|   | 
Details
   web
Records
Author (up) Van Tendeloo, G.; Richard, O.; Schuddinck, W.; Hervieu, M.
Title Fine structure of CMR perovskites by HREM and CBEM Type A1 Journal article
Year 1998 Publication Electron microscopy: vol. 1 Abbreviated Journal
Volume Issue Pages 383-384
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000077017600178 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:25674 Serial 1194
Permanent link to this record
 

 
Author (up) Van Tendeloo, G.; Schryvers, D.
Title Atomic structure of alloys close to phase transitions Type A1 Journal article
Year 2000 Publication Nucleation and growth processes in materials Abbreviated Journal
Volume 580 Issue Pages 283-292
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000165506200043 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48377 Serial 197
Permanent link to this record
 

 
Author (up) Van Tendeloo, G.; Schryvers, D.; Tanner, L.E.
Title Structural instabilities associated with phase transitions: an electron microscopy study Type P3 Proceeding
Year 1992 Publication Abbreviated Journal
Volume Issue Pages 107-113
Keywords P3 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Elsevier Applied Science Place of Publication London Editor
Language Wos A1992BW88A00010 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:4447 Serial 3238
Permanent link to this record
 

 
Author (up) Van Tendeloo, G.; Schryvers, D.; Tanner, L.E.; Broddin, D.; Ricolleau, C.; Loiseau, A.
Title Structural phase transformations in alloys: an electron microscopy study Type P3 Proceeding
Year 1991 Publication Symposium on Pahse Transformations Abbreviated Journal
Volume Issue Pages 1-10
Keywords P3 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:48350 Serial 3244
Permanent link to this record
 

 
Author (up) Van Tendeloo, G.; Schryvers, D.; van Dyck, D.; van Landuyt, J.; Amelinckx, S.
Title Up close: Center for Electron Microscopy of Materials Science at the University of Antwerp Type A1 Journal article
Year 1994 Publication MRS bulletin Abbreviated Journal Mrs Bull
Volume Issue Pages 57-59
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Pittsburgh, Pa Editor
Language Wos A1994PH66300015 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-7694 ISBN Additional Links UA library record; WoS full record;
Impact Factor 5.667 Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:9996 Serial 3821
Permanent link to this record
 

 
Author (up) Van Tendeloo, G.; van Heurck, C.; van Landuyt, J.; Amelinckx, S.; Verheijen, M.A.; van Loosdrecht, P.H.M.; Meijer, G.
Title Phase transitions in C60 and the related microstructure: a study by electron diffraction and electron microscopy Type A1 Journal article
Year 1992 Publication Journal of physical chemistry Abbreviated Journal
Volume 96 Issue Pages 7424-7430
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1992JM58600054 Publication Date 2005-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3654;1541-5740; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 33 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:4101 Serial 2594
Permanent link to this record
 

 
Author (up) Van Tendeloo, G.; van Landuyt, J.; Amelinckx, S.
Title Electron microscopy of fullerenes and fullerene related structures Type P3 Proceeding
Year 1994 Publication Abbreviated Journal
Volume Issue Pages 498-513
Keywords P3 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Electrochemical Society Place of Publication s.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:10009 Serial 960
Permanent link to this record
 

 
Author (up) Van Tendeloo, L.; Wangermez, W.; Kurttepeli, M.; de Blochouse, B.; Bals, S.; Van Tendeloo, G.; Martens, J.A.; Maes, A.; Kirschhock, C.E.A.; Breynaert, E.
Title Chabazite : stable cation-exchanger in hyper alkaline concrete pore water Type A1 Journal article
Year 2015 Publication Environmental science and technology Abbreviated Journal Environ Sci Technol
Volume 49 Issue 49 Pages 2358-2365
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract To avoid impact on the environment, facilities for permanent disposal of hazardous waste adopt multibarrier design schemes. As the primary barrier very often consists of cement-based materials, two distinct aspects are essential for the selection of suitable complementary barriers: (1) selective sorption of the contaminants in the repository and (2) long-term chemical stability in hyperalkaline concrete-derived media. A multidisciplinary approach combining experimental strategies from environmental chemistry and materials science is therefore essential to provide a reliable assessment of potential candidate materials. Chabazite is typically synthesized in 1 M KOH solutions but also crystallizes in simulated young cement pore water, a pH 13 aqueous solution mainly containing K+ and Na+ cations. Its formation and stability in this medium was evaluated as a function of temperature (60 and 85 °C) over a timeframe of more than 2 years and was also asessed from a mechanistic point of view. Chabazite demonstrates excellent cation-exchange properties in simulated young cement pore water. Comparison of its Cs+ cation exchange properties at pH 8 and pH 13 unexpectedly demonstrated an increase of the KD with increasing pH. The combined results identify chabazite as a valid candidate for inclusion in engineered barriers for concrete-based waste disposal.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000349806400047 Publication Date 2015-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936X;1520-5851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.198 Times cited 13 Open Access OpenAccess
Notes This work was supported by long-term structural funding by the Flemish Government (Methusalem) and by ONDRAF/ NIRAS, the Belgian Agency for Radioactive Waste and Fissile Materials, as part of the program on surface disposal of Belgian Category A waste. The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI). G.V.T. and S.B. acknowledge financial support from European Research Council (ERC Advanced Grant no. 24691-COUNTATOMS, ERC Starting Grant no. 335078-COLOURATOMS).; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 6.198; 2015 IF: 5.330
Call Number c:irua:127695 Serial 307
Permanent link to this record
 

 
Author (up) Van Tendeloo, L.; Wangermez, W.; Vandekerkhove, A.; Willhammar, T.; Bals, S.; Maes, A.; Martens, J.A.; Kirschhock, C.E.A.; Breynaert, E.
Title Postsynthetic high-alumina zeolite crystal engineering in organic free hyper-alkaline media Type A1 Journal article
Year 2017 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 29 Issue 29 Pages 629-638
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Postsynthetic modification of high -alumina zeolites in hyper alkaline media can be tailored toward alteration of framework topology, crystal size and morphology, or desired Si/A1 ratio. FAU, EMT, MAZ, KFI, HEU, and LTA starting materials were treated with 1.2 M MOH (M = Na, K, RE, or Cs), leading to systematic ordered porosity or fully transformed frameworks with new topology and adjustable Si/Al ratio. In addition to the versatility of this tool for zeolite crystal engineering, these alterations improve understanding of the crystal chemistry. Such knowledge can guide further development in zeolite crystal engineering. Postsynthetic alteration also provides insight on the long-term stability of aluminosilicate zeolites that are used as a sorption sink in concrete -based waste disposal facilities in harsh alkaline conditions.
Address
Corporate Author Thesis
Publisher American Chemical Society Place of Publication Washington, D.C Editor
Language Wos 000392891700021 Publication Date 2016-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 16 Open Access OpenAccess
Notes ; This work was supported by long-term structural funding by the Flemish Government (Methusalem grant of Prof. J. Martens) and by ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Fissile Materials, as part of the program on surface disposal of Belgian Category A waste. The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI). S.B. acknowledges financial support from European Research Council (ERC Advanced Grant No. 24691-COUNTATOMS, ERC Starting Grant No. 335078-COLOURATOMS). ; Ecas_Sara Approved Most recent IF: 9.466
Call Number UA @ lucian @ c:irua:152674UA @ admin @ c:irua:152674 Serial 5145
Permanent link to this record
 

 
Author (up) van Thiel, T. c.; Brzezicki, W.; Autieri, C.; Hortensius, J. r.; Afanasiev, D.; Gauquelin, N.; Jannis, D.; Janssen, N.; Groenendijk, D. j.; Fatermans, J.; Van Aert, S.; Verbeeck, J.; Cuoco, M.; Caviglia, A. d.
Title Coupling Charge and Topological Reconstructions at Polar Oxide Interfaces Type A1 Journal article
Year 2021 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 127 Issue 12 Pages 127202
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. A notable example is the interface between polar and nonpolar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO3, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and

LaAlO3, a polar wide-band-gap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO2/SrO interface configuration, leading to excess charge being pinned near the LaAlO3/SrRuO3 interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO3. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000704665000010 Publication Date 2021-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 17 Open Access OpenAccess
Notes The authors thank E. Lesne, M. Lee, H. Barakov, M. Matthiesen and U. Filippozzi for discussions. The authors are grateful to E.J.S. van Thiel for producing the illustration in Fig. 4a. This work was supported by the European Research Council under the European Unions Horizon 2020 programme/ERC Grant agreements No. [677458], [770887] and No. [731473] (Quantox of QuantERA ERA-NET Cofund in Quantum Technologies) and by the Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience (NanoFront) and VIDI program. The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. [823717] – ESTEEM3. N. G., J. V., and S. V. A. acknowledge funding from the University of Antwerp through the Concerted Research Actions (GOA) project Solarpaint and the TOP project. C. A. and W. B. are supported by the Foundation for Polish Science through the International Research Agendas program co-financed by the European Union within the Smart Growth Operational Programme. C. A. acknowledges access to the computing facilities of the Interdisciplinary Center of Modeling at the University of Warsaw, Grant No. G73-23 and G75-10. W.B. acknowledges support from the Narodowe Centrum Nauk (NCN, National Science Centre, Poland) Project No. 2019/34/E/ST3/00404'; esteem3TA; esteem3reported Approved Most recent IF: 8.462
Call Number EMAT @ emat @c:irua:182595 Serial 6824
Permanent link to this record
 

 
Author (up) Van Velthoven, N.; Henrion, M.; Dallenes, J.; Krajnc, A.; Bugaev, A.L.; Liu, P.; Bals, S.; Soldatov, A.; Mali, G.; De Vos, D.E.
Title S,O-functionalized metal-organic frameworks as heterogeneous single-site catalysts for the oxidative alkenylation of arenes via C- H activation Type A1 Journal article
Year 2020 Publication Acs Catalysis Abbreviated Journal Acs Catal
Volume 10 Issue 9 Pages 5077-5085
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Heterogeneous single-site catalysts can combine the R precise active site design of organometallic complexes with the efficient recovery of solid catalysts. Based on recent progress on homogeneous thioether ligands for Pd-catalyzed C-H activation reactions, we here develop a scalable metal-organic framework-based heterogeneous single-site catalyst containing S,O-moieties that increase the catalytic activity of Pd(II) for the oxidative alkenylation of arenes. The structure of the Pd@MOF-808-L1 catalyst was characterized in detail via solid-state nuclear magnetic resonance spectroscopy, N-2 physisorption, and high-angle annular dark field scanning transmission electron microscopy, and the structure of the isolated palladium active sites could be identified by X-ray absorption spectroscopy. A turnover frequency (TOF) of 8.4 h(-1) was reached after 1 h of reaction time, which was 3 times higher than the TOF of standard Pd(OAc)(2), ranking Pd@MOF-808-L1 among the most active heterogeneous catalysts ever reported for the nondirected oxidative alkenylation of arenes. Finally, we showed that the single-site catalyst promotes the oxidative alkenylation of a broad range of electron-rich arenes, and the applicability of this heterogeneous system was demonstrated by the gram-scale synthesis of industrially relevant products.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000530090800026 Publication Date 2020-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.9 Times cited 37 Open Access OpenAccess
Notes ; The research leading to these results has received funding from the NMBP-01-2016 Program of the European Union's Horizon 2020 Framework Program H2020/2014-2020/under grant agreement no [720996]. N.V.V. and D.E.D.V. thank the FWO for funding (1S32917N and G0F2320N). D.E.D.V. is grateful for KU Leuven's support in the frame of the CASAS Metusalem project and a C3 type project. A.K. and G.M. acknowledge the financial support from the Slovenian Research Agency (research core funding no. P1-0021 and project no. N1-0079). A.L.B and A.V.S. acknowledge Russian Science Foundation grant no. 20-43-01015 for financial support. We thank Alexander Trigub and Alexey Veligzhanin for their support during the beamtime at Kurchatov Institute. We are indebted to Elizaveta Kamyshova and Anna Pnevskaya for their valuable help during EXAFS measurements. P.L. and S.B. thank European Research Council for the ERC Consolidator Grant 815128, REALNANO. Kassem Amro and Guillaume Gracy from Sikemia are gratefully acknowledged for providing ; sygma Approved Most recent IF: 12.9; 2020 IF: 10.614
Call Number UA @ admin @ c:irua:169530 Serial 6598
Permanent link to this record
 

 
Author (up) Van Velthoven, N.; Waitschat, S.; Chavan, S.M.; Liu, P.; Smolders, S.; Vercammen, J.; Bueken, B.; Bals, S.; Lillerud, K.P.; Stock, N.; De Vos, D.E.
Title Single-site metal-organic framework catalysts for the oxidative coupling of arenes via C-H/C-H activation Type A1 Journal article
Year 2019 Publication Chemical science Abbreviated Journal Chem Sci
Volume 10 Issue 10 Pages 3616-3622
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract C-H activation reactions are generally associated with relatively low turnover numbers (TONs) and high catalyst concentrations due to a combination of low catalyst stability and activity, highlighting the need for recyclable heterogeneous catalysts with stable single-atom active sites. In this work, several palladium loaded metal-organic frameworks (MOFs) were tested as single-site catalysts for the oxidative coupling of arenes (e.g. o-xylene) via C-H/C-H activation. Isolation of the palladium active sites on the MOF supports reduced Pd(0) aggregate formation and thus catalyst deactivation, resulting in higher turnover numbers (TONs) compared to the homogeneous benchmark reaction. Notably, a threefold higher TON could be achieved for palladium loaded MOF-808 due to increased catalyst stability and the heterogeneous catalyst could efficiently be reused, resulting in a cumulative TON of 1218 after three runs. Additionally, the palladium single-atom active sites on MOF-808 were successfully identified by Fourier transform infrared (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000463759100017 Publication Date 2019-02-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited 68 Open Access OpenAccess
Notes ; The research leading to these results has received funding from the NMBP-01-2016 Program of the European Union's Horizon 2020 Framework Program H2020/2014-2020/under grant agreement no. [720996]. N. V. V., S. S., J. V., B. B. and D. E. D. V. thank the FWO for funding (SB, Aspirant and postdoctoral grants). The electron microscopy work was supported by FWO funding G038116. D. E. D. V. is grateful for KU Leuven support in the frame of the CASAS Metusalem project and a C3 type project. The XAS experiments were performed on beamline BM26A at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. We are grateful to D. Banerjee at the ESRF for providing assistance in using beamline BM26A. Johnson Matthey and S. Bennett are gratefully acknowledged for providing Smopex-102. ; Approved Most recent IF: 8.668
Call Number UA @ admin @ c:irua:159403 Serial 5259
Permanent link to this record
 

 
Author (up) Vandebroek, M.; Belis, J.; Louter, C.; Van Tendeloo, G.
Title Experimental validation of edge strength model for glass with polished and cut edge finishing Type A1 Journal article
Year 2012 Publication Engineering fracture mechanics Abbreviated Journal Eng Fract Mech
Volume 96 Issue Pages 480-489
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In literature, the experimental validation of a glass edge strength model is lacking. Therefore, in this study, an edge strength model was established and validated. The short-term parameters of the edge strength model, i.e. the flaw geometry and depth, were determined by means of testing at a high stress rate. This was done for polished and cut edges. Next, the strength model, including subcritical crack growth, was established. Finally, the edge strength model was validated by the test results at a low stress rate. The assessed model was found to be slightly conservative, compared to the test results.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000313384300034 Publication Date 2012-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-7944; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.151 Times cited 15 Open Access
Notes Approved Most recent IF: 2.151; 2012 IF: 1.413
Call Number UA @ lucian @ c:irua:105285 Serial 1145
Permanent link to this record
 

 
Author (up) Vandemeulebroucke, D.; Batuk, M.; Hajizadeh, A.; Wastiaux, M.; Roussel, P.; Hadermann, J.
Title Incommensurate Modulations and Perovskite Growth in LaxSr2–xMnO4−δAffecting Solid Oxide Fuel Cell Conductivity Type A1 Journal Article
Year 2024 Publication Chemistry of Materials Abbreviated Journal Chem. Mater.
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Ruddlesden-Popper La????Sr2−????MnO4−???? materials are interesting symmetric solid oxide

fuel cell electrodes due to their good redox stability, mixed ionic and electronic conducting behavior and thermal expansion that matches well with common electrolytes. In reducing environments – as at a solid oxide fuel cell anode – the x = 0.5 member, i.e. La0.5Sr1.5MnO4−????, has a much higher total conductivity than compounds with a different La/Sr ratio, although all those compositions have the same K2NiF4-type I4/mmm structure. The origin for this conductivity difference is not yet known in literature. Now, a combination of in-situ and ex-situ 3D electron diffraction, high-resolution imaging, energy-dispersive X-ray analysis and electron energy-loss spectroscopy uncovered clear differences between x=0.25 and x=0.5 in the pristine structure, as well as in the transformations upon high-temperature reduction. In La0.5Sr1.5MnO4−????, Ruddlesden-Popper n=2 layer defects and an amorphous surface layer are present, but not in La0.25Sr1.75MnO4−????. After annealing at 700°C in 5% H2/Ar, La0.25Sr1.75MnO4−???? transforms to a tetragonal 2D incommensurately modulated structure with modulation vectors ⃗????1 = 0.2848(1) · (⃗????* +⃗????*) and ⃗????2 =0.2848(1) · (⃗????* – ⃗????*), whereas La0.5Sr1.5MnO4−???? only partially transforms to an orthorhombic 1D incommensurately modulated structure,

with ⃗???? = 0.318(2) · ⃗????*. Perovskite domains grow at the crystal edge at 700°C in 5%

H2 or vacuum, due to the higher La concentration on the surface compared to the bulk, which leads to a different thermodynamic equilibrium. Since it is known that a lower degree of oxygen vacancy ordering and a higher amount of perovskite blocks enhance oxygen mobility, those differences in defect structure and structural transformation upon reduction, might all contribute to the higher conductivity of La0.5Sr1.5MnO4−???? in solid oxide fuel cell anode conditions compared to other La/Sr ratios.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 001174840900001 Publication Date 2024-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.6 Times cited Open Access Not_Open_Access
Notes Universiteit Antwerpen, BOF TOP 38689 ; Fonds Wetenschappelijk Onderzoek, I003218N ; European Commission NanED, 956099 ; Approved Most recent IF: 8.6; 2024 IF: 9.466
Call Number EMAT @ emat @c:irua:204354 Serial 8997
Permanent link to this record
 

 
Author (up) Vanhellemont, J.; Bender, H.; van Landuyt, J.
Title TEM studies of processed Si device materials Type A1 Journal article
Year 1997 Publication Conference series of the Institute of Physics Abbreviated Journal
Volume 157 Issue Pages 393-402
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Recent developments in the field of TEM characterisation of Si device materials are discussed and illustrated by a few case studies of material in different stages of various kinds of processing. Important challenges are the ever decreasing defect densities and device feature sizes. Defect delineation techniques using large area inspection tools yielding accurate coordinates of the defects to be studied have therefore become an essential part of the TEM analysis procedure. The possibility to transfer these defect coordinates without loss of accuracy to tools for local TEM specimen preparation is also a conditio sine qua non for a successful analysis. Insitu TEM remains important as dynamic processes can be observed and analysed under well defined experimental conditions. As case studies illustrating new developments, results are presented on defects in as-grown Ct silicon, on in-situ studies in processed silicon, on problem sites in advanced integrated circuit structures and on assessment of localised strain fields in the nm size scale.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000071954600079 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0305-2346 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:21430 Serial 3486
Permanent link to this record
 

 
Author (up) Vanhellemont, J.; Claeys, C.; van Landuyt, J.
Title In-situ HVEM study of dislocation generation in patterned stress fields at silicon surfaces Type A1 Journal article
Year 1995 Publication Physica status solidi: A: applied research Abbreviated Journal
Volume 150 Issue Pages 497-506
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos A1995RQ21500043 Publication Date 2007-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 6 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:13293 Serial 1582
Permanent link to this record
 

 
Author (up) Vanhellemont, J.; Romano Rodriguez, A.; Fedina, L.; van Landuyt, J.; Aseev, A.
Title Point defect reactions in silicon studied in situ by high flux electron irradiation in high voltage transmission electron microscope Type A1 Journal article
Year 1995 Publication Materials science and technology Abbreviated Journal Mater Sci Tech-Lond
Volume 11 Issue 11 Pages 1194-1202
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Results are presented of in situ studies of 1 MeV electron irradiation induced (113) defect generation in silicon containing different types and concentrations of extrinsic point defects. A semiquantitative model is developed describing the influence of interfaces and stress fields and of extrinsic point defects on the (113) defect generation in silicon during irradiation. The theoretical results obtained are correlated with experimental data obtained on silicon uniformly doped with boron and phosphorus and with observations obtained by irradiating cross-sectional samples of wafers with highly doped surface layers. It is shown that in situ irradiation in a high voltage election microscope is a powerful tool for studying local point defect reactions in silicon. (C) 1995 The Institute of Materials.
Address
Corporate Author Thesis
Publisher Inst Materials Place of Publication London Editor
Language Wos A1995TQ95100016 Publication Date 2014-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-0836;1743-2847; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.995 Times cited 7 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:95911 Serial 2654
Permanent link to this record
 

 
Author (up) Vanhellemont, J.; Romano-Rodriguez, A.; Fedina, L.; van Landuyt, J.; Aseev, A.
Title Point defect reactions in silicon studies in situ by high flux electron irradiation in high voltage transmission electron microscope Type A3 Journal article
Year 1995 Publication Materials science and technology Abbreviated Journal
Volume 11 Issue Pages 1194-1204
Keywords A3 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1995TQ95100016 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 7 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:13297 Serial 2655
Permanent link to this record
 

 
Author (up) Vanhumbeeck, J.-F.; Tian, H.; Schryvers, D.; Proost, J.
Title Stress-assisted crystallisation in anodic titania Type A1 Journal article
Year 2011 Publication Corrosion science Abbreviated Journal Corros Sci
Volume 53 Issue 4 Pages 1269-1277
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The relationship between the microstructural and internal stress evolution during Ti anodising is discussed. Samples anodised galvanostatically to 12 V and 40 V, corresponding to different stages of the internal stress evolution, were examined by in-plane and cross-section transmission electron microscopy. Electron diffraction patterns have been complemented with stoichiometry data obtained from energy loss near edge structure spectra. The sample anodised to 40 V was observed to consist of two regions, with a crystallised inner region adjacent to the metal/oxide interface. Crystallisation of this region is associated with the presence of large compressive internal stresses which build up during anodising up to 12 V.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000288972000016 Publication Date 2010-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-938X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.245 Times cited 11 Open Access
Notes Fwo Approved Most recent IF: 5.245; 2011 IF: 3.734
Call Number UA @ lucian @ c:irua:88385 Serial 3177
Permanent link to this record
 

 
Author (up) Vannier, R.-N.; Théry, O.; Kinowski, C.; Huvé, M.; Van Tendeloo, G.; Suard, E.; Abraham, F.
Title Zr substituted bismuth uranate Type A1 Journal article
Year 1999 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 9 Issue Pages 435-443
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000078572900019 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:29714 Serial 3937
Permanent link to this record
 

 
Author (up) Vanrenterghem, B.; Geboes, B.; Bals, S.; Ustarroz, J.; Hubin, A.; Breugelmans, T.
Title Influence of the support material and the resulting particle distribution on the deposition of Ag nanoparticles for the electrocatalytic activity of benzyl bromide reduction Type A1 Journal article
Year 2016 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 181 Issue 181 Pages 542-549
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract tSilver nanoparticles (NPs) were deposited on nickel, titanium and gold substrates using a potentiostaticdouble-pulse method. The influence of the support material on both the morphology and the electro-catalytic activity of Ag NPs for the reduction reaction of benzyl bromide was investigated and comparedwith previous research regarding silver NPs on glassy carbon. Scanning electron microscopy (SEM) dataindicated that spherical monodispersed NPs were obtained on Ni, Au and GC substrate with an averageparticle size of respectively 216 nm, 413 nm and 116 nm. On a Ti substrate dendritic NPs were obtainedwith a larger average particle density of 480 nm. The influence of the support material on the electrocat-alytic activity was tested by means of cyclic voltammetry (CV) for the reduction reaction of benzylbromide(1 mM) in acetonitrile + 0.1 M tetrabutylammonium perchlorate (Bu4NClO4). When the nucleation poten-tial (En) was applied at high cathodic overpotential, a positive shift of the reduction potential was obtained.The nucleation (tn) and growth time (tg) mostly had an influence on the current density whereas longerdeposition times lead to larger current densities. For these three parameters an optimum was present.The best electrocatalytic activity was obtained with Ag NPs deposited on Ni were a shift of the reduc-tion peak potential of 145 mV for the reaction of benzyl bromide was measured in comparance to bulksilver. The deposition on Au substrate yielded a positive shift of 114 mV. There was no indication of analtered reaction mechanism as the reaction was characterized as diffusion controlled and the transfercoefficients were in accordance with bulk silver. There was a beneficial catalitic activity measured due tothe interplay between support and NPs. This resulted in a shift of the reduction peak potential of 34 mV(Ag NPs on Au) and 65 mV (Ag NPs on Ni) compared to Ag NPs on a GC substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000364256000052 Publication Date 2015-08-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 16 Open Access OpenAccess
Notes The Quanta 250 FEG microscope of the Electron Microscopy forMaterial Science group at the University of Antwerp was fundedby the Hercules foundation of the Flemish Government. Sara Balsacknowledges financial support from European Research Council(ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 9.446
Call Number c:irua:128345 Serial 4064
Permanent link to this record
 

 
Author (up) Vanrenterghem, B.; Papaderakis, A.; Sotiropoulos, S.; Tsiplakides, D.; Balomenou, S.; Bals, S.; Breugelmans, T.
Title The reduction of benzylbromide at Ag-Ni deposits prepared by galvanic replacement Type A1 Journal article
Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta
Volume 196 Issue 196 Pages 756-768
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract A two-step procedure was applied to prepare bimetallic Ag-Ni glassy carbon supported catalysts (Ag-Ni/GC). First Ni layers were prepared by means of electrodeposition in an aqueous deaerated nickel chloride + nickel sulfamate + boric acid solution. Second, the partial replacement of Ni layers by Ag was achieved upon immersion of the latter in solutions containing silver nitrate. Three different pretreatment protocols were used after preparation of the Ag/Ni deposits; as prepared, cathodised in alkali and scanned in acid. After the pretreatment the surface was characterised by means of spectroscopy techniques (scanning electron microscopy and energy dispersive x-ray) and electrochemically in an alkali NaOH solution through cyclic voltammetry (CV). Afterwards the modified electrodes were tested for the reduction of benzylbromide in acetonitrile solutions by using CV and were found to show improved activity compared to bulk Ag electrode. The highest activity towards benzylbromide reduction was observed for pre-cathodised Ag-Ni electrodes. A final stage of the research focuses on the development of a practical Ag/Ni foam catalyst for the reduction of benzylbromide. Due to the high electrochemical active surface area of Ag/Ni foam, a higher conversion of benzyl bromide was obtained in comparison with bulk Ag.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372877400083 Publication Date 2016-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.798 Times cited 21 Open Access OpenAccess
Notes The quanta 250 FEG microscope of the Electron Microscopy for Material Science group at the University of Antwerp was funded by the Hercules foundation of the Flemish government. Sara Bals acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 4.798
Call Number c:irua:132081 Serial 4065
Permanent link to this record
 

 
Author (up) Vanrompay, H.
Title Toward fast and dose efficient electron tomography Type Doctoral thesis
Year 2020 Publication Abbreviated Journal
Volume Issue Pages 207 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:169852 Serial 6632
Permanent link to this record
 

 
Author (up) Vanrompay, H.; Béché, A.; Verbeeck, J.; Bals, S.
Title Experimental Evaluation of Undersampling Schemes for Electron Tomography of Nanoparticles Type A1 Journal article
Year 2019 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 36 Issue 36 Pages 1900096
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract One of the emerging challenges in the field of 3D characterization of nanoparticles by electron tomography is to avoid degradation and deformation of the samples during the acquisition of a tilt series. In order to reduce the required electron dose, various undersampling approaches have been proposed. These methods include lowering the number of 2D projection images, reducing the probe current during the acquisition, and scanning a smaller number of pixels in the 2D images. A comparison is made between these approaches based on tilt series acquired for a gold nanoparticle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000477679400014 Publication Date 2019-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 12 Open Access Not_Open_Access
Notes H.V. acknowledges financial support by the Research Foundation Flanders (FWO Grant No. 1S32617N). A.B. and J.V. acknowledge FWO project 6093417N “Compressed sensing enabling low dose imaging in STEM.” The authors thank G. González-Rubio, A. Sánchez-Iglesias, and L.M. Liz-Marzán for provision of the samples. Approved Most recent IF: 4.474
Call Number EMAT @ emat @UA @ admin @ c:irua:159986 Serial 5175
Permanent link to this record
 

 
Author (up) Vanrompay, H.; Bladt, E.; Albrecht, W.; Béché, A.; Zakhozheva, M.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Bals, S.
Title 3D characterization of heat-induced morphological changes of Au nanostars by fast in situ electron tomography Type A1 Journal article
Year 2018 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 10 Issue 10 Pages 22792-22801
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A thorough understanding of the thermal stability and potential reshaping of anisotropic gold nanostars is required for various potential applications. Combination of a tomographic heating holder with fast tilt series acquisition has been used to monitor temperature-induced morphological changes of Au nanostars. The outcome of our 3D investigations can be used as an input for boundary element method simulations, enabling us to investigate the influence of reshaping on the nanostars’ plasmonic properties. Our work leads to a better understanding of the mechanism behind thermal reshaping. In addition, the approach presented here is generic and can hence be applied to a wide variety of nanoparticles made of different materials and with arbitrary morphology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453248100010 Publication Date 2018-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 55 Open Access OpenAccess
Notes H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). E.B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). W.A. acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020. The authors acknowledge funding from European Commission Grant (EUSMI 731019 to S.B., L.M.L.-M. and M.Z. and MUMMERING 765604 to S.B. and M.Z.). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078- COLOURATOMS).; Ecas_sara Approved Most recent IF: 7.367
Call Number EMAT @ emat @c:irua:155718UA @ admin @ c:irua:155718 Serial 5071
Permanent link to this record
 

 
Author (up) Vanrompay, H.; Buurlage, J.‐W.; Pelt, D.M.; Kumar, V.; Zhuo, X.; Liz‐Marzán, L.M.; Bals, S.; Batenburg, K.J.
Title Real‐Time Reconstruction of Arbitrary Slices for Quantitative and In Situ 3D Characterization of Nanoparticles Type A1 Journal article
Year 2020 Publication Particle & Particle Systems Characterization Abbreviated Journal Part Part Syst Char
Volume 37 Issue 37 Pages 2000073
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A detailed 3D investigation of nanoparticles at a local scale is of great importance to connect their structure and composition to their properties. Electron tomography has therefore become an important tool for the 3D characterization of nanomaterials. 3D investigations typically comprise multiple steps, including acquisition, reconstruction, and analysis/quantification. Usually, the latter two steps are performed offline, at a dedicated workstation. This sequential workflow prevents on-the-fly control of experimental parameters to improve the quality of the 3D reconstruction, to select a relevant nanoparticle for further characterization or to steer an in-situ tomography experiment. Here, we present an efficient approach to overcome these limitations, based on the real-time reconstruction of arbitrary 2D reconstructed slices through a 3D object. Implementation of this method may lead to generalized implementation of electron tomography for routine nanoparticle characterization in 3D.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000536357100001 Publication Date 2020-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited 10 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 1S32617N ; Fonds Wetenschappelijk Onderzoek, G026718N ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 639.073.506 016.Veni.192.235 ; H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G026718N). Financial support was provided by The Netherlands Organization for Scientific Research (NWO), project numbers 639.073.506 and 016.Veni.192.235. This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). H.V. and J.-W.B contributed equally to this work.; sygma Approved Most recent IF: 2.7; 2020 IF: 4.474
Call Number EMAT @ emat @c:irua:169704 Serial 6371
Permanent link to this record
 

 
Author (up) Vanrompay, H.; Skorikov, A.; Bladt, E.; Béché, A.; Freitag, B.; Verbeeck, J.; Bals, S.
Title Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges Type A1 Journal article
Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 221 Issue Pages 113191
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract HAADF-STEM tomography is a widely used experimental technique for analyzing nanometer-scale crystalline structures of a large variety of materials in three dimensions. Unfortunately, the acquisition of conventional HAADF-STEM tilt series can easily take up one hour or more, depending on the complexity of the experiment. It is therefore far from straightforward to investigate samples that do not withstand long acquisition or to acquire large amounts of tilt series during a single TEM experiment. The latter would lead to the ability to obtain statistically meaningful 3D data, or to perform in situ 3D characterizations with a much shorter time resolution. Various HAADF-STEM acquisition strategies have been proposed to accelerate the tomographic acquisition and reduce the required electron dose. These methods include tilting the holder continuously while acquiring a projection “movie” and a hybrid, incremental, methodology which combines the benefits of the conventional and continuous technique. However, until now an experimental evaluation has been lacking. In this paper, the different acquisition strategies will be experimentally compared in terms of speed, resolution and electron dose. This evaluation will be performed based on experimental tilt series acquired for various metallic nanoparticles with different shapes and sizes. We discuss the data processing involved with the fast HAADF-STEM tilt series and provide a general guideline when which acquisition strategy should be preferentially used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000612539600003 Publication Date 2020-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 15 Open Access OpenAccess
Notes We acknowledge Prof. Luis M. Liz-Marzán and co-workers of the Bionanoplasmonics Laboratory, CIC biomaGUNE, Spain for providing the Au@Ag nanoparticles, Prof. Sara. E. Skrabalak and co-workers of Indiana University, United States for the provision of the Au octopods and Prof. Teri W. Odom of Northwestern University, United States for the provision of the Au nanostars. H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G.0381.16N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). The authors acknowledge the entire EMAT technical staff for their support.; sygma Approved Most recent IF: 2.843
Call Number EMAT @ emat @c:irua:174551 Serial 6660
Permanent link to this record
 

 
Author (up) Vantomme, A.; Wu, M.F.; Hogg, S.; van Landuyt, J.; et al.
Title Comparative study of structural properties and photoluminescence in InGaN layers with a high In content Type A1 Journal article
Year 2000 Publication Internet journal of nitride semiconductor research T2 – Symposium on GaN and Related Alloys Held at the MRS Fall Meeting, NOV 29-DEC 03, 1999, BOSTON, MASSACHUSETTS Abbreviated Journal Mrs Internet J N S R
Volume 5 Issue s:[1] Pages art. no.-W11.38
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Rutherford backscattering and channeling spectrometry (RBS), photoluminescence (PL) spectroscopy and transmission electron microscopy (TEM) have been used to investigate macroscopic and microscopic segregation in MOCVD grown InGaN layers. The PL peak energy and In content (measured by RES) were mapped at a large number of distinct points on the samples. An indium concentration of 40%, the highest measured in this work, corresponds to a PL peak of 710 nn strongly suggesting that the light-emitting regions of the sample me very indium-rich compared to the average measured by RES. Cross-sectional TEM observations show distinctive layering of the InGaN films. The TEM study further reveals that these layers consist of amorphous pyramidal contrast features with sizes of order 10 nm The composition of these specific contrast features is shown to be In-rich compared to the nitride matrix.
Address
Corporate Author Thesis
Publisher Materials research society Place of Publication Warrendale Editor
Language Wos 000090103600097 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1092-5783 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:103471 Serial 423
Permanent link to this record
 

 
Author (up) Varambhia, A.M.; Jones, L.; De Backer, A.; Fauske, V.T.; Van Aert, S.; Ozkaya, D.; Nellist, P.D.
Title Quantifying a Heterogeneous Ru Catalyst on Carbon Black Using ADF STEM Type A1 Journal article
Year 2016 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 33 Issue 33 Pages 438-444
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ru catalysts are part of a set of late transition metal nanocatalysts that have garnered much interest for catalytic applications such as ammonia synthesis and fuel cell production. Their performance varies greatly depending on their morphology and size, these catalysts are widely studied using electron microscopy. Using recent developments in Annular Dark Field (ADF) Scanning Transmission Electron Microscopy (STEM) quantification techniques, a rapid atom counting procedure was utilized to document the evolution of a heterogeneous Ru catalyst supported on carbon black. Areas of the catalyst were imaged for approximately 15 minutes using ADF STEM. When the Ru clusters were exposed to the electron beam, the clusters changed phase from amorphous to crystalline. To quantify the thickness of the crystalline clusters, two techniques were applied (simulation and statistical decomposition) and compared. These techniques show that stable face centredcubic crystal structures in the form of rafts, between 2 and 8 atoms thick, were formed after the initial wetting of the carbon support.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000379970000012 Publication Date 2016-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 4 Open Access
Notes The authors would like to thank the EPSRC and Johnson Matthey for funding this work as part of a CASE-Award studentship. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative–I3). We would like to thank Brian Theobald and Jonathan Sharman from JMTC for provision of the samples The authors gratefully acknowledge the Research Foundation Flanders (FWO, Belgium) for funding and for a postdoctoral grant to ADB. The microscope used was funded by the INFRASTRUKTUR Grant 197405 (NORTEM) program of the Research Council of Norway.; esteem2_jra2 Approved Most recent IF: 4.474
Call Number c:irua:134036 c:irua:134036 Serial 4086
Permanent link to this record
 

 
Author (up) Vasiliev, A.L.; Stepantsov, E.A.; Ivanov, Z.G.; Olsson, E.; Verbist, K.; Van Tendeloo, G.
Title Structure of artificial grain boundaries in sapphire bicrystals with intermediate layers Type A1 Journal article
Year 1997 Publication Interface science Abbreviated Journal
Volume 5 Issue Pages 223-230
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Kluwer Place of Publication Boston Editor
Language Wos A1997YJ98600002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-7056 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:21451 Serial 3307
Permanent link to this record