toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Castelano, L.K.; Hai, G.Q.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Two vertically coupled quantum rings with tunneling Type A1 Journal article
  Year 2006 Publication Brazilian journal of physics Abbreviated Journal Braz J Phys  
  Volume 36 Issue 3b Pages 936-939  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication São Paulo Editor  
  Language Wos 000242535600036 Publication Date 2006-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0103-9733; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.732 Times cited 2 Open Access  
  Notes Approved Most recent IF: 0.732; 2006 IF: 0.494  
  Call Number UA @ lucian @ c:irua:62133 Serial 3788  
Permanent link to this record
 

 
Author (down) Castelano, L.K.; Hai, G.-Q.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Artificial molecular quantum rings: spin density functional theory calculations Type A1 Journal article
  Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 74 Issue 4 Pages 045313,1-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000239426800075 Publication Date 2006-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 24 Open Access  
  Notes Approved Most recent IF: 3.836; 2006 IF: 3.107  
  Call Number UA @ lucian @ c:irua:60089 Serial 154  
Permanent link to this record
 

 
Author (down) Castelano, L.K.; Hai, G.-Q.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Control of the persistent currents in two interacting quantum rings through the Coulomb interaction and interring tunneling Type A1 Journal article
  Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 78 Issue 19 Pages 195315,1-195315,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The persistent current in two vertically coupled quantum rings containing few electrons is studied. We find that the Coulomb interaction between the rings in the absence of tunneling affects the persistent current in each ring and the ground-state configurations. Quantum tunneling between the rings alters significantly the ground state and the persistent current in the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000262607800074 Publication Date 2008-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 28 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:76020 Serial 500  
Permanent link to this record
 

 
Author (down) Castelano, L.K.; Hai, G.-Q.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Ground state configurations of vertically coupled quantum rings Type A1 Journal article
  Year 2007 Publication Physica status solidi: C: conferences and critical reviews Abbreviated Journal  
  Volume 4 Issue 2 Pages 560-562  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Berlin Editor  
  Language Wos 000245877200097 Publication Date 2007-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1610-1634;1610-1642; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:69665 Serial 1386  
Permanent link to this record
 

 
Author (down) Carvalho, J.C.N.; Nelissen, K.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Diffusion in a quasi-one-dimensional system on a periodic substrate Type A1 Journal article
  Year 2012 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 85 Issue 2:1 Pages 021136-021136,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The diffusion of charged particles interacting through a repulsive Yukawa potential, exp(-r/lambda)/r, confined by a parabolic potential in the y direction and subjected to a periodic substrate potential in the x direction is investigated. Langevin dynamic simulations are used to investigate the effect of the particle density, the amplitude of the periodic substrate, and the range of the interparticle interaction potential on the diffusive behavior of the particles. We found that in general the diffusion is suppressed with increasing the amplitude of the periodic potential, but for specific values of the strength of the substrate potential a remarkable increase of the diffusion is found with increasing the periodic potential amplitude. In addition, we found a strong dependence of the diffusion on the specific arrangement of the particles, e. g., single-chain versus multichain configuration. For certain particle configurations, a reentrant behavior of the diffusion is found as a function of the substrate strength due to structural transitions in the ordering of the particles.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000300671500007 Publication Date 2012-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 9 Open Access  
  Notes ; This work was supported by the Brazilian agencies CNPq and FUNCAP (PRONEX-Grant), the Flemish Science Foundation (FWO-Vl), and the bilateral projects between Flanders and Brazil and the Flemish Science Foundation (FWO-VI) and CNPq. ; Approved Most recent IF: 2.366; 2012 IF: 2.313  
  Call Number UA @ lucian @ c:irua:97203 Serial 698  
Permanent link to this record
 

 
Author (down) Carvalho, J.C.N.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Yukawa particles confined in a channel and subject to a periodic potential : ground state and normal modes Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 9 Pages 094109-094109,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We consider a classical system of two-dimensional (2D) charged particles, interacting through a repulsive Yukawa potential exp(-r/λ)/r, and confined in a parabolic channel that limits the motion of the particles in the y direction. Along the x direction, the particles are subject to a periodic potential. The ground-state configurations and the normal-mode spectra of the system are obtained as a function of the periodicity and strength of the periodic potential (V0) and density. An interesting set of tunable ground-state configurations are found, with first- or second-order structural transitions between them. A configuration with particles aligned, perpendicular to the x direction, in each minimum of the periodic potential is obtained for V0 larger than some critical value that has a power-law dependence on the density. The phonon spectrum of different configurations was also calculated. A localization of the modes into a small frequency interval is observed for sufficiently large strength of the periodic potential, and a tunable gap in the phonon spectrum is found as a function of V0.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288119700001 Publication Date 2011-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 9 Open Access  
  Notes ; This work was supported by the Brazilian agencies CNPq and FUNCAP (PRONEX-Grant), and the bilateral projects between Flanders and Brazil and the Flemish Science Foundation (FWO-VI) and CNPq. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:88779 Serial 3928  
Permanent link to this record
 

 
Author (down) Carrillo-Nuñez, H.; Magnus, W.; Vandenberghe, W.G.; Sorée, B.; Peeters, F.M. doi  openurl
  Title Phonon-assisted Zener tunneling in a cylindrical nanowire transistor Type A1 Journal article
  Year 2013 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 113 Issue 18 Pages 184507-184508  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The tunneling current has been computed for a cylindrical nanowire tunneling field-effect transistor (TFET) with an all-round gate that covers the source region. Being the underlying mechanism, band-to-band tunneling, mediated by electron-phonon interaction, is pronouncedly affected by carrier confinement in the radial direction and, therefore, involves the self-consistent solution of the Schrodinger and Poisson equations. The latter has been accomplished by exploiting a non-linear variational principle within the framework of the modified local density approximation taking into account the nonparabolicity of both the valence band and conduction band in relatively thick wires. Moreover, while the effective-mass approximation might still provide a reasonable description of the conduction band in relatively thick wires, we have found that the nonparabolicity of the valence band needs to be included. As a major conclusion, it is observed that confinement effects in nanowire tunneling field-effect transistors have a stronger impact on the onset voltage of the tunneling current in comparison with planar TFETs. On the other hand, the value of the onset voltage is found to be overestimated when the valence band nonparabolicity is ignored. (C) 2013 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000319294100093 Publication Date 2013-05-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 4 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), and the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC. ; Approved Most recent IF: 2.068; 2013 IF: 2.185  
  Call Number UA @ lucian @ c:irua:109651 Serial 2599  
Permanent link to this record
 

 
Author (down) Carrillo-Nunez, H.; Magnus, W.; Vandenberghe, W.G.; Sorée, B.; Peeters, F.M. pdf  doi
openurl 
  Title Phonon-assisted Zener tunneling in a p-n diode silicon nanowire Type A1 Journal article
  Year 2013 Publication Solid state electronics Abbreviated Journal Solid State Electron  
  Volume 79 Issue Pages 196-200  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Zener tunneling current flowing through a biased, abrupt p-n junction embedded in a cylindrical silicon nanowire is calculated. As the band gap becomes indirect for sufficiently thick wires, Zener tunneling and its related transitions between the valence and conduction bands are mediated by short-wavelength phonons interacting with mobile electrons. Therefore, not only the high electric field governing the electrons in the space-charge region but also the transverse acoustic (TA) and transverse optical (TO) phonons have to be incorporated in the expression for the tunneling current. The latter is also affected by carrier confinement in the radial direction and therefore we have solved the Schrodinger and Poisson equations self-consistently within the effective mass approximation for both conduction and valence band electrons. We predict that the tunneling current exhibits a pronounced dependence on the wire radius, particularly in the high-bias regime. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000313611000037 Publication Date 2012-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-1101; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.58 Times cited 2 Open Access  
  Notes ; This work is supported by the Flemish Science Foundation (FWO-VI), and the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC. One of the authors (W. Vandenberghe) gratefully acknowledges the support of a Ph.D. stipend from the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen). ; Approved Most recent IF: 1.58; 2013 IF: 1.514  
  Call Number UA @ lucian @ c:irua:110104 Serial 2600  
Permanent link to this record
 

 
Author (down) Carrillo-Nuñez, H.; Magnus, W.; Peeters, F.M. openurl 
  Title A non-linear variational principle for the self-consistent solution of Poisson's equation and a transport equation in the local density approximation Type P1 Proceeding
  Year 2010 Publication Abbreviated Journal  
  Volume Issue Pages 171-174  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Ieee Place of Publication New York, N.Y. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-1-4244-7699-2 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:85824 Serial 2347  
Permanent link to this record
 

 
Author (down) Carrillo-Nuñez, H.; Magnus, W.; Peeters, F.M. doi  openurl
  Title A simplified quantum mechanical model for nanowire transistors based on non-linear variational calculus Type A1 Journal article
  Year 2010 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 108 Issue 6 Pages 063708,1-063708,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A simplified quantum mechanical model is developed to investigate quantum transport features such as the electron concentration and the current flowing through a silicon nanowire metal-oxide-semiconductor field-effect transistor (MOSFET). In particular, the electron concentration is extracted from a self-consistent solution of the Schrödinger and Poisson equations as well as the ballistic Boltzmann equation which have been solved by exploiting a nonlinear variational principle within the framework of the generalized local density approximation. A suitable action functional has been minimized and details of the implementation and its numerical minimization are given. The current density and its related current-voltage characteristics are calculated from the one-dimensional ballistic steady-state Boltzmann transport equation which is solved analytically by using the method of characteristic curves. The straightforward implementation, the computational speed and the good qualitative behavior of the transport characteristics observed in our approach make it a promising simulation method for modeling quantum transport in nanowire MOSFETs.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000282646400067 Publication Date 2010-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 7 Open Access  
  Notes ; This work was supported by Flemish Science Foundation (FWO-VI) and the Interuniversity Attraction Poles, Belgium State, Belgium Science Policy, and IMEC. ; Approved Most recent IF: 2.068; 2010 IF: 2.079  
  Call Number UA @ lucian @ c:irua:84943 Serial 3006  
Permanent link to this record
 

 
Author (down) Cândido, L.; Rino, J.-P.; Studart, N.; Peeters, F.M. openurl 
  Title Classical model of clusters of screened charges in quantum dots Type A1 Journal article
  Year 1997 Publication Brazilian journal of physics Abbreviated Journal Braz J Phys  
  Volume 27 Issue A Pages 312-315  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication São Paulo Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0103-9733 ISBN Additional Links UA library record  
  Impact Factor 0.732 Times cited Open Access  
  Notes Approved Most recent IF: 0.732; 1997 IF: NA  
  Call Number UA @ lucian @ c:irua:19297 Serial 367  
Permanent link to this record
 

 
Author (down) Cândido, L.; Rino, J.-P.; Studart, N.; Peeters, F.M. doi  openurl
  Title Structure and spectrum of the anisotropically confined two-dimensional Yukawa system Type A1 Journal article
  Year 1998 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 10 Issue Pages 11627-11644  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000077882400004 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 69 Open Access  
  Notes Approved Most recent IF: 2.649; 1998 IF: 1.645  
  Call Number UA @ lucian @ c:irua:24174 Serial 3297  
Permanent link to this record
 

 
Author (down) Çakir, D.; Sevik, C.; Peeters, F.M. doi  openurl
  Title Engineering electronic properties of metal-MoSe2 interfaces using self-assembled monolayers Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 2 Issue 46 Pages 9842-9849  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Metallic contacts are critical components of electronic devices and the presence of a large Schottky barrier is detrimental for an optimal device operation. Here, we show by using first-principles calculations that a self-assembled monolayer (SAM) of polar molecules between the metal electrode and MoSe2 monolayer is able to convert the Schottky contact into an almost Ohmic contact. We choose -CH3 and -CF3 terminated short-chain alkylthiolate (i.e. SCH3 and fluorinated alkylthiolates (SCF3)) based SAMs to test our approach. We consider both high (Au) and low (Sc) work function metals in order to thoroughly elucidate the role of the metal work function. In the case of Sc, the Fermi level even moves into the conduction band of the MoSe2 monolayer upon SAM insertion between the metal surface and the MoSe2 monolayer, and hence possibly switches the contact type from Schottky to Ohmic. The usual Fermi level pinning at the metal-transition metal dichalcogenide (TMD) contact is shown to be completely removed upon the deposition of a SAM. Systematic analysis indicates that the work function of the metal surface and the energy level alignment between the metal electrode and the TMD monolayer can be tuned significantly by using SAMs as a buffer layer. These results clearly indicate the vast potential of the proposed interface engineering to modify the physical and chemical properties of MoSe2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344998700007 Publication Date 2014-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 22 Open Access  
  Notes ; Part of this work is supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish Government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). D. C. is supported by a FWO Pegasus-short Marie Curie Fellowship. C. S. acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK 113F096), Anadolu University (BAP-1306F281, -1404F158) and Turkish Academy of Science (TUBA). ; Approved Most recent IF: 5.256; 2014 IF: 4.696  
  Call Number UA @ lucian @ c:irua:122157 Serial 1046  
Permanent link to this record
 

 
Author (down) Çakir, D.; Sevik, C.; Peeters, F.M. url  doi
openurl 
  Title Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 165406  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The effect of the number of stacking layers and the type of stacking on the electronic and optical properties of bilayer and trilayer black phosphorus are investigated by using first-principles calculations within the framework of density functional theory. We find that inclusion of many-body effects (i.e., electron-electron and electron-hole interactions) modifies strongly both the electronic and optical properties of black phosphorus. While trilayer black phosphorus with a particular stacking type is found to be a metal by using semilocal functionals, it is predicted to have an electronic band gap of 0.82 eV when many-body effects are taken into account within the G(0)W(0) scheme. Though different stacking types result in similar energetics, the size of the band gap and the optical response of bilayer and trilayer phosphorene are very sensitive to the number of layers and the stacking type. Regardless of the number of layers and the type of stacking, bilayer and trilayer black phosphorus are direct band gap semiconductors whose band gaps vary within a range of 0.3 eV. Stacking arrangements that are different from the ground state structure in both bilayer and trilayer black phosphorus exhibit significant modified valence bands along the zigzag direction and result in larger hole effective masses. The optical gap of bilayer (trilayer) black phosphorus varies by 0.4 (0.6) eV when changing the stacking type. The calculated binding energy of the bound exciton hardly changes with the type of stacking and is found to be 0.44 (0.30) eV for bilayer (trilayer) phosphorous.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000362435300005 Publication Date 2015-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 127 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C.S. acknowledges support from Turkish Academy of Sciences (TUBA-GEBIP). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:128320 Serial 4242  
Permanent link to this record
 

 
Author (down) Çakir, D.; Sevik, C.; Gulseren, O.; Peeters, F.M. doi  openurl
  Title Mo2C as a high capacity anode material: a first-principles study Type A1 Journal article
  Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 4 Issue 16 Pages 6029-6035  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The adsorption and diffusion of Li, Na, K and Ca atoms on a Mo2C monolayer are systematically investigated by using first principles methods. We found that the considered metal atoms are strongly bound to the Mo2C monolayer. However, the adsorption energies of these alkali and earth alkali elements decrease as the coverage increases due to the enhanced repulsion between the metal ions. We predict a significant charge transfer from the ad-atoms to the Mo2C monolayer, which indicates clearly the cationic state of the metal atoms. The metallic character of both pristine and doped Mo2C ensures a good electronic conduction that is essential for an optimal anode material. Low migration energy barriers are predicted as small as 43 meV for Li, 19 meV for Na and 15 meV for K, which result in the very fast diffusion of these atoms on Mo2C. For Mo2C, we found a storage capacity larger than 400 mA h g(-1) by the inclusion of multilayer adsorption. Mo2C expands slightly upon deposition of Li and Na even at high concentrations, which ensures the good cyclic stability of the atomic layer. The calculated average voltage of 0.68 V for Li and 0.30 V for Na ions makes Mo2C attractive for low charging voltage applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000374790700033 Publication Date 2016-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 202 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C. S. acknowledges the support from Turkish Academy of Sciences (TUBA-GEBIP). C. S acknowledges the support from Anadolu University (Grant No. 1407F335). We acknowledge the support from TUBITAK, The Scientific and Technological Research Council of Turkey (Grant No. 115F024). ; Approved Most recent IF: 8.867  
  Call Number UA @ lucian @ c:irua:144763 Serial 4669  
Permanent link to this record
 

 
Author (down) Çakir, D.; Sahin, H.; Peeters, F.M. pdf  doi
openurl 
  Title Doping of rhenium disulfide monolayers : a systematic first principles study Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 16 Issue 31 Pages 16771-16779  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The absence of a direct-to-indirect band gap transition in ReS2 when going from the monolayer to bulk makes it special among the other semiconducting transition metal dichalcogenides. The functionalization of this promising layered material emerges as a necessity for the next generation technological applications. Here, the structural, electronic, and magnetic properties of substitutionally doped ReS2 monolayers at either the S or Re site were systematically studied by using first principles density functional calculations. We found that substitutional doping of ReS2 depends sensitively on the growth conditions of ReS2. Among the large number of non-metallic atoms, namely H, B, C, Se, Te, F, Br, Cl, As, P. and N, we identified the most promising candidates for n-type and p-type doping of ReS2. While Cl is an ideal candidate for n-type doping, P appears to be the most promising candidate for p-type doping of the ReS2 monolayer. We also investigated the doping of ReS2 with metal atoms, namely Mo, W, Ti, V. Cr, Co, Fe, Mn, Ni, Cu, Nb, Zn, Ru, Os and Pt. Mo, Nb, Ti, and V atoms are found to be easily incorporated in a single layer of ReS2 as substitutional impurities at the Re site for all growth conditions considered in this work. Tuning chemical potentials of dopant atoms energetically makes it possible to dope ReS2 with Fe, Co, Cr, Mn, W, Ru, and Os at the Re site. We observe a robust trend for the magnetic moments when substituting a Re atom with metal atoms such that depending on the electronic configuration of dopant atoms, the net magnetic moment of the doped ReS2 becomes either 0 or 1 mu(B). Among the metallic dopants, Mo is the best candidate for p-type doping of ReS2 owing to its favorable energetics and promising electronic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000340075700048 Publication Date 2014-07-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 58 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 4.123; 2014 IF: 4.493  
  Call Number UA @ lucian @ c:irua:118742 Serial 752  
Permanent link to this record
 

 
Author (down) Çakir, D.; Sahin, H.; Peeters, F.M. url  doi
openurl 
  Title Tuning of the electronic and optical properties of single-layer black phosphorus by strain Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 90 Issue 20 Pages 205421  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first principles calculations we showed that the electronic and optical properties of single-layer black phosphorus (BP) depend strongly on the applied strain. Due to the strong anisotropic atomic structure of BP, its electronic conductivity and optical response are sensitive to the magnitude and the orientation of the applied strain. We found that the inclusion of many body effects is essential for the correct description of the electronic properties of monolayer BP; for example, while the electronic gap of strainless BP is found to be 0.90 eV by using semilocal functionals, it becomes 2.31 eV when many-body effects are taken into account within the G(0)W(0) scheme. Applied tensile strain was shown to significantly enhance electron transport along zigzag direction of BP. Furthermore, biaxial strain is able to tune the optical band gap of monolayer BP from 0.38 eV (at -8% strain) to 2.07 eV (at 5.5%). The exciton binding energy is also sensitive to the magnitude of the applied strain. It is found to be 0.40 eV for compressive biaxial strain of -8%, and it becomes 0.83 eV for tensile strain of 4%. Our calculations demonstrate that the optical response of BP can be significantly tuned using strain engineering which appears as a promising way to design novel photovoltaic devices that capture a broad range of solar spectrum.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000345642000015 Publication Date 2014-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 219 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:122203 Serial 3752  
Permanent link to this record
 

 
Author (down) Çakir, D.; Peeters, F.M.; Sevik, C. doi  openurl
  Title Mechanical and thermal properties of h-MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers : a comparative study Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 104 Issue 20 Pages 203110  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using density functional theory, we obtain the mechanical and thermal properties of MX2 monolayers (where M = Cr, Mo, W and X = O, S, Se, Te). The C-centered phonon frequencies (i.e., A(1), A(2)'', E ', and E ''), relative frequency values of A(1), and E ' modes, and mechanical properties (i.e., elastic constants, Young modulus, and Poisson's ratio) display a strong dependence on the type of metal and chalcogenide atoms. In each chalcogenide (metal) group, transition-metal dichalcogenides (TMDCs) with W (O) atom are found to be much stiffer. Consistent with their stability, the thermal expansion of lattice constants for TMDCs with O (Te) is much slower (faster). Furthermore, in a heterostructure of these materials, the difference of the thermal expansion of lattice constants between the individual components becomes quite tiny over the whole temperature range. The calculated mechanical and thermal properties show that TMDCs are promising materials for heterostructures. (C) 2014 AIP Publishing LLC.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000337140800063 Publication Date 2014-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 130 Open Access  
  Notes ; Cem Sevik acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK-113F096) and Anadolu University (BAP-1306F261 and -1306F281) to this project. We would also like to thank the ULAKBIM High Performance and Grid Computing Center for a generous time allocation for our projects. D. C. was supported by a FWO Pegasus-short Marie Curie Fellowship. Part of this work was supported by the Methusalem foundation of the Flemish Government. ; Approved Most recent IF: 3.411; 2014 IF: 3.302  
  Call Number UA @ lucian @ c:irua:118379 Serial 1974  
Permanent link to this record
 

 
Author (down) Çakir, D.; Peeters, F.M. url  doi
openurl 
  Title Dependence of the electronic and transport properties of metal-MoSe2 interfaces on contact structures Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 89 Issue 24 Pages 245403  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Transition metal dichalcogenides (TMDs) are considered as promising candidates for next generation of electronic and optoelectronic devices. To make use of these materials, for instance in field effect transistor applications, it is mandatory to know the detailed properties of contacts of such TMDs with metal electrodes. Here, we investigate the role of the contact structure on the electronic and transport properties of metal-MoSe2 interfaces. Two different contact types, namely face and edge contacts, are studied. We consider both low (Sc) and high (Au) work function metals in order to thoroughly elucidate the role of the metal work function and the type of metal. First principles plane wave calculations and transport calculations based on nonequilibrium Green's function formalism reveal that the contact type has a large impact on the electronic and transport properties of metal-MoSe2 interfaces. For the Sc electrode, the Schottky barrier heights are around 0.25 eV for face contact and bigger than 0.6 eV for edge contact. For the Au case, we calculate very similar barrier heights for both contact types with an average value of 0.5 eV. Furthermore, while the face contact is found to be highly advantageous as compared to the edge contact for the Sc electrode, the latter contact becomes a better choice for the Au electrode. Our findings provide guidelines for the fabrication of TMD-based devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000336917700004 Publication Date 2014-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 39 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. D. C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:117750 Serial 644  
Permanent link to this record
 

 
Author (down) Çakir, D.; Peeters, F.M. pdf  url
doi  openurl
  Title Fluorographane : a promising material for bipolar doping of MoS2 Type A1 Journal article
  Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 17 Issue 17 Pages 27636-27641  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first principles calculations we investigate the structural and electronic properties of interfaces between fluorographane and MoS2. Unsymmetrical functionalization of graphene with H and F results in an intrinsic dipole moment perpendicular to the plane of the buckled graphene skeleton. Depending on the orientation of this dipole moment, the electronic properties of a physically absorbed MoS2 monolayer can be switched from n-to p-type or vice versa. We show that one can realize vanishing n-type/p-type Schottky barrier heights when contacting MoS2 to fluorographane. By applying a perpendicular electric field, the size of the Schottky barrier and the degree of doping can be tuned. Our calculations indicate that a fluorographane monolayer is a promising candidate for bipolar doping of MoS2, which is vital in the design of novel technological applications based on two-dimensional materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000363193800043 Publication Date 2015-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 7 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 4.123; 2015 IF: 4.493  
  Call Number UA @ lucian @ c:irua:129477 Serial 4182  
Permanent link to this record
 

 
Author (down) Çakir, D.; Kecik, D.; Sahin, H.; Durgun, E.; Peeters, F.M. pdf  doi
openurl 
  Title Realization of a p-n junction in a single layer boron-phosphide Type A1 Journal article
  Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 17 Issue 17 Pages 13013-13020  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two-dimensional (2D) materials have attracted growing interest due to their potential use in the next generation of nanoelectronic and optoelectronic applications. On the basis of first-principles calculations based on density functional theory, we first investigate the electronic and mechanical properties of single layer boron phosphide (h-BP). Our calculations show that h-BP is a mechanically stable 2D material with a direct band gap of 0.9 eV at the K-point, promising for both electronic and optoelectronic applications. We next investigate the electron transport properties of a p-n junction constructed from single layer boron phosphide (h-BP) using the non-equilibrium Green's function formalism. The n-and p-type doping of BP are achieved by substitutional doping of B with C and P with Si, respectively. C(Si) substitutional doping creates donor (acceptor) states close to the conduction (valence) band edge of BP, which are essential to construct an efficient p-n junction. By modifying the structure and doping concentration, it is possible to tune the electronic and transport properties of the p-n junction which exhibits not only diode characteristics with a large current rectification but also negative differential resistance (NDR). The degree of NDR can be easily tuned via device engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000354195300065 Publication Date 2015-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 104 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem foundation of the Flemish government and the Bilateral program FWO-TUBITAK (under the Project No. 113T050) between Flanders and Turkey. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship. E.D. acknowledges support from Bilim Akademisi – The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 4.123; 2015 IF: 4.493  
  Call Number c:irua:126394 Serial 2835  
Permanent link to this record
 

 
Author (down) Cai, J.; Griffin, E.; Guarochico-Moreira, V.H.; Barry, D.; Xin, B.; Yagmurcukardes, M.; Zhang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M. url  doi
openurl 
  Title Wien effect in interfacial water dissociation through proton-permeable graphene electrodes Type A1 Journal article
  Year 2022 Publication Nature communications Abbreviated Journal Nat Commun  
  Volume 13 Issue 1 Pages 5776-5777  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Strong electric fields can accelerate molecular dissociation reactions. The phenomenon known as the Wien effect was previously observed using high-voltage electrolysis cells that produced fields of about 10(7) V m(-1), sufficient to accelerate the dissociation of weakly bound molecules (e.g., organics and weak electrolytes). The observation of the Wien effect for the common case of water dissociation (H2O reversible arrow H+ + OH-) has remained elusive. Here we study the dissociation of interfacial water adjacent to proton-permeable graphene electrodes and observe strong acceleration of the reaction in fields reaching above 10(8) V m(-1). The use of graphene electrodes allows measuring the proton currents arising exclusively from the dissociation of interfacial water, while the electric field driving the reaction is monitored through the carrier density induced in graphene by the same field. The observed exponential increase in proton currents is in quantitative agreement with Onsager's theory. Our results also demonstrate that graphene electrodes can be valuable for the investigation of various interfacial phenomena involving proton transport.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000862552600012 Publication Date 2022-10-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.6 Times cited 14 Open Access OpenAccess  
  Notes Approved Most recent IF: 16.6  
  Call Number UA @ admin @ c:irua:191575 Serial 7228  
Permanent link to this record
 

 
Author (down) Cai, J.; Griffin, E.; Guarochico-Moreira, V.; Barry, D.; Xin, B.; Huang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M. url  doi
openurl 
  Title Photoaccelerated water dissociation across one-atom-thick electrodes Type A1 Journal article
  Year 2022 Publication Nano letters Abbreviated Journal Nano Lett  
  Volume 22 Issue 23 Pages 9566-9570  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Recent experiments demonstrated that interfacial water dissociation (H2O ⇆ H+ + OH-) could be accelerated exponentially by an electric field applied to graphene electrodes, a phenomenon related to the Wien effect. Here we report an order-of-magnitude acceleration of the interfacial water dissociation reaction under visible-light illumination. This process is accompanied by spatial separation of protons and hydroxide ions across one-atom-thick graphene and enhanced by strong interfacial electric fields. The found photoeffect is attributed to the combination of graphene's perfect selectivity with respect to protons, which prevents proton-hydroxide recombination, and to proton transport acceleration by the Wien effect, which occurs in synchrony with the water dissociation reaction. Our findings provide fundamental insights into ion dynamics near atomically thin proton-selective interfaces and suggest that strong interfacial fields can enhance and tune very fast ionic processes, which is of relevance for applications in photocatalysis and designing reconfigurable materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000892112200001 Publication Date 2022-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.8 Times cited 3 Open Access OpenAccess  
  Notes Approved Most recent IF: 10.8  
  Call Number UA @ admin @ c:irua:192759 Serial 7330  
Permanent link to this record
 

 
Author (down) Cabral, L.R.E.; Peeters, F.M. url  doi
openurl 
  Title Elastic modes of vortex configurations in thin disks Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 70 Issue Pages 214522,1-13  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000226111400123 Publication Date 2004-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:69399 Serial 879  
Permanent link to this record
 

 
Author (down) Cabral, L.R.E.; de Aquino, B.R.C.H.T.; de Souza Silva, C.C.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Two-shell vortex and antivortex dynamics in a Corbino superconducting disk Type A1 Journal article
  Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 014515  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We examine theoretically the dynamics of two vortex shells in pinning-free superconducting thin disks in the Corbino geometry. In the first considered case, the inner shell is composed of vortices and the outer one of antivortices, corresponding to a state induced by the stray field of an off-plane magnetic dipole placed on top of the superconductor. In the second considered case, both shells comprise vortices induced by a homogeneous external field. We derive the equation of motion for each shell within the Bardeen-Stephen model and study the dynamics analytically by assuming both shells are rigid and commensurate. In both cases, two distinct regimes for vortex shell motion are identified: For low applied currents the entire configuration rotates rigidly, while above a threshold current the shells decouple from each other and rotate at different angular velocities. Analytical expressions for the decoupling current, the recombination time in the decoupled phases, as well as the voltage-current characteristics are presented. Our analytical results are in excellent agreement with numerical molecular dynamics simulations of the full many-vortex problem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000368481600003 Publication Date 2016-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access  
  Notes ; This work was supported by the Brazilian Science Agencies CAPES, CNPq, and FACEPE under Grants No. APQ-1381-1.05/12, No. APQ 2017-1.05/12, and No. APQ-0598/1.05-08 and by EU-COST Action No. MP1201 and the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:131541 Serial 4270  
Permanent link to this record
 

 
Author (down) Cabral, L.R.E.; Baelus, B.J.; Peeters, F.M. url  doi
openurl 
  Title From vortex molecules to the Abrikosov lattice in thin mesoscopic superconducting disks Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 70 Issue Pages 144523,1-16  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000224855600084 Publication Date 2004-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 71 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:69392 Serial 1291  
Permanent link to this record
 

 
Author (down) Bruno-Alfonso, A.; Hai, G.-Q.; Peeters, F.M.; Yeo, T.; Ryu, S.R.; McCombe, B.D. openurl 
  Title High energy transitions and phonon-assisted harmonics of a shallow magneto-donor in GaAs/AlGaAs multiple quantum wells Type P1 Proceeding
  Year 2001 Publication Abbreviated Journal  
  Volume Issue Pages 1413-1414  
  Keywords P1 Proceeding; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Berlin Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:37296 Serial 1425  
Permanent link to this record
 

 
Author (down) Bruno-Alfonso, A.; Hai, G.-Q.; Peeters, F.M.; Yeo, T.; Ryu, S.R.; McCombe, B.D. doi  openurl
  Title High energy transitions of shallow magneto-donors in a GaAs/Al0.3Ga0.7As multiple quantum well Type A1 Journal article
  Year 2001 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 13 Issue Pages 9761-9772  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000172233300007 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 7 Open Access  
  Notes Approved Most recent IF: 2.649; 2001 IF: 1.611  
  Call Number UA @ lucian @ c:irua:37301 Serial 1426  
Permanent link to this record
 

 
Author (down) Brosens, F.; Fomin, V.M.; Lemmens, L.; Peeters, F.M. openurl 
  Title Liber amicorum in honour of Jozef T. Devreese Type ME3 Book as editor
  Year 2003 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords ME3 Book as editor; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Weinheim Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:43416 Serial 1817  
Permanent link to this record
 

 
Author (down) Brito, B.G.A.; Candido, L.; Hai, G.-Q.; Peeters, F.M. url  doi
openurl 
  Title Quantum effects in a free-standing graphene lattice : path-integral against classical Monte Carlo simulations Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 195416  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In order to study quantum effects in a two-dimensional crystal lattice of a free-standing monolayer graphene, we have performed both path-integral Monte Carlo (PIMC) and classical Monte Carlo (MC) simulations for temperatures up to 2000 K. The REBO potential is used for the interatomic interaction. The total energy, interatomic distance, root-mean-square displacement of the atom vibrations, and the free energy of the graphene layer are calculated. The obtained lattice vibrational energy per atom from the classical MC simulation is very close to the energy of a three-dimensional harmonic oscillator 3k(B)T. The PIMC simulation shows that quantum effects due to zero-point vibrations are significant for temperatures T < 1000 K. The quantum contribution to the lattice vibrational energy becomes larger than that of the classical lattice for T < 400 K. The lattice expansion due to the zero-point motion causes an increase of 0.53% in the lattice parameter. A minimum in the lattice parameter appears at T similar or equal to 500 K. Quantum effects on the atomic vibration amplitude of the graphene lattice and its free energy are investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000368095400004 Publication Date 2015-11-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 22 Open Access  
  Notes ; This research was supported by the Brazilian agencies FAPESP, FAPEG, and CNPq, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:131144 Serial 4232  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: