|
Record |
Links |
|
Author |
Mangnus, M.J.J.; de Wit, J.W.; Vonk, S.J.W.; Geuchies, J.J.; Albrecht, W.; Bals, S.; Houtepen, A.J.; Rabouw, F.T. |
|
|
Title |
High-throughput characterization of single-quantum-dot emission spectra and spectral diffusion by multiparticle spectroscopy |
Type |
A1 Journal article |
|
Year |
2023 |
Publication |
ACS Photonics |
Abbreviated Journal |
|
|
|
Volume |
10 |
Issue |
8 |
Pages |
2688-2698 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
In recent years, quantum dots (QDs) have emerged as bright,color-tunablelight sources for various applications such as light-emitting devices,lasing, and bioimaging. One important next step to advance their applicabilityis to reduce particle-to-particle variations of the emission propertiesas well as fluctuations of a single QD's emission spectrum,also known as spectral diffusion (SD). Characterizing SD is typicallyinefficient as it requires time-consuming measurements at the single-particlelevel. Here, however, we demonstrate multiparticle spectroscopy (MPS)as a high-throughput method to acquire statistically relevant informationabout both fluctuations at the single-particle level and variationsat the level of a synthesis batch. In MPS, we simultaneously measureemission spectra of many (20-100) QDs with a high time resolution.We obtain statistics on single-particle emission line broadening fora batch of traditional CdSe-based core-shell QDs and a batchof the less toxic InP-based core-shell QDs. The CdSe-basedQDs show significantly narrower homogeneous line widths, less SD,and less inhomogeneous broadening than the InP-based QDs. The timescales of SD are longer in the InP-based QDs than in the CdSe-basedQDs. Based on the distributions and correlations in single-particleproperties, we discuss the possible origins of line-width broadeningof the two types of QDs. Our experiments pave the way to large-scale,high-throughput characterization of single-QD emission propertiesand will ultimately contribute to facilitating rational design offuture QD structures. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
001009443500001 |
Publication Date |
2023-06-18 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2330-4022 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
7 |
Times cited |
1 |
Open Access |
OpenAccess |
|
|
Notes |
This work was supported by The Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), an NWO Gravitation Programme funded by the Ministry of Education, Culture and Science of the government of The Netherlands. The electron microscopy experiments at EMAT were supported by the European Commission (EUSMI grant E210100474). |
Approved |
Most recent IF: 7; 2023 IF: 6.756 |
|
|
Call Number |
UA @ admin @ c:irua:197337 |
Serial |
8879 |
|
Permanent link to this record |