toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Maignan, A.; Lebedev, O.I.; Van Tendeloo, G.; Martin, C.; Hebert, S. url  doi
openurl 
  Title Metal to insulator transition in the n-type hollandite vanadate Pb1.6V8O16 Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 3 Pages 035122, 1-035122,5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The transport and magnetic measurements of polycrystalline Pb1.6V8O16 hollandite reveal a concomitant metal to insulator and antiferromagnetic transition at TMI≈140 K. A clear localization is found below TMI, evidenced by a rapid increase in the absolute value of the negative Seebeck coefficient. The structural study by x-ray and transmission electron microscopy confirms the hollandite structure and shows that no structural transition occurs at TMI, ruling out a possible charge orbital ordering. The negative Seebeck coefficient observed from 50 K up to 900 K, with values reaching S=−38 μV K−1 at 900 K, is explained by the electron doping of ∼1.4e− in the V empty t2g orbitals responsible for the bad metal resistivity (ρ900 K∼2 mΩ cm). As this S value is close to that obtained by considering only the spin and orbital degeneracies, it is expected that |S| for such vanadates will not be sensitive at high temperature to the t2g band filling  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000280366300002 Publication Date 2010-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 10 Open Access  
  Notes Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:84065 Serial 2009  
Permanent link to this record
 

 
Author (up) Maignan, A.; Lebedev, O.I.; Van Tendeloo, G.; Martin, C.; Hébert, S. doi  openurl
  Title Negative magnetoresistance in a V3+/V4+ mixed valent vanadate Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 23 Pages 232502,1-232502,3  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The magnetotransport and magnetic properties of the PbV6O11 vanadate, crystallizing in the P63mc space group, reveal the existence of a negative magnetoresistance related to its ferromagnetic state (TC ∼ 90 K). The maximum effect is observed at 20 K reaching −30% in 9 T. The structural study of this ceramic reveals a V/Pb ratio smaller than expected from the formula. This is explained by the presence of numerous stacking faults observed by high resolution transmission electron microscopy. The existence of these planar defects acting as resistive barriers along the c axis could be responsible for tunneling magnetoresistance.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000278695900045 Publication Date 2010-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited Open Access  
  Notes Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:83293 Serial 2291  
Permanent link to this record
 

 
Author (up) Maignan, A.; Martin, C.; Singh, K.; Simon, C.; Lebedev, O.I.; Turner, S. pdf  doi
openurl 
  Title From spin induced ferroelectricity to dipolar glasses : spinel chromites and mixed delafossites Type A1 Journal article
  Year 2012 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 195 Issue Pages 41-49  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Magnetoelectric multiferroics showing coupling between polarization and magnetic order are attracting much attention. For instance, they could be used in memory devices. Metal-transition oxides are provided several examples of inorganic magnetoelectric multiferroics. In the present short review, spinel and delafossite chromites are described. For the former, an electric polarization is evidenced in the ferrimagnetic state for ACr2O4 polycrystalline samples (A=Ni, Fe, Co). The presence of a JahnTeller cation such as Ni2+ at the A site is shown to yield larger polarization values. In the delafossites, substitution by V3+ at the Cr or Fe site in CuCrO2 (CuFeO2) suppresses the complex antiferromagnetic structure at the benefit of a spin glass state. The presence of cation disorder, probed by transmission electron microscopy, favors relaxor-like ferroelectricity. The results on the ferroelectricity of ferrimagnets and insulating spin glasses demonstrate that, in this research field, transition-metal oxides are worth to be studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000309783600006 Publication Date 2012-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 27 Open Access  
  Notes Fwo Approved Most recent IF: 2.299; 2012 IF: 2.040  
  Call Number UA @ lucian @ c:irua:101219 Serial 1286  
Permanent link to this record
 

 
Author (up) Maignan, A.; Martin, C.; Van Tendeloo, G.; Hervieu, M.; Raveau, B. pdf  doi
openurl 
  Title Ferromagnetism and magnetoresistance in monolayered manganites Ca2-xLnxMnO4 Type A1 Journal article
  Year 1998 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 8 Issue 11 Pages 2411-2416  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000076974900019 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 30 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:25684 Serial 1182  
Permanent link to this record
 

 
Author (up) Maignan, A.; Martin, C.; Van Tendeloo, G.; Hervieu, M.; Raveau, B. url  doi
openurl 
  Title Size mismatch : a crucial factor for generating a spin-glass insulator in manganites Type A1 Journal article
  Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 60 Issue 22 Pages 15214-15219  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Thr structural, electronic, and magnetic properties of the highly mismatched perovskite oxides, Th(0.35)A(0.65)MnO(3), where Ais for the alkaline earth divalent cations (Ca, Ba, Sr), which are all characterized by the same large tolerance factor (t=0.934), have been investigated by using electron microscopy, electrical resistivity, magnetic susceptibility, and magnetization. It is clearly established that a transition from ferromagnetic metallic towards spin-glass insulator samples is induced as the A-site cationic size mismatch is increased. Moreover, the magnetoresistance (MR) properties of these manganites are strongly reduced for the spin-glass insulators, demonstrating that the A-sire cationic disorder is detrimental for the colossal MR properties. Based on these results, a new electronic and magnetic diagram is established that shows that the A-site disorder, rather than the A-site average cationic size (or t) is the relevant factor for generating spin-glass insulating manganites. [S0163-1829(99)01746-4].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000084631600039 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 75 Open Access  
  Notes Approved Most recent IF: 3.836; 1999 IF: NA  
  Call Number UA @ lucian @ c:irua:104280 Serial 3038  
Permanent link to this record
 

 
Author (up) Maignan, A.; Michel, C.; Van Tendeloo, G.; Hervieu, M.; Raveau, B. openurl 
  Title Superconductivity up to 110K in the 1212-Hg based cuprate Nd1-xCaxBa2Hg1-xCu2+xO6+y Type A1 Journal article
  Year 1993 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 216 Issue Pages 1-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1993MD16100001 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.942 Times cited 32 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:6848 Serial 3375  
Permanent link to this record
 

 
Author (up) Maignan, A.; Singh, K.; Simon, C.; Lebedev, O.I.; Martin, C.; Tan, H.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Magnetic and magnetodielectric properties of erbium iron garnet ceramic Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 3 Pages 033905-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract An Er3Fe5O12 ceramic has been sintered in oxygen atmosphere at 1400 °C for dielectric measurements. Its structural quality at room temperature has been checked by combining transmission electron microscopy and X-ray diffraction. It crystallizes in the cubic space group Ia3d with a = 12.3488(1). The dielectric permittivity ([variantgreekepsilon]′) and losses (tan δ) measurements as a function of temperature reveal the existence of two anomalies, a broad one between 110 K and 80 K, attributed to the Er3+ spin reorientation, and a second sharper feature at about 45 K associated to the appearance of irreversibility on the magnetic susceptibility curves. In contrast to the lack of magnetic field impact on [variantgreekepsilon]′ for the former anomaly, a complex magnetic field effect has been evidenced below 45 K. The isothermal [variantgreekepsilon]′(H) curves show the existence of positive magnetodielectric effect, reaching a maximum of 0.14% at 3 T and 10 K. Its magnitude decreases as H is further increased. Interestingly, for the lowest H values, a linear regime in the [variantgreekepsilon]′(H) curve is observed. From this experimental study, it is concluded that the [variantgreekepsilon]′ anomaly, starting above the compensation temperature Tc (75 K) and driven by the internal magnetic field, is not sensitive to an applied external magnetic field. Thus, below 45 K, it is the magnetic structure which is responsible for the coupling between spin and charge in this iron garnet.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000313670600042 Publication Date 2013-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 15 Open Access  
  Notes Vortex; Countatoms ECASJO_; Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:106182UA @ admin @ c:irua:106182 Serial 1861  
Permanent link to this record
 

 
Author (up) Maignan, A.; Van Tendeloo, G.; Hervieu, M.; Michel, C.; Raveau, B. openurl 
  Title A new “1212” mercury-based 90K superconductor: (Hg1-xMx)O6+y Type A1 Journal article
  Year 1993 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 212 Issue Pages 239-244  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1993LL33900033 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.942 Times cited 36 Open Access  
  Notes Approved CHEMISTRY, PHYSICAL 77/144 Q3 # MATHEMATICS, INTERDISCIPLINARY 19/101 Q1 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 17/35 Q2 #  
  Call Number UA @ lucian @ c:irua:6846 Serial 2302  
Permanent link to this record
 

 
Author (up) Major, L.; Morgiel, J.; Major, B.; Lackner, J.M.; Waldhauser, W.; Ebner, R.; Nistor, L.; Van Tendeloo, G. doi  openurl
  Title Crystallographic aspects related to advanced tribological multilayers of Cr/CrN and Ti/TiN types produced by pulsed laser deposition (PLD) Type A1 Journal article
  Year 2006 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech  
  Volume 200 Issue 22/23 Pages 6190-6195  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000237842300007 Publication Date 2005-12-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.589 Times cited 32 Open Access  
  Notes Approved Most recent IF: 2.589; 2006 IF: 1.559  
  Call Number UA @ lucian @ c:irua:59459 Serial 586  
Permanent link to this record
 

 
Author (up) Major, L.; Tirry, W.; Van Tendeloo, G. doi  openurl
  Title Microstructure and defect characterization at interfaces in TiN/CrN multilayer coatings Type A1 Journal article
  Year 2008 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech  
  Volume 202 Issue 24 Pages 6075-6080  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Microstructures of TiN/CrN multilayer coatings deposited on austenite steel (Cr Ni 18 8) by pulsed laser deposition (PLD) are characterized using transmission electron microscopy while their mechanical properties were assessed in a ball-on-disk test. All coatings have the same total thickness of about 1 ìm. The individual layers show a highly defective columnar structure, which is characterized by conventional electron microscopy (TEM) as well as by high resolution TEM. These techniques, combined with measurements of the local chemical composition through EDS prove that PLD allows to produce fully separated CrN and TiN layers. The friction, and consequently the wear, are lowered by increasing the total number of layers in the coating.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000260267100042 Publication Date 2008-07-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.589 Times cited 23 Open Access  
  Notes Approved Most recent IF: 2.589; 2008 IF: 1.860  
  Call Number UA @ lucian @ c:irua:76614 Serial 2049  
Permanent link to this record
 

 
Author (up) Malakho, A.; Fargin, E.; Lahaye, M.; Lazoryak, B.; Morozov, V.; Van Tendeloo, G.; Rodriguez, V.; Adamietz, F. doi  openurl
  Title Enhancement of second harmonic generation signal in thermally poled glass ceramic with NaNbO3 nanocrystals Type A1 Journal article
  Year 2006 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 100 Issue 6 Pages 063103,1-5  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Glass ceramic composites were prepared by bulk crystallization of NaNbO3 in sodium niobium borate glasses. A homogeneous bulk crystallization of the NaNbO3 phase takes place during heat treatments that produces visible-near infrared transparent materials with similar to 30 nm NaNbO3 nanocrystallites. Upon thermal poling, a strong Na+ depleted nonlinear optical thin layer is observed at the anode side that should induce a large internal static electric field. In addition, the chi((2)) response of the poled glass ceramic composites increases from 0.2 up to 1.9 pm/V with the rate of crystallization. Two mechanisms may be considered: a pure structural chi((2)) process connected with the occurrence of a spontaneous ferroelectric polarization or an increase of the chi((3)) response of the nanocrystallites that enhances the electric field induced second harmonic generation process. (c) 2006 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000240876600003 Publication Date 2006-10-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.068; 2006 IF: 2.316  
  Call Number UA @ lucian @ c:irua:61005 Serial 1063  
Permanent link to this record
 

 
Author (up) Malakho, A.P.; Morozov, V.A.; Pokholok, K.V.; Lazoryak, B.I.; Van Tendeloo, G. pdf  doi
openurl 
  Title Layered ordering of vacancies of lead iron phosphate Pb3Fe2(PO4)4 Type A1 Journal article
  Year 2005 Publication Solid state sciences Abbreviated Journal Solid State Sci  
  Volume 7 Issue 4 Pages 397-404  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000228951300007 Publication Date 2005-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1293-2558; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.811 Times cited 7 Open Access  
  Notes Approved Most recent IF: 1.811; 2005 IF: 1.708  
  Call Number UA @ lucian @ c:irua:54701 Serial 1806  
Permanent link to this record
 

 
Author (up) Malard, B.; Pilch, J.; Sittner, P.; Delville, R.; Curfs, C. pdf  doi
openurl 
  Title In situ investigation of the fast microstructure evolution during electropulse treatment of cold drawn NiTi wires Type A1 Journal article
  Year 2011 Publication Acta materialia Abbreviated Journal Acta Mater  
  Volume 59 Issue 4 Pages 1542-1556  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Microstructural changes taking place during the heat treatment of cold-worked NiTi alloy are of key interest in shape memory alloy technology, since they are responsible for setting the austenite shape and functional properties of the heat-treated alloy. In this work, microstructural evolution during non-conventional electropulse heat treatment of thin NiTi filaments was investigated in a unique high-speed in situ synchrotron X-ray diffraction experiment with simultaneous evaluation of the tensile force and electrical resistivity of the treated wire. The in situ results provide direct experimental evidence on the evolution of the internal stress and density of defects during fast heating from 20 °C to ∼700 °C. This evidence is used to characterize a sequence of dynamic recovery and recrystallization processes responsible for the microstructure and superelastic functional property changes during the electropulse treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000287265100023 Publication Date 2010-12-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited 48 Open Access  
  Notes Approved Most recent IF: 5.301; 2011 IF: 3.755  
  Call Number UA @ lucian @ c:irua:98372 Serial 1583  
Permanent link to this record
 

 
Author (up) Malard, B.; Pilch, J.; Sittner, P.; Gartnerova, V.; Delville, R.; Schryvers, D.; Curfs, C. pdf  doi
openurl 
  Title Microstructure and functional property changes in thin Ni-Ti wires heat teated by electric current: high energy X-ray and TEM investigations Type A1 Journal article
  Year 2009 Publication Functional materials letters Abbreviated Journal Funct Mater Lett  
  Volume 2 Issue 2 Pages 45-54  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract High energy synchrotron X-ray diffraction, transmission electron microscopy and mechanical testing were employed to investigate the evolution of microstructure, texture and functional superelastic properties of 0.1 mm thin as drawn NiTi wires subjected to a nonconventional heat treatment by controlled electric current (FTMT-EC method). As drawn NiTi wires were prestrained in tension and exposed to a sequence of short DC power pulses in the millisecond range. The annealing time in the FTMT-EC processing can be very short but the temperature and force could be very high compared to the conventional heat treatment of SMAs. It is shown that the heavily strained, partially amorphous microstructure of the as drawn NiTi wire transforms under the effect of the DC pulse and tensile stress into a wide range of annealed nanosized microstructures depending on the pulse time. The functional superelastic properties and microstructures of the FTMT-EC treated NiTi wire are comparable to those observed in straight annealed wires.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000271077000001 Publication Date 2009-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1793-6047;1793-7213; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.234 Times cited 21 Open Access  
  Notes Multimat Approved Most recent IF: 1.234; 2009 IF: 2.561  
  Call Number UA @ lucian @ c:irua:77656 Serial 2052  
Permanent link to this record
 

 
Author (up) Malesevic, A.; Kemps, R.; Zhang, L.; Erni, R.; Van Tendeloo, G.; Vanhulsel, A.; van Haesendonck, C. openurl 
  Title A versatile plasma tool for the synthesis of carbon nanotubes and few-layer graphene sheets Type A1 Journal article
  Year 2008 Publication Journal of optoelectronics and advanced materials Abbreviated Journal J Optoelectron Adv M  
  Volume 10 Issue 8 Pages 2052-2055  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bucharest Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1454-4164 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.449 Times cited Open Access  
  Notes Approved Most recent IF: 0.449; 2008 IF: 0.577  
  Call Number UA @ lucian @ c:irua:70636 Serial 3839  
Permanent link to this record
 

 
Author (up) Malesevic, A.; Vitchev, R.; Schouteden, K.; Volodin, A.; Zhang, L.; Van Tendeloo, G.; Vanhulsel, A.; van Haesendonck, C. doi  openurl
  Title Synthesis of few-layer graphene via microwave plasma-enhanced chemical vapour deposition Type A1 Journal article
  Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 19 Issue 30 Pages 305604,1-6  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000256838400014 Publication Date 2008-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 309 Open Access  
  Notes Approved Most recent IF: 3.44; 2008 IF: 3.446  
  Call Number UA @ lucian @ c:irua:70224 Serial 3455  
Permanent link to this record
 

 
Author (up) Malkov, I., V; Krivetskii, V.V.; Potemkin, D., I; Zadesenets, A., V; Batuk, M.M.; Hadermann, J.; Marikutsa, A., V; Rumyantseva, M.N.; Gas'kov, A.M. pdf  doi
openurl 
  Title Effect of Bimetallic Pd/Pt Clusters on the Sensing Properties of Nanocrystalline SnO2 in the Detection of CO Type A1 Journal article
  Year 2018 Publication Russian journal of inorganic chemistry Abbreviated Journal Russ J Inorg Chem+  
  Volume 63 Issue 8 Pages 1007-1011  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline tin dioxide modified by Pd and Pt clusters or by bimetallic PdPt nanoparticles was synthesized. Distribution of the modifers on the SnO2 surface was studied by high-resolution transmission electron microscopy and energy dispersive X-ray microanalysis with element distribution mapping. It was shown that the Pd/Pt ratio in bimetallic particles varies over a broad range and does not depend on the particle diameter. The effect of platinum metals on the reducibility of nanocrystalline SnO2 by hydrogen was determined. The sensing properties of the resulting materials towards 6.7 ppm CO in air were estimated in situ by electrical conductivity measurements. The sensor response of SnO2 modified with bimetallic PdPt particles was a superposition of the signals of samples with Pt and Pd clusters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000442749500003 Publication Date 2018-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-0236 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.787 Times cited 3 Open Access Not_Open_Access  
  Notes ; This work was supported by the ERA.Net RUS Plus program (project 096 FONSENS, RFBR grant 16-53-76001). ; Approved Most recent IF: 0.787  
  Call Number UA @ lucian @ c:irua:153752 Serial 5092  
Permanent link to this record
 

 
Author (up) Malladi, S.K.; Xu, Q.; van Huis, M.A.; Tichelaar, F.D.; Batenburg, K.J.; Yucelen, E.; Dubiel, B.; Czyrska-Filemonowicz, A.; Zandbergen, H.W. pdf  doi
openurl 
  Title Real-time atomic scale imaging of nanostructural evolution in aluminum alloys Type A1 Journal article
  Year 2014 Publication Nano Letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 1 Pages 384-389  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract We present a new approach to study the three-dimensional compositional and structural evolution of metal alloys during heat treatments such as commonly used for improving overall material properties. It relies on in situ heating in a high-resolution scanning transmission electron microscope (STEM). The approach is demonstrated using a commercial Al alloy AA2024 at 100-240 degrees C, showing in unparalleled detail where and how precipitates nucleate, grow,or dissolve. The observed size evolution of individual precipitates enables a separation between nucleation and growth phenomena, necessary for the development of refined growth models. We conclude that the in situ heating STEM approach opens a route to a much faster determination of the interplay between local compositions, heat treatments, microstructure, and mechanical properties of new alloys.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000329586700061 Publication Date 2013-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 12 Open Access  
  Notes Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:114789 Serial 2833  
Permanent link to this record
 

 
Author (up) Mallick, S.; Khalsa, G.; Kaaret, J.Z.; Zhang, W.; Batuk, M.; Gibbs, A.S.; Hadermann, J.; Halasyamani, P.S.; Benedek, N.A.; Hayward, M.A. url  doi
openurl 
  Title The influence of the 6s² configuration of Bi³+ on the structures of A ' BiNb₂O₇ (A ' = Rb, Na, Li) layered perovskite oxides Type A1 Journal article
  Year 2021 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal  
  Volume 50 Issue 42 Pages 15359-15369  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Solid state compounds which exhibit non-centrosymmetric crystal structures are of great interest due to the physical properties they can exhibit. The 'hybrid improper' mechanism – in which two non-polar distortion modes couple to, and stabilize, a further polar distortion mode, yielding an acentric crystal structure – offers opportunities to prepare a range of novel non-centrosymmetric solids, but examples of compounds exhibiting acentric crystal structures stabilized by this mechanism are still relatively rare. Here we describe a series of bismuth-containing layered perovskite oxide phases, RbBiNb2O7, LiBiNb2O7 and NaBiNb2O7, which have structural frameworks compatible with hybrid-improper ferroelectricity, but also contain Bi3+ cations which are often observed to stabilize acentric crystal structures due to their 6s(2) electronic configurations. Neutron powder diffraction analysis reveals that RbBiNb2O7 and LiBiNb2O7 adopt polar crystal structures (space groups I2cm and B2cm respectively), compatible with stabilization by a trilinear coupling of non-polar and polar modes. The Bi3+ cations present are observed to enhance the magnitude of the polar distortions of these phases, but are not the primary driver for the acentric structure, as evidenced by the observation that replacing the Bi3+ cations with Nd3+ cations does not change the structural symmetry of the compounds. In contrast the non-centrosymmetric, but non-polar structure of NaBiNb2O7 (space group P2(1)2(1)2(1)) differs significantly from the centrosymmetric structure of NaNdNb2O7, which is attributed to a second-order Jahn-Teller distortion associated with the presence of the Bi3+ cations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000706651100001 Publication Date 2021-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9234 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:182584 Serial 6893  
Permanent link to this record
 

 
Author (up) Mallick, S.; Zhang, W.; Batuk, M.; Gibbs, A.S.; Hadermann, J.; Halasyamani, P.S.; Hayward, M.A. url  doi
openurl 
  Title The crystal and defect structures of polar KBiNb2O7 Type A1 Journal article
  Year 2022 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 51 Issue 5 Pages 1866-1873  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract KBiNb2O7 was prepared from RbBiNb2O7 by a sequence of cation exchange reactions which first convert RbBiNb2O7 to LiBiNb2O7, before KBiNb2O7 is formed by a further K-for-Li cation exchange. A combination of neutron, synchrotron X-ray and electron diffraction data reveal that KBiNb2O7 adopts a polar, layered, perovskite structure (space group A11m) in which the BiNb2O7 layers are stacked in a (0, ½, z) arrangement, with the K+ cations located in half of the available 10-coordinate interlayer cation sites. The inversion symmetry of the phase is broken by a large displacement of the Bi3+ cations parallel to the y-axis. HAADF-STEM images reveal that KBiNb2O7 exhibits frequent stacking faults which convert the (0. ½, z) layer stacking to (½, 0, z) stacking and vice versa, essentially switching the x- and y-axes of the material. By fitting the complex diffraction peak shape of the SXRD data collected from KBiNb2O7 it is estimated that each layer has approximately an ~11% chance of being defective – a high level which is attributed to the lack of cooperative NbO6 tilting in the material, which limits the lattice strain associated with each fault.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000741540300001 Publication Date 2022-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford/Warwick Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE18786). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC (RB 2000148). SM thanks Somerville College for an Oxford Ryniker Lloyd scholarship. PSH and WZ thank the National Science Foundation (DMR-2002319) for support. Approved Most recent IF: 4  
  Call Number EMAT @ emat @c:irua:185504 Serial 6951  
Permanent link to this record
 

 
Author (up) Malo, S.; Abakumov, A.M.; Daturi, M.; Pelloquin, D.; Van Tendeloo, G.; Guesdon, A.; Hervieu, M. doi  openurl
  Title Sr21Bi8Cu2(CO3)(2)O-41, a Bi5+ Oxycarbonate with an Original 10L Structure Type A1 Journal article
  Year 2014 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 53 Issue 19 Pages 10266-10275  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The layered structure of Sr21Bi8Cu2(CO3)(2)O-41 (Z = 2) was determined by transmission electron microscopy, infrared spectroscopy, and powder X-ray diffraction refinement in space group P6(3)/mcm (No. 194), with a = 10.0966(3)angstrom and c = 26.3762(5)angstrom. This original 10L-type structure is built from two structural blocks, namely, [Sr15Bi6Cu2(CO3)O-29] and [Sr6Bi2(CO3)O-12]. The Bi5+ cations form [Bi2O10] dimers, whereas the Cu2+ and C atoms occupy infinite tunnels running along (c) over right arrow. The nature of the different blocks and layers is discussed with regard to the existing hexagonal layered compounds. Sr21Bi8Cu2(CO3)(2)O-41 is insulating and paramagnetic.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000342856800039 Publication Date 2014-10-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.857 Times cited Open Access  
  Notes Approved Most recent IF: 4.857; 2014 IF: 4.762  
  Call Number UA @ lucian @ c:irua:121115 Serial 3114  
Permanent link to this record
 

 
Author (up) Malo, S.; Lepoittevin, C.; Pérez, O.; Hébert, S.; Van Tendeloo, G.; Hervieu, M. pdf  doi
openurl 
  Title Incommensurate crystallographic shear structures and magnetic properties of the cation deficient perovskite (Sr0.61Pb0.18)(Fe0.75Mn0.25)O2.29 Type A1 Journal article
  Year 2010 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 22 Issue 5 Pages 1788-1797  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The origin of the incommensurability in the crystallographic shear (CS) structure of the ferri-Manganite (Sr0.61Pb0.18)(Fe0.75Mn0.25)O2.29, related to the cation deficient perovskite, has been determined by careful analysis of the boundaries between the two variants constituting the phasoid. High Resolution Electron Microscopy/HAADF-STEM images allow the structural mechanisms to be understood through the presence of structural units common to both phases, responsible of the incommensurate character observed in the electron diffraction patterns. The structural analysis allows for identifying different types of CS phases in the Pb−Sr−Fe(Mn)−O diagram and shows that the stabilization of the six-sided tunnels requires a higher A/B cationic ratio. A description of these phases is proposed through simple structural building units (SBU), based on chains of octahedra bordered by two pyramids. The (Sr0.61Pb0.18)(Fe0.75Mn0.25)O2.29 CS compound exhibits a strong antiferromagnetic and insulating behavior, similar to the Fe-2201 and terrace ferrites but differs by the presence of a hysteresis, with a small coercive field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000274929000025 Publication Date 2010-01-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 6 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 9.466; 2010 IF: 6.400  
  Call Number UA @ lucian @ c:irua:81800 Serial 1593  
Permanent link to this record
 

 
Author (up) Mandal, T.K.; Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Croft, M.; Greenblatt, M. pdf  doi
openurl 
  Title Synthesis, crystal structure, and magnetic properties of Srl.31Co0.63Mn0.3703: a reivative of the incommensurate composite hexagonal perovskite structure Type A1 Journal article
  Year 2007 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 19 Issue 25 Pages 6158-6167  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000251422000019 Publication Date 2007-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 5 Open Access  
  Notes Approved Most recent IF: 9.466; 2007 IF: 4.883  
  Call Number UA @ lucian @ c:irua:67597 Serial 3449  
Permanent link to this record
 

 
Author (up) Mandal, T.K.; Croft, M.; Hadermann, J.; Van Tendeloo, G.; Stephens, P.W.; Greenblatt, M. doi  openurl
  Title La2MnVO6 double perovskite: a structural, magnetic and X-ray absorption investigation Type A1 Journal article
  Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 19 Issue 25 Pages 4382-4390  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The synthesis, electron diffraction (ED), synchrotron X-ray and neutron structure, X-ray absorption spectroscopy (XAS) and magnetic property studies of La2MnVO6 double perovskite are described. Analysis of the synchrotron powder X-ray diffraction data for La2MnVO6 indicates a disordered arrangement of Mn and V at the B-site of the perovskite structure. Absence of super-lattice reflections in the ED patterns for La2MnVO6 supports the disordered cation arrangement. Room temperature time-of-flight (TOF) neutron powder diffraction (NPD) data show no evidence of cation ordering, in corroboration with the ED and synchrotron studies (orthorhombic Pnma, a = 5.6097(3), b = 7.8837(5) and c = 5.5668(3) ; 295 K, NPD). A comparison of XAS analyses of La2TVO6 with T = Ni and Co shows T2+ formal oxidation state while the T = Mn material evidences a Mn3+ admixture into a dominantly Mn2+ ground state. V-K edge measurements manifest a mirror image behavior with a V4+ state for T = Ni and Co with a V3+ admixture arising in the T = Mn material. The magnetic susceptibility data for La2MnVO6 show ferromagnetic correlations; the observed effective moment, µeff (5.72 µB) is much smaller than the calculated moment (6.16 µB) based on the spin-only formula for Mn2+ (d5, HS) /V4+ (d1), supportive of the partly oxidized Mn and reduced V scenario (Mn3+/V3+).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000266989800015 Publication Date 2009-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 10 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:77367 Serial 3540  
Permanent link to this record
 

 
Author (up) Mangnus, M.J.J.; de Wit, J.W.; Vonk, S.J.W.; Geuchies, J.J.; Albrecht, W.; Bals, S.; Houtepen, A.J.; Rabouw, F.T. url  doi
openurl 
  Title High-throughput characterization of single-quantum-dot emission spectra and spectral diffusion by multiparticle spectroscopy Type A1 Journal article
  Year 2023 Publication ACS Photonics Abbreviated Journal  
  Volume 10 Issue 8 Pages 2688-2698  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract In recent years, quantum dots (QDs) have emerged as bright,color-tunablelight sources for various applications such as light-emitting devices,lasing, and bioimaging. One important next step to advance their applicabilityis to reduce particle-to-particle variations of the emission propertiesas well as fluctuations of a single QD's emission spectrum,also known as spectral diffusion (SD). Characterizing SD is typicallyinefficient as it requires time-consuming measurements at the single-particlelevel. Here, however, we demonstrate multiparticle spectroscopy (MPS)as a high-throughput method to acquire statistically relevant informationabout both fluctuations at the single-particle level and variationsat the level of a synthesis batch. In MPS, we simultaneously measureemission spectra of many (20-100) QDs with a high time resolution.We obtain statistics on single-particle emission line broadening fora batch of traditional CdSe-based core-shell QDs and a batchof the less toxic InP-based core-shell QDs. The CdSe-basedQDs show significantly narrower homogeneous line widths, less SD,and less inhomogeneous broadening than the InP-based QDs. The timescales of SD are longer in the InP-based QDs than in the CdSe-basedQDs. Based on the distributions and correlations in single-particleproperties, we discuss the possible origins of line-width broadeningof the two types of QDs. Our experiments pave the way to large-scale,high-throughput characterization of single-QD emission propertiesand will ultimately contribute to facilitating rational design offuture QD structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001009443500001 Publication Date 2023-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2330-4022 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7 Times cited 1 Open Access OpenAccess  
  Notes This work was supported by The Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation Programme funded by the Ministry of Education, Culture and Science of the government of The Netherlands. The electron microscopy experiments at EMAT were supported by the European Commission (EUSMI grant E210100474). Approved Most recent IF: 7; 2023 IF: 6.756  
  Call Number UA @ admin @ c:irua:197337 Serial 8879  
Permanent link to this record
 

 
Author (up) Manzaneda-Gonzalez, V.; Jenkinson, K.; Pena-Rodriguez, O.; Borrell-Grueiro, O.; Trivino-Sanchez, S.; Banares, L.; Junquera, E.; Espinosa, A.; Gonzalez-Rubio, G.; Bals, S.; Guerrero-Martinez, A. url  doi
openurl 
  Title From multi- to single-hollow trimetallic nanocrystals by ultrafast heating Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume 35 Issue 22 Pages 9603-9612  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Metal nanocrystals (NCs) display unique physicochemical features that are highly dependent on nanoparticle dimensions, anisotropy, structure, and composition. The development of synthesis methodologies that allow us to tune such parameters finely emerges as crucial for the application of metal NCs in catalysis, optical materials, or biomedicine. Here, we describe a synthetic methodology to fabricate hollow multimetallic heterostructures using a combination of seed-mediated growth routes and femtosecond-pulsed laser irradiation. The envisaged methodology relies on the coreduction of Ag and Pd ions on gold nanorods (Au NRs) to form Au@PdAg core-shell nanostructures containing small cavities at the Au-PdAg interface. The excitation of Au@PdAg NRs with low fluence femtosecond pulses was employed to induce the coalescence and growth of large cavities, forming multihollow anisotropic Au@PdAg nanostructures. Moreover, single-hollow alloy AuPdAg could be achieved in high yield by increasing the irradiation energy. Advanced electron microscopy techniques, energy-dispersive X-ray spectroscopy (EDX) tomography, X-ray absorption near-edge structure (XANES) spectroscopy, and finite differences in the time domain (FDTD) simulations allowed us to characterize the morphology, structure, and elemental distribution of the irradiated NCs in detail. The ability of the reported synthesis route to fabricate multimetallic NCs with unprecedented hollow nanostructures offers attractive prospects for the fabrication of tailored high-entropy alloy nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001110623500001 Publication Date 2023-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 2 Open Access OpenAccess  
  Notes Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number UA @ admin @ c:irua:202144 Serial 9040  
Permanent link to this record
 

 
Author (up) Mao, J.; Milovanović, S.P.; Andelkovic, M.; Lai, X.; Cao, Y.; Watanabe, K.; Taniguchi, T.; Covaci, L.; Peeters, F.M.; Geim, A.K.; Jiang, Y.; Andrei, E.Y. pdf  doi
openurl 
  Title Evidence of flat bands and correlated states in buckled graphene superlattices Type A1 Journal article
  Year 2020 Publication Nature Abbreviated Journal Nature  
  Volume 584 Issue 7820 Pages 215-220  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Two-dimensional atomic crystals can radically change their properties in response to external influences, such as substrate orientation or strain, forming materials with novel electronic structure(1-5). An example is the creation of weakly dispersive, 'flat' bands in bilayer graphene for certain 'magic' angles of twist between the orientations of the two layers(6). The quenched kinetic energy in these flat bands promotes electron-electron interactions and facilitates the emergence of strongly correlated phases, such as superconductivity and correlated insulators. However, the very accurate fine-tuning required to obtain the magic angle in twisted-bilayer graphene poses challenges to fabrication and scalability. Here we present an alternative route to creating flat bands that does not involve fine-tuning. Using scanning tunnelling microscopy and spectroscopy, together with numerical simulations, we demonstrate that graphene monolayers placed on an atomically flat substrate can be forced to undergo a buckling transition(7-9), resulting in a periodically modulated pseudo-magnetic field(10-14), which in turn creates a 'post-graphene' material with flat electronic bands. When we introduce the Fermi level into these flat bands using electrostatic doping, we observe a pseudogap-like depletion in the density of states, which signals the emergence of a correlated state(15-17). This buckling of two-dimensional crystals offers a strategy for creating other superlattice systems and, in particular, for exploring interaction phenomena characteristic of flat bands. Buckled monolayer graphene superlattices are found to provide an alternative to twisted bilayer graphene for the study of flat bands and correlated states in a carbon-based material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000559831500012 Publication Date 2020-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 64.8 Times cited 109 Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: 64.8; 2020 IF: 40.137  
  Call Number UA @ admin @ c:irua:171150 Serial 6513  
Permanent link to this record
 

 
Author (up) Marchetti, A.; Gori, A.; Ferretti, A.M.; Esteban, D.A.; Bals, S.; Pigliacelli, C.; Metrangolo, P. url  doi
openurl 
  Title Templated Out‐of‐Equilibrium Self‐Assembly of Branched Au Nanoshells Type A1 Journal article
  Year 2023 Publication Small Abbreviated Journal  
  Volume Issue Pages 2206712  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different types of strategies and fuels, but the achievement of finite 3D structures with a controlled morphology through this assembly mode is still rare. Here we used a spherical peptide-gold superstructure (PAuSS) as a template to control the out-of-equilibrium self-assembly of Au NPs, obtaining a transient 3D branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate (SDS). The BAuNS dismantled upon concentration gradient equilibration over time in the solution, leading to NPs disassembly. Notably, BAuNS assembly and disassembly favoured temporary interparticle plasmonic coupling, leading to a remarkable oscillation of their optical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000914725800001 Publication Date 2023-01-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.3 Times cited 1 Open Access OpenAccess  
  Notes European Research Council, ERC‐2017‐PoC MINIRES 789815 ERC‐2012‐StG_20111012 FOLDHALO 307108 815128 ; Approved Most recent IF: 13.3; 2023 IF: 8.643  
  Call Number EMAT @ emat @c:irua:194299 Serial 7247  
Permanent link to this record
 

 
Author (up) Marchetti, A.; Gori, A.; Ferretti, A.M.; Esteban, D.A.; Bals, S.; Pigliacelli, C.; Metrangolo, P. pdf  url
doi  openurl
  Title Templated Out‐of‐Equilibrium Self‐Assembly of Branched Au Nanoshells (Small 12/2023) Type A1 Journal Article
  Year 2023 Publication Small Abbreviated Journal Small  
  Volume 19 Issue 12 Pages  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Out-of-equilibrium self-assembly of metal nanoparticles (NPs) has been devised using different

types of strategies and fuels, but the achievement of finite 3D structures with a controlled

morphology through this assembly mode is still rare. Here we used a spherical peptide-gold

superstructure (PAuSS) as a template to control the out-of-equilibrium self-assembly of Au NPs,

obtaining a transient 3D branched Au-nanoshell (BAuNS) stabilized by sodium dodecyl sulphate

(SDS). The BAuNS dismantled upon concentration gradient equilibration over time in the solution,

leading to NPs disassembly. Notably, BAuNS assembly and disassembly favoured temporary

interparticle plasmonic coupling, leading to a remarkable oscillation of their optical properties.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810 ISBN Additional Links UA library record  
  Impact Factor 13.3 Times cited Open Access Not_Open_Access  
  Notes P.M. is grateful to the European Research Council (ERC) for the Starting Grant ERC-2012- StG_20111012 FOLDHALO (Grant Agreement no. 307108) and the Proof-of-Concept Grant ERC-2017-PoC MINIRES (Grant Agreement no.789815). A. M. and P. M. are thankful to the project Hydrogex funded by Cariplo Foundation (grant no. 2018-1720). D.A.E. and S.B. acknowledges financial support from ERC Consolidator Grant Number 815128 REALNANO and Grant Agreement No. 731019 (EUSMI). Approved Most recent IF: 13.3; 2023 IF: 8.643  
  Call Number EMAT @ emat @c:irua:200859 Serial 8960  
Permanent link to this record
 

 
Author (up) Marchetti, A.; Saniz, R.; Krishnan, D.; Rabbachin, L.; Nuyts, G.; De Meyer, S.; Verbeeck, J.; Janssens, K.; Pelosi, C.; Lamoen, D.; Partoens, B.; De Wael, K. pdf  url
doi  openurl
  Title Unraveling the Role of Lattice Substitutions on the Stabilization of the Intrinsically Unstable Pb2Sb2O7Pyrochlore: Explaining the Lightfastness of Lead Pyroantimonate Artists’ Pigments Type A1 Journal article
  Year 2020 Publication Chemistry Of Materials Abbreviated Journal Chem Mater  
  Volume 32 Issue 7 Pages 2863-2873  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract The pyroantimonate pigments Naples yellow and lead tin antimonate yellow are recognized as some of the most stable synthetic yellow pigments in the history of art. However, this exceptional lightfastness is in contrast with experimental evidence suggesting that this class of mixed oxides is of semiconducting nature. In this study the electronic structure and light-induced behavior of the lead pyroantimonate pigments were determined by means of a combined multifaceted analytical and computational approach (photoelectrochemical measurements, UV-vis diffuse reflectance spectroscopy, STEM-EDS, STEM-HAADF, and density functional theory calculations). The results demonstrate both the semiconducting nature and the lightfastness of these pigments. Poor optical absorption and minority carrier mobility are the main properties responsible for the observed stability. In addition, novel fundamental insights into the role played by Na atoms in the stabilization of the otherwise intrinsically unstable Pb2Sb2O7 pyrochlore were obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000526394000016 Publication Date 2020-04-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited 8 Open Access OpenAccess  
  Notes Universiteit Antwerpen; Belgian Federal Science Policy Office; Approved Most recent IF: 8.6; 2020 IF: 9.466  
  Call Number EMAT @ emat @c:irua:168819 Serial 6363  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: