional theory to study excess negative surface charges in a heterogeneous catalyst exposed to a plasma. This method is specifically applied to investigate plasma-catalytic CO2 activation on supported M/Al2O3 (M=Ti, Ni, Cu) single atom catalysts. We find that (1) the presence of a negative surface charge dramatically improves the reductive power of the catalyst, strongly promoting the splitting of CO2 to CO and oxygen, and (2) the relative activity of the investigated transition metals is also changed upon charging, suggesting that controlled surface charging is a powerful additional parameter to tune catalyst activity and selectivity. These results strongly point to plasma-induced surface charging of the catalyst as an important factor contributing to the plasma-catalyst synergistic effects frequently reported for plasma catalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000424520100001 Publication Date 2018-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 19 Open Access OpenAccess  
  Notes KMB is funded as PhD fellow (aspirant) of the FWO-Flanders (Research Foundation—Flanders), Grant 11V8915N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government— department EWI. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @c:irua:149285 Serial 4813  
Permanent link to this record
 

 
Author (up) Bals, S.; Batenburg, K.J.; Liang, D.; Lebedev, O.; Van Tendeloo, G.; Aerts, A.; Martens, J.A.; Kirschhock, C.E. pdf  doi
openurl 
  Title Quantitative three-dimensional modeling of zeotile through discrete electron tomography Type A1 Journal article
  Year 2009 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 131 Issue 13 Pages 4769-4773  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Discrete electron tomography is a new approach for three-dimensional reconstruction of nanoscale objects. The technique exploits prior knowledge of the object to be reconstructed, which results in an improvement of the quality of the reconstructions. Through the combination of conventional transmission electron microscopy and discrete electron tomography with a model-based approach, quantitative structure determination becomes possible. In the present work, this approach is used to unravel the building scheme of Zeotile-4, a silica material with two levels of structural order. The layer sequence of slab-shaped building units could be identified. Successive layers were found to be related by a rotation of 120°, resulting in a hexagonal space group. The Zeotile-4 material is a demonstration of the concept of successive structuring of silica at two levels. At the first level, the colloid chemical properties of Silicalite-1 precursors are exploited to create building units with a slablike geometry. At the second level, the slablike units are tiled using a triblock copolymer to serve as a mesoscale structuring agent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000264806300050 Publication Date 2009-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 58 Open Access  
  Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 13.858; 2009 IF: 8.580  
  Call Number UA @ lucian @ c:irua:76393 Serial 2767  
Permanent link to this record
 

 
Author (up) Bekeschus, S.; Freund, E.; Spadola, C.; Privat-Maldonado, A.; Hackbarth, C.; Bogaerts, A.; Schmidt, A.; Wende, K.; Weltmann, K.-D.; von Woedtke, T.; Heidecke, C.-D.; Partecke, L.-I.; Käding, A. url  doi
openurl 
  Title Risk Assessment of kINPen Plasma Treatment of Four Human Pancreatic Cancer Cell Lines with Respect to Metastasis Type A1 Journal article
  Year 2019 Publication Cancers Abbreviated Journal Cancers  
  Volume 11 Issue 9 Pages 1237  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Cold physical plasma has limited tumor growth in many preclinical models and is, therefore, suggested as a putative therapeutic option against cancer. Yet, studies investigating the cells’ metastatic behavior following plasma treatment are scarce, although being of prime importance to evaluate the safety of this technology. Therefore, we investigated four human pancreatic cancer cell lines for their metastatic behavior in vitro and in chicken embryos (in ovo). Pancreatic cancer was chosen as it is particularly metastatic to the peritoneum and systemically, which is most predictive for outcome. In vitro, treatment with the kINPen plasma jet reduced pancreatic cancer cell activity and viability, along with unchanged or decreased motility. Additionally, the expression of adhesion markers relevant for metastasis was down-regulated, except for increased CD49d. Analysis of 3D tumor spheroid outgrowth showed a lack of plasma-spurred metastatic behavior. Finally, analysis of tumor tissue grown on chicken embryos validated the absence of an increase of metabolically active cells physically or chemically detached with plasma treatment. We conclude that plasma treatment is a safe and promising therapeutic option and that it does not promote metastatic behavior in pancreatic cancer cells in vitro and in ovo.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000489719000022 Publication Date 2019-08-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 4 Open Access  
  Notes The authors acknowledge that this work was supported by grants funded by the German Federal Ministry of Education and Research (BMBF), grant number 03Z22DN11. We want to thank the Research Foundation – Flanders (FWO) for providing funding to APM under the “long stay abroad” scheme (grant code V415618N). APM and AB acknowledge financial support from the Methusalem project. Technical support by Felix Niessner and Antje Janetzko is gratefully acknowledged. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:162106 Serial 5357  
Permanent link to this record
 

 
Author (up) Belov, I.; Paulussen, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Appearance of a conductive carbonaceous coating in a CO2dielectric barrier discharge and its influence on the electrical properties and the conversion efficiency Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 015023  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This work examines the properties of a dielectric barrier discharge (DBD) reactor, built for CO2 decomposition, by means of electrical characterization, optical emission spectroscopy and gas chromatography. The discharge, formed in an electronegative gas (such as CO2, but also O2), exhibits clearly different electrical characteristics, depending on the surface conductivity of the reactor walls. An asymmetric current waveform is observed in the metaldielectric (MD) configuration, with sparse high-current pulses in the positive half-cycle (HC) and a more uniform regime in the negative HC. This indicates that the discharge is operating in two alternating regimes with rather different properties. At high CO2 conversion regimes, a conductive coating is deposited on the dielectric. This so-called coated MD configuration yields a symmetric current waveform, with current peaks in both the positive and negative HCs. In a double-dielectric (DD) configuration, the current waveform is also symmetric, but without current peaks in both the positive and negative HC. Finally, the DD configuration with conductive coating on the inner surface of the outer dielectric, i.e. so-called coated DD, yields again an asymmetric current waveform, with current peaks in the negative HC. These different electrical characteristics are related to the presence of the conductive coating on the dielectric wall of the reactor and can be explained by an increase of the local barrier capacitance available for charge transfer. The different discharge regimes affect the CO2 conversion, more specifically, the CO2 conversion is lowest in the clean DD configuration. It is somewhat higher in the coated DD configuration, and still higher in the MD configuration. The clean and coated MD configuration, however, gave similar CO2 conversion. These results indicate that the conductivity of the dielectric reactor walls can highly promote the development of the high-amplitude discharge current pulses and subsequently the CO2 conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000370974800030 Publication Date 2016-01-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 25 Open Access  
  Notes The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7-PEOPLE-2013-ITN) under Grant Agreement № 606889 (RAPID—Reactive Atmospheric Plasma processIng—eDucation network). Approved Most recent IF: 3.302  
  Call Number c:irua:130790 Serial 4006  
Permanent link to this record
 

 
Author (up) Belov, I.; Paulussen, S.; Bogaerts, A. pdf  openurl
  Title Analysis and comparison of the co2 and co dielectric barrier discharge solid products Type P1 Proceeding
  Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The CO and CO2 Dielectric Barrier Discharges (DBD) and their solid products were analyzed keeping similar energy input regimes. Gas chromatography analysis revealed the presence of CO2, CO and O-2 mixture in the exhaust of the CO2 DBD, while no O-2 was found when CO was used as a feed gas. It was shown that the C-2 Swan lines observed with optical emission spectroscopy were distinct in the CO plasma while they were not observed in the CO2 emission spectrum. Also the solid products of the plasmas exhibited remarkable differences. Nanoparticles with a diameter between10 and 300 nm, composed of Fe, O and C (Fe: O: C similar to 13: 50: 30) were produced by the CO2 DBD, while microscopic dendrite-like carbon structure (C: O similar to 73: 27) were formed in the CO plasma. The growth rate in the CO2 and CO DBDs was evaluated to be on the level of 0.15 mg/min and 15 mg/min, respectively. The difference of the CO and CO2 discharges and their products might be attributed to the oxygen content in the latter (6.4 mol.% O-2 in the exhaust) and subsequent etching of the carbonaceous film.  
  Address  
  Corporate Author Thesis  
  Publisher Masarykova univ Place of Publication Brno Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-80-210-8318-9 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:141554 Serial 4516  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: