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Diffusion in a quasi-one-dimensional system on a periodic substrate
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The diffusion of charged particles interacting through a repulsive Yukawa potential, exp(−r/λ)/r , confined
by a parabolic potential in the y direction and subjected to a periodic substrate potential in the x direction is
investigated. Langevin dynamic simulations are used to investigate the effect of the particle density, the amplitude
of the periodic substrate, and the range of the interparticle interaction potential on the diffusive behavior of the
particles. We found that in general the diffusion is suppressed with increasing the amplitude of the periodic
potential, but for specific values of the strength of the substrate potential a remarkable increase of the diffusion
is found with increasing the periodic potential amplitude. In addition, we found a strong dependence of the
diffusion on the specific arrangement of the particles, e.g., single-chain versus multichain configuration. For
certain particle configurations, a reentrant behavior of the diffusion is found as a function of the substrate strength
due to structural transitions in the ordering of the particles.
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I. INTRODUCTION

Diffusion can be defined as the movement of particles
between regions of different concentration; however, it can also
occur even when there is no concentration gradient applied. As
examples of diffusion in terms of many particles we can cite
heat diffusion and molecular diffusion, that is, a net transport
of molecules from a region of higher concentration to one of
lower concentration by random molecular motion. Diffusion
can also be discussed in terms of the movement of one particle,
for example, we have the Brownian motion [1], which is the
random movement of microscopic particles suspended in a liq-
uid or gas, caused by collisions with the surrounding medium.

Particle transport in very restricted geometries was first
studied by Harris in 1965 [2]. He considered one-dimensional
(1D) hardcore particles diffusing along a line where mutual
passage is prohibited. Consequently, the sequence of particles
remains unaffected during time (single-filing condition). In
this system particles are strong correlated in order that the dis-
placement of individual particles drives the displacement of the
other particles along the same direction. This phenomenon be-
came known as single-file diffusion (SFD). The no passage re-
striction causes fundamental changes in the diffusive behavior.

In the last decades, SFD has been extensively studied due to
its numerous applications in biology, chemistry, and physics.
Some examples are the flow of ions, colloids, and water
through molecular-sized channels in membranes [3–5], molec-
ular sieving effects due to transport of adsorbate molecules
through micropores [6], colloidal transport in quasi-one-
dimensional (Q1D) channels [7–9], and nanofluidic separation
of rigid macromolecules (DNA) through a nanofilter [10].
One important property of SFD is that the mean-square
displacement (MSD) W (t) of a particle, for a time t � τ (i.e.,
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the time that one particle needs to move a significant fraction
of the mean particle distance), is given by

lim
t�τ

W (t) = 2F
√

t, (1)

where F is the SFD mobility, t is the time, and W (t) = 〈�x2〉.
SFD processes, in contrast to two-dimensional (2D) and
three-dimensional (3D) self-diffusion, cannot be described
by a diffusion coefficient and therefore does not obey Fick’s
law. This non-Fickian behavior is a fundamental property of
SFD, which does not lead to a linear increase of W (t) with
time, and is therefore called anomalous diffusion. For normal
diffusion, the diffusion coefficient D is defined by the relation
〈�x2〉 = 2Dt . This relation is valid up to a characteristic
time, after which particle collisions become important and
subdiffusive behavior in the form of Eq. (1) appears.

In a recent work of Kollmann [11] it was shown that W (t)
is determined by the short-time and large-scale collective
behavior of the particles in the system. Equation (1) holds
for any kind of interaction potential as long as the correlation
length between the particles is finite and it is valid for any
physical system in the fluid state. Furthermore, this relation
is unique in the case of classical systems and overdamped
systems.

The first experimental attempts to observe Eq. (1) were
realized in zeolitic materials, which consist of long quasicylin-
drical pores with diameters of several angstroms [12]. Zeolite
molecular sieves (see, e.g., Ref. [13]) are characterized by
selective adsorption due to the uniform pore size of the zeolite
structure and high adsorption capacity for polar substances at
low concentrations. Molecular diffusion of tetrafluoromethane
in zeolite AlPO4 − 5 was studied by pulsed-field gradient
NMR spectroscopy. The channel diameter, obtained from a
structural analysis by x-ray diffraction, is of the order of
0.73 nm, whereas the diameter of the CF4 molecules is
0.47 nm. Thus the mutual passage of molecules is excluded.
In a zeolite channel the movement of an isolated particle,
after a short ballistic period, is determined by the stochastic
interaction with the channel walls producing diffusional
anomalous behavior [14]. The experimental evidence for the
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occurrence of SFD as provided by different authors remained
contradictory for some time [15]. The anomalous diffusive
behavior was found by Wei et al [8], who investigated
the dynamics of paramagnetic colloids in a Q1D channel.
Several analytical models have been proposed for the study
of SFD [16,17]. SFD of interacting particles is numerically
investigated in Ref. [9]. The authors show that SFD depends
on the interparticle interaction and could be suppressed if the
interaction is strong enough, displaying even a subdiffusive
behavior slower than t1/2. A Langevin formulation for SFD
[18] is presented in Ref. [19].

A 2D system is often created in the presence of a substrate,
which may induce a periodic potential on the particles. The
present model system of Yukawa particles can be realized
experimentally using, for example, dusty plasma. A dusty
plasma consists of interacting microscopic dust particles
immersed in an electron-ion plasma. Dust particles can be
confined to a 2D layer through a combination of gravitational
and electrical forces. By microstructuring a channel in the
bottom electrode of the discharge, it is possible to laterally
confine the dust particles, as was realized experimentally in
Ref. [20,21]. The strength of the 1D confinement potential
can be varied by the width of the channel or the potential
on the bottom electrode. When the width of the channel is
microstructured into an oscillating function along the channel,
it will result in a periodic potential along the channel.

In this paper we study the diffusion of charged particles in
a Q1D system subjected to a periodic substrate. By increasing
the amplitude of the substrate modulation, we observe a
transition from normal diffusion, W (t) ∝ t , at short times to
subdiffusion at intermediate times, W (t) ∝ tα , with α < 1,
which depends on the amplitude of the periodic potential. For
certain values of the particle density a nonmonotonic depen-
dence of α on the amplitude of the periodic potential is found.
For long times normal diffusion is recovered, i.e., W (t) ∝ t .
A typical example of the time dependence of W (t) is shown
in Fig. 1 together with the three different diffusion regimes.

FIG. 1. (Color online) Example of the time dependence of the
mean-square displacement (red circles curve) and indication of the
three different regimes whose characteristic time dependence is
shown by the dashed lines.

(a)

(c)

(b)

(d)

FIG. 2. (Color online) Sketches of the model system for the
following configurations: (a) one chain, with one particle positioned
at each minimum of the periodic potential; (b) one chain, with two
particles positioned at each minimum; (c) two chains, with particles
in a staggered configuration; and (d) two chains with particles in an
aligned configuration.

In a recent work [22] we studied the zero temperature
ground state structures and normal mode spectra of the model
system proposed in this paper. That is, we investigated a
classical 2D system of charged particles interacting through
a repulsive Yukawa potential, e−r/λ/r , and confined in a
parabolic channel which limits the motion of the particles in the
y direction. Along the x direction, the particles are subjected
to a periodic potential. Due to the parabolic confinement the
system self-organizes in chains (rows) along the x direction.
We found that the number of chains is strongly dependent on
the density and the intensity of the periodic potential V0.

The structures are mainly ruled by the fact that particles
tend to move to the minima of the periodic substrate potential,
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modifying the symmetry of the ordered structures. However,
for small V0, the interparticle repulsive interaction dominates
and we found that it is possible to find particles at arbitrary
positions of the periodic potential, including regions near to
the maxima. For small densities the system can be found in
a configuration with one or two chains (depending on V0), as
shown schematically in Fig. 2.

In the present work, we will study diffusion of the system
as function of the strength of the substrate for three particular
configurations: (i) the single-chain configuration, where the
particles are aligned on a single line in the minimum of
the confinement potential; (ii) the two-chain configuration,
where the particles are organized in two distinguishable rows;
and (iii) a substrate-dependent configuration, where structural
transitions from the single-chain to the two-chain configuration
can occur by changing the strength of the substrate [Figs. 2(c)
and 2(d)].

The paper is organized as follows. In Sec. II we present
the model system and our numerical approach. In Sec. III we
give our numerical results and investigate in more detail the
intermediate time regime and its dependence on the particle
density and the amplitude of the periodic potential. Finally in
Sec. IV our conclusions are formulated.

II. MODEL SYSTEM AND NUMERICAL APPROACH

Our system consists of identical pointlike charged particles
interacting through a screened Coulomb potential (Yukawa
potential). The particles are restricted to move in a 2D plane
and are subjected to an external parabolic confinement in
the y direction and a periodic substrate potential along the
x direction. The diffusion of the colloidal particles moving
in a nonmagnetic liquid is overdamped and the stochastic
Langevin equations of motion can be reduced to those for
Brownian particles [23]:

d�ri

dt
= − D

kBT

⎛
⎝ N∑

j=1

dVint(�rij )

d�ri

+dVc(�ri)

d�ri

+ dVsub(�ri)

d�ri

− �F i
T

⎞
⎠,

(2)

where �ri and D are the position and the self-diffusion
coefficient, respectively, t is the time, kB is the Boltzmann
constant, and T is the absolute temperature of the system.

Further Vc(�ri) stands for the confining potential with
�ri = (xi,yi); Vint(rij ) for the interaction energy between the
particles, where rij = |�ri − �rj | is the distance between the ith
and j th particle; and Vsub(�ri) for the substrate potential. The
confinement potential is taken to be

Vc(�ri) = 1
2mω2

0y
2
i , (3)

where m is the mass of each particle, ω0 is the strength of the
parabolic confining potential, and yi is the distance of the ith
particle from the central axis of the confinement along the x

direction. The particles interact through a screened Coulomb

potential given by

Vint(rij ) = q2

ε

e−|�ri−�rj |/λ

|�ri − �rj | , (4)

where q is the charge of each particle, ε is the dielectric
constant of the medium, and λ is the Debye screening
length. The periodic substrate potential acting on each particle,
Vsub(�ri), is given by

Vsub(�ri) = V0

∑
i

cos

(
2πxi

L

)
, (5)

where V0 is the strength of the periodic substrate potential and
L its periodicity.

�F i
T is a randomly fluctuating force, with the following

properties: 〈 �FT 〉 = 0 and 〈F i
T (t)F i ′

T (t ′)〉 = 2ηkBT δii ′δ(t − t ′),
which means that it is normally distributed (i.e., Gaussian
distribution), where η is the friction coefficient. Taking the
same units of energy and distance from Ref. [22], i.e.,
E0 = (mω0

2q4/2ε2)1/3 and r0 = (2q2/εmω2
0)1/3, Eq. (2) can

be rewritten in a dimensionless form as

d �r ′
i

dt ′
= −

⎛
⎝�

N∑
j=1

dV ′
int(�r ′

ij )

d �r ′
i

+dV ′
c (�r ′

i)

d �r ′
i

+dV ′
sub(�r ′

i)

d �r ′
i

− �F ′i
T

⎞
⎠ ,

(6)

where the screening parameter is defined as κ = r0/λ and
� = q2/kBT εr0. The unit of length is defined as the distance at
which the confinement energy equals the Coulomb energy. The
time t ′ is given in units of ω−1

0 . The self-diffusion coefficient
is in units of r2

0 ω0 and the temperature is measured in units of
T0 = E0/kB .

For the numerical integration of the equations of motion
we use a first-order finite difference method with periodic
boundary conditions along the x direction and a time step
�t = 0.0005, and for the screening parameter we take κ = 1,
which is a typical value for dusty plasma and colloidal systems.
In the numerical simulations, we typically consider 300–400
particles in our computational unit cell. The simulations were
performed for � = 10 and � = 100, which correspond to a
weakly correlated situation and a strongly correlated situation,
respectively. Further, the system is defined by V0, L, and the
particle density n, which is the ratio between the number of
chains Nch and a0, i.e., n = Nch/a0, where a0 is the average
separation between particles along the chain, calculated when
the substrate is not present [22], i.e., when V0 = 0. Examples
of particle positions taken over a large time interval are shown
in Fig. 3 for different values of V0, n, and L/a0. The single-
and two-chain configurations are shown. A melted situation
[Fig. 3(a)] is also shown, where the particles move randomly
between two chains.

III. RESULTS AND DISCUSSIONS

In general, particle transport or diffusion on a periodic
substrate has been reported to be slower than the diffusion
in the absence of it and its magnitude depends on the energetic
balance between the particle-particle and particle-substrate
interactions [24,25]. In this paper we show that such a behavior
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(a) (b)

(c) (d)

FIG. 3. (Color online) Two-dimensional plots of the particle
positions during 5 × 108 time steps for � = 100 considering (a)
n = 1.0, L/a0 = 1.0, and V0 = 0.0; (b) n = 1.0, L/a0 = 1.0, and
V0 = 0.8; (c) n = 0.5, L/a0 = 2.0, and V0 = 0.0; and (d) n = 0.5,
L/a0 = 2.0, and V0 = 1.5.

is not always found in a Q1D system. Further, structural
transitions can occur depending on the periodicity of the
substrate and the particle density, which will have an impact
on the diffusive behavior of the particles.

In order to characterize the diffusion of the system, we
calculate the MSD as follows:

〈�r2(t)〉 = 1

N

〈
N∑

i=1

[ri(t0 + t) − ri(t0)]2

〉
�t∗

, (7)

where r is the position of the particles, N is the total number
of particles, t0 is the initial time, and 〈· · ·〉�t∗ represents a
time average over a long time interval �t∗ for different t0 so
that 0 < t0 < (�t∗ − t) and �t∗ is chosen to be equal to the
total simulation time. Typically we consider �t∗ ≈ 2 × 109.
Further t0 was chosen to be equal to a multiple of t .

In order to illustrate our results we present the diffusion of
the system as a function of the strength of the substrate for
three particular configurations, namely: (i) the single-chain
configuration, where the particles are aligned along a single
row [Fig. 2(a)]; (ii) the two-chain configuration, where the
particles are organized in two distinguishable rows [Figs. 2(c)
and 2(d)]; and (iii) a substrate-dependent configuration, where
structural transition from the single- chain configuration
[Fig. 2(b)] to the two-chain configuration [Fig. 2(c)] can occur
by changing the strength of the substrate. Further we analyze
the above systems in the liquidlike state and for different values
of V0 (strength of the periodic potential). Please note that the
coupling parameter 
 = 〈V 〉/〈K〉:


 = 〈V 〉
〈K〉 = �

e−κa0

a0
, (8)

where a0 is the average interparticle distance. For our numer-
ical calculations we took κ = 1 and we have typically a0 ∼ 1
which results in 
 ∼ �/e ∼ 0.4�. Further we consider two

situations � = 10 and � = 100 which result in a 
 value that
is clearly in the liquidlike regime.

Three different time regimes can be distinguished. A typical
example is provided in Fig. 1: (i) the short time regime (STR),
which is governed by the overdamped motion of the particles
resulting in 〈�r2(t)〉 ∼ t , where the MSD is 〈�r2(t)〉 <

(b.a0)2 with b being a parameter of order 0.1–1; (ii) the
intermediate time diffusion regime (ITR), where 〈�r2(t)〉 ∼
tα , with α � 1, and typically (b.a0)2 < 〈�r2(t)〉 < L2; and
(iii) the long time regime (LTR), 〈�r2(t)〉 > L2, where the
motion of the particles becomes fully correlated [9]. The
translational invariance of the system results in a 〈�r2(t)〉 ∼
t behavior of overdamped motion. Since we are studying
an infinite system (periodic boundary conditions in the x

direction) with a finite number of particles, we do not consider
the very long time behavior, but instead we focus our research
on the more interesting ITR. The MSD in the LTR is indicative
of whether the particles are localized or not in the minima of
the substrate, but are not representative for the diffusion in
the long time limit since it depends on the total number of
particles considered (i.e., the size of our unit cell) [17]. In
the STR, the particles do not feel the presence of each other
and perform a random walk, which causes a normal diffusion
behavior. This regime has been intensively studied before and
therefore is not discussed here. For the three regimes we
fitted a tα dependence, where α was determined such that the
simulation results coincide with the tα curve in the middle of
the ITR.

A. Single-chain configuration

Inspired by our previous work on the ground state configu-
ration of charged colloids subjected to a periodic substrate [22],
we start with the simplest case where n = 0.5 and L/a0 = 1.0
for which a single-chain configuration was found as the
ordered phase. For this parameter set, exactly one particle
is positioned at each minimum of the periodic potential.
Therefore, the configuration is not affected by the substrate
strength.

In Figs. 4(a) and 4(b), the MSD is plotted as a function of
time for n = 0.5 and L/a0 = 1.0 for � = 10 and � = 100.
The slope α of the curves in the ITR is plotted as a function of
V0 (see insets in Figs. 4(a) and 4(b), respectively).

In the ITR the dynamical process becomes subdiffusive.
When the strength of the substrate is zero (V0 = 0), the MSD
curves [Figs. 4(a) and 4(b)] are characterized by a subdiffusive
behavior, 〈�r2(t)〉 ∝ t1/2, which is identified as SFD. If one
increases the strength of the substrate (V0 > 0), the diffusion
of particles is severely affected. The diffusion process in
this regime becomes now slower than 〈�r2(t)〉 ∝ t1/2. The
observed reduction in the particle diffusion is caused by
the energetic barrier imposed by the substrate. The particles
oscillate around the substrate minima for a long time before
reaching diffusive motion. Next, after some time, the MSD
curves recover their linear increasing behavior. If one increases
the substrate strength further, the particles become pinned at
the minima of the substrate potential. That is the reason why
the slope of the MSD curves in the ITR becomes zero for both
� = 10 and � = 100, resulting in α = 0 (see insets of Fig. 4).
The pinning of particles happens at much lower V0 values for
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(a) (b)

FIG. 4. (Color online) Log-log plot of the MSD curves taking into account both x and y directions, plotted as a function of time for n = 0.5
and L/a0 = 1.0 considering (a) � = 10 and (b) � = 100. The power-law coefficient α for the ITR is plotted as a function of V0 in the insets.

� = 100 than for � = 10 (V0 ≈ 0.5 versus V0 ≈ 1.0) because
of the weaker � of the system (see Fig. 4) in the latter case.

From this subsection we can conclude that increasing the
amplitude of the substrate potential will reduce the mobility of
the particles, which at a critical value of the substrate strength
becomes pinned at the minima of the substrate potential. The
critical V0 value depends strongly on the parameter �. Larger
� values result in smaller critical V0 values. A power-law
dependence of � on Vc was found and is presented in Fig. 5.

B. Two-chain configuration

Previously we found that, at zero temperature with n = 1.0
and L/a0 = 1, the particle configuration consists of two chains
where its internal structure strongly depends on the strength
of the periodic substrate V0 [22]. In Fig. 4 of Ref. [22] the
relevant internal distances for the ground state configuration
are presented as a function of V0. There it was found that,

FIG. 5. (Color online) Critical value of V0 for different values of
�. The curve is a power-law fit to our results.

for V0 = 0.16, the system undergoes a structural transition
from a staggered [inset (I) Fig. 6(a)] to an aligned [inset (II)
Fig. 6(a)] two-chain configuration, through a second-order (or
continuous) structural transition.

For temperatures different from zero, the parameter �

increases with increasing V0 since the particles become closer
to each other in each minimum of the periodic potential. Con-
sequently the mean interaction energy between the particles
is larger. In this case, V0 can be seen as the inverse of an
effective temperature, in order that an increase of V0 will
bring the system to a more ordered state. To illustrate that,
we show in Figs. 3(a) and 3(b) the probability distributions
of finding a particle at a certain position in the channel for
n = 1.0 and L/a0 = 1.0. Warmer colors correspond with a
higher probability. Notice that when the substrate strength is
sufficiently increased a well-defined two-chain configuration
is formed.

The time dependence of the MSD for a system with n = 1.0
and L/a = 1 is presented in Figs. 6(a) and 6(b), for � = 10 and
� = 100, respectively. In both cases the STR is characterized
by a normal diffusion behavior, i.e., 〈�r2(t)〉 ∝ t1.

For � = 10, the diffusion in the ITR is not modified by
increasing the substrate strength until V0 = 0.1 [Fig. 6(a)], but
after further increasing the substrate strength, the diffusion is
enhanced, reaching a maximum at V0 = 0.16. Such behavior
is due to a structural transition, in which the system changes
from a staggered to an aligned two-chain configuration. In
the latter the particles are now pairwise aligned along the y

direction (and do not interlock with each other anymore). As
a consequence, the particles in both chains are more free to
move with respect to each other, resulting in a larger diffusion.
Notice that in the case of staggered chains, the dynamic
friction of the chains with respect to each other will be higher
because of an interlocking effect. If one moves these chains
far enough from each other, they will no longer be able to
interlock and consequently they will slide much more easily
over each other. A further increase of V0 results in a larger
correlation between the particles of distinct chains, resulting
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(a) (b)

FIG. 6. (Color online) Log-log plot of the MSD curves taking into account both x and y directions, plotted as a function of time for n = 1.0
and L/a0 = 1.0 considering (a) � = 10 and (b) � = 100. The power-law coefficient α for the ITR is plotted as a function of V0 in the upper
insets, for � = 10 and � = 100. The lower insets of panel (a) show the ground state configuration for two values of V0.

in a very slow diffusion. For V0 > 1.4, diffusion is severely
suppressed.

For long times (LTR), the normal diffusive regime is
recovered for V0 � 0.5, while for V0 > 1.5 the diffusion is
completely suppressed in all directions. As an illustration we
present the case V0 = 2.0 [see Fig. 6(a)], where all diffusion
is suppressed.

For � = 100 [Fig. 6(b)] we find initially (V0 = 0) that
the MSD curve is characterized by a subdiffusive behavior,
〈�r2(t)〉 ∝ t1/2, which identifies the SFD. For V0 > 0.16, the
slope of the MSD curves, and the corresponding α value,
decreases with increasing V0 [inset in Fig. 6(b)]. For V0 > 0.3,
particles in both chains become pinned at the minima of
the substrate and the diffusion of the particles is completely
suppressed.

In the LTR we observe that for V0 = 0 normal diffusion
is recovered, while for 0 < V0 < 0.16 the diffusion is sup-
pressed. However, for V0 � 0.16 [Fig. 6(b)], we found a
remarkable enhancement of the diffusion. The physical reason
is that the system undergoes a structural transition from the
staggered configuration to an aligned configuration around
V0 � 0.16, resulting in more freedom for particles to move
along the channel.

To understand the effect of the substrate on the particle
dynamics, we also plotted the MSD curves in the x and y
directions separately [Figs. 7(a) and 7(b)]. For both � = 10
and � = 100 at short times (STR) normal diffusion occurs.
At intermediate times (ITR), the diffusion process becomes
subdiffusive while at sufficiently long times (LTR) diffusion
is recovered for lower values of V0. For larger V0, diffusion
is completely suppressed. From these curves one can see that
diffusion in the x direction occurs at time scales different than
those of the one along the y direction.

Note that for � = 10 and V0 ≈ 1.0, the diffusion along the
x and y directions [Fig. 7(a)] is suppressed in the ITR, but
for the LTR diffusion recovers and particles start to diffuse
in both directions again. This can be explained because the

(a)

(b)

FIG. 7. (Color online) Log-log plot of the MSD curves in
(a) the x direction and (b) the y direction for different val-
ues of the substrate strength, and for � = 10 and � = 100,
respectively.
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particles oscillate around the substrate minima for a long
time before reaching diffusive motion.

After a long period of time the particles inside each
minimum of the periodic substrate eventually can change their
positions depending on the strength of the substrate. As an
example of such a behavior, we show the case for � = 100
and V0 ≈ 0.2 [Fig. 7(b)]. Here the diffusion along the x and
y directions is suppressed in the ITR, but for the LTR, the
diffusion is recovered only in the y direction. However for
V0 > 0.3, the particles become pinned even in the LTR.

From this subsection we can conclude that in a two-chain
configuration, the diffusion in the x direction occurs on a time
scale different than that of the diffusion in the y direction,
resulting in a two-step diffusion process in the intermediate
time diffusion regime. Further, an enhancement of the diffusion
process is found for certain values of the substrate strength,
which originates from a structural transition from a staggered
to an aligned structure.

C. The transition from the single-chain
to the two-chain configuration

To conclude, we study the case n = 0.5 and L/a0 = 2.0,
where we found earlier a first-order structural transition from
the single-chain to the two-chain regime with increasing
V0. For small V0 values, the particles are located at the
zeros of the substrate potential, resulting in a single-chain
configuration. The separation between particles within the
minima decreases with increasing V0, while the system is
found in the single-chain configuration. For the critical value
V0 ≈ 0.8, a two-chain configuration is reached through a
first-order transition. In the two-chain regime the particles are
aligned along the y direction in each minimum of the substrate.
In Figs. 3(c) and 3(d), we show the probability distributions
of finding a particle at a certain position in the channel for
n = 0.5 and L/a0 = 2.0 for � = 100 (T 
= 0). One can clearly
see that the configuration depends on the substrate strength.
If the substrate strength is increased, the particles undergo

a structural transition from the single-chain to the two-chain
configuration.

In Figs. 8(a) and 8(b), the MSD as a function of time for the
system with n = 0.5 and L/a0 = 2.0 is presented for � = 10
and � = 100. In the ITR, a �-dependent behavior is found
for the mean-squared displacement. For � = 10 [Fig. 8(a)],
an expected decrease of the diffusion is observed when V0 is
increased. The system goes from a single-file regime (V0 = 0)
to an even more subdiffusive regime with increasing V0. In the
inset of Fig. 8(a), one can see that α reduces with increasing
substrate strength from α = 0.5 to α = 0.3, where it reaches
a subdiffusive behavior.

For � = 100 a reentrant behavior is found for the diffusion
in the ITR as a function of V0. First, as expected, the diffusion
in the ITR is reduced by increasing the substrate strength until
V0 = 0.4 [Fig. 8(b)]. With a further increase of the substrate
strength, the diffusion is enhanced, reaching a new maximum
for V0 ≈ 0.7. The reason is that the system will go through
a structural transition from the single-chain to the two-chain
configuration. Since particles are now organized in two chains,
the average distance between two neighboring particles along
each chain is increased, resulting in a larger diffusion. After the
two-chain configuration is formed, a further increase of V0 will
lead to a reduction of the diffusion because particles become
more trapped at the potential minima. Finally, for V0 � 1.3,
the diffusion is completely suppressed again. However this is
not observed for � = 10, since for small � the particles have
much more thermal energy, which allows them to escape from
the substrate minima and prevents them from becoming pinned
when the substrate amplitude V0 < 0.8.

From this subsection we can conclude that the diffusion
can be enhanced by a slight increase of the substrate potential
because of a structural transition from the staggered to the
aligned state. Further, a reentrant behavior of the MSD as
a function of the substrate strength is found in the strongly
coupled case (� = 100). The reentrant behavior is induced
by a structural phase transition from the single-chain to the
two-chain configuration.

(a) (b)

FIG. 8. (Color online) Log-log plot of the MSD curves taking into account both x and y directions, plotted as a function of time for n = 0.5
and L/a0 = 2.0 considering (a) � = 10 and (b) � = 100. The power-law coefficient α for the ITR is plotted as a function of V0 in the insets,
for � = 10 and � = 100, respectively.
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IV. CONCLUSIONS

We used Brownian dynamic simulations to study the
diffusive motion of charged particles in a Q1D colloidal system
subjected to a sinusoidal substrate potential. In particular,
we calculated the MSD for different substrate strengths.
The simulations were performed for three different ground
state configurations: (i) the single-chain configuration, (ii)
the two-chain configuration, and (iii) a substrate-dependent
configuration, where the system undergoes a structural transi-
tion from the single-chain to the two-chain configuration as a
function of the substrate potential.

In general, we can conclude that the substrate potential will
reduce the mobility of the particles, which for a critical value
of the substrate strength leads to the pinning of particles at
the minima of the substrate potential. The critical value of V0

depends sensitively on the value of the parameter �. Larger �

values leads to smaller critical values of V0.
In the case where particles are organized in a two-chain

configuration, the diffusion in the x and y directions have
different time scales, resulting in a two-step diffusion process
in the intermediate diffusion regime. Further, an enhancement

of the diffusion process can be found for certain values of
the substrate strength, which is originated from a structural
transition from the staggered to the aligned configuration.

If the configuration of the particles depends on the strength
of the substrate potential, structural transitions will have
a larger impact on the diffusive behavior of the particles.
Here we showed that the diffusion of the particles can be
enhanced by an increase of the substrate strength because
of a structural transition from a staggered to an aligned
configuration. Furthermore, a reentrant behavior of the MSD
as a function of the substrate potential was found for strongly
coupled systems. This reentrant behavior is induced by a
structural transition from the single-chain to the two-chain
configuration.
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