|   | 
Details
   web
Records
Author Canioni, R.; Roch-Marchal, C.; Sécheresse, F.; Horcajada, P.; Serre, C.; Hardi-Dan, M.; Férey, G.; Grenèche, J.-M.; Lefebvre, F.; Chang, J.-S.; Hwang, Y.-K.; Lebedev, O.; Turner, S.; Van Tendeloo, G.
Title Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe) Type A1 Journal article
Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 21 Issue 4 Pages 1226-1233
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Successful encapsulation of polyoxometalate (POM) within the framework of a mesoporous iron trimesate MIL-100(Fe) sample has been achieved by direct hydrothermal synthesis in the absence of fluorine. XRPD, 31P MAS NMR, IR, EELS, TEM and 57Fe Mössbauer spectrometry corroborate the insertion of POM within the cavities of the MOF. The experimental Mo/Fe ratio is 0.95, in agreement with the maximum theoretical amount of POM loaded within the pores of MIL-100(Fe), based on steric hindrance considerations. The POM-MIL-100(Fe) sample exhibits a pore volume of 0.373 cm3 g−1 and a BET surface area close to 1000 m2 g−1, indicating that small gas molecules can easily diffuse inside the cavities despite the presence of heavy phosphomolybdates. These latter contribute to the decrease in the overall surface area, due to the increase in molar weight, by 65%. Moreover, the resulting Keggin containing MIL-100(Fe) solid is stable in aqueous solution with no POM leaching even after more than 2 months. In addition, no exchange of the Keggin anions by tetrabutylammonium perchlorate in organic media has been observed.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000286110400042 Publication Date 2010-11-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 158 Open Access
Notes Approved (down) Most recent IF: NA
Call Number UA @ lucian @ c:irua:88642 Serial 3145
Permanent link to this record
 

 
Author Colomer, J.-F.; Henrard, L.; Van Tendeloo, G.; Lucas, A.; Lambin, P.
Title Study of the packing of double-walled carbon nanotubes into bundles by transmission electron microscopy and electron diffraction Type A1 Journal article
Year 2004 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 14 Issue 4 Pages 603-606
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000220224100021 Publication Date 2004-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 27 Open Access
Notes Approved (down) Most recent IF: NA
Call Number UA @ lucian @ c:irua:54758 Serial 3339
Permanent link to this record
 

 
Author Veith, G.M.; Lobanov, M.V.; Emge, T.J.; Greenblatt, M.; Croft, M.; Stowasser, F.; Hadermann, J.; Van Tendeloo, G.
Title Synthesis and charactreization of the new Ln(2)FeMoO(7) (Ln = Y, Dy, Ho) compounds Type A1 Journal article
Year 2004 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 14 Issue Pages 1623-1630
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000221507200021 Publication Date 2004-05-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 17 Open Access
Notes Approved (down) Most recent IF: NA
Call Number UA @ lucian @ c:irua:47319 Serial 3421
Permanent link to this record
 

 
Author Abakumov, A.M.; Rossell, M.D.; Seryakov, S.A.; Rozova, M.G.; Markina, M.M.; Van Tendeloo, G.; Antipov, E.V.
Title Synthesis and crystal structure of novel CaRMnSnO6(R = La, Pr, Nd, Sm-Dy) double perovskites Type A1 Journal article
Year 2005 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 15 Issue 46 Pages 4899-4905
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000233439300005 Publication Date 2005-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 8 Open Access
Notes Iap V-1 Approved (down) Most recent IF: NA
Call Number UA @ lucian @ c:irua:56069 Serial 3424
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; d' Hondt, H.; Kalyuzhnaya, A.S.; Rozova, M.G.; Markina, M.M.; Mikheev, M.G.; Tristan, N.; Klingeler, R.; Büchner, B.; Antipov, E.V.
Title Synthesis and crystal structure of the Sr2Al1.07Mn0.93O5 brownmillerite Type A1 Journal article
Year 2007 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 17 Issue 7 Pages 692-698
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000244085100016 Publication Date 2006-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 31 Open Access
Notes Iap V-1 Approved (down) Most recent IF: NA
Call Number UA @ lucian @ c:irua:62061 Serial 3430
Permanent link to this record
 

 
Author Yang, T.; Perkisas, T.; Hadermann, J.; Croft, M.; Ignatov, A.; Van Tendeloo, G.; Greenblatt, M.
Title Synthesis and structure determination of ferromagnetic semiconductors LaAMnSnO6(A = Sr, Ba) Type A1 Journal article
Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 21 Issue 1 Pages 199-205
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract LaAMnSnO(6) (A = Sr, Ba) have been synthesized by high temperature solid-state reactions under dynamic 1% H(2)/Ar flow. Rietveld refinements on room temperature powder X-ray diffraction data indicate that LaSrMnSnO(6) crystallizes in the GdFeO(3)-structure, with space group Pnma and, combined with transmission electron microscopy, LaBaMnSnO(6) in Imma. Both space groups are common in disordered double-perovskites. The Mn(3+) and Sn(4+) ions whose valence states were confirmed by X-ray absorption spectroscopy, are completely disordered over the B-sites and the BO(6) octahedra are slightly distorted. LaAMnSnO(6) are ferromagnetic semiconductors with a T(C) = 83 K for the Sr- and 66 K for the Ba-compound. The title compounds, together with the previously reported LaCaMnSnO(6) provide an interesting example of progression from Pnma to Imma as the tolerance factor increases. An analysis of the relationship between space group and tolerance factor for the series LaAMnMO(6) (A = Ca, Sr, Ba; M = Sn, Ru) provides a better understanding of the symmetry determination for double perovskites.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000285067300025 Publication Date 2010-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes Approved (down) Most recent IF: NA
Call Number UA @ lucian @ c:irua:95527 Serial 3440
Permanent link to this record
 

 
Author Mandal, T.K.; Croft, M.; Hadermann, J.; Van Tendeloo, G.; Stephens, P.W.; Greenblatt, M.
Title La2MnVO6 double perovskite: a structural, magnetic and X-ray absorption investigation Type A1 Journal article
Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 19 Issue 25 Pages 4382-4390
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The synthesis, electron diffraction (ED), synchrotron X-ray and neutron structure, X-ray absorption spectroscopy (XAS) and magnetic property studies of La2MnVO6 double perovskite are described. Analysis of the synchrotron powder X-ray diffraction data for La2MnVO6 indicates a disordered arrangement of Mn and V at the B-site of the perovskite structure. Absence of super-lattice reflections in the ED patterns for La2MnVO6 supports the disordered cation arrangement. Room temperature time-of-flight (TOF) neutron powder diffraction (NPD) data show no evidence of cation ordering, in corroboration with the ED and synchrotron studies (orthorhombic Pnma, a = 5.6097(3), b = 7.8837(5) and c = 5.5668(3) ; 295 K, NPD). A comparison of XAS analyses of La2TVO6 with T = Ni and Co shows T2+ formal oxidation state while the T = Mn material evidences a Mn3+ admixture into a dominantly Mn2+ ground state. V-K edge measurements manifest a mirror image behavior with a V4+ state for T = Ni and Co with a V3+ admixture arising in the T = Mn material. The magnetic susceptibility data for La2MnVO6 show ferromagnetic correlations; the observed effective moment, µeff (5.72 µB) is much smaller than the calculated moment (6.16 µB) based on the spin-only formula for Mn2+ (d5, HS) /V4+ (d1), supportive of the partly oxidized Mn and reduced V scenario (Mn3+/V3+).
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000266989800015 Publication Date 2009-04-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 10 Open Access
Notes Approved (down) Most recent IF: NA
Call Number UA @ lucian @ c:irua:77367 Serial 3540
Permanent link to this record
 

 
Author Grodzinska, D.; Pietra, F.; van Huis, M.A.; Vanmaekelbergh, D.; de Mello Donegá, C.
Title Thermally induced atomic reconstruction of PbSe/CdSe core/shell quantum dots into PbSe/CdSe bi-hemisphere hetero-nanocrystals Type A1 Journal article
Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 21 Issue 31 Pages 11556-11565
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The properties of hetero-nanocrystals (HNCs) depend strongly on the mutual arrangement of the nanoscale components. In this work we have investigated the structural and morphological evolution of colloidal PbSe/CdSe core/shell quantum dots upon annealing under vacuum. Prior to annealing the PbSe core has an approximately octahedral morphology with eight {111} facets, and the CdSe shell has zinc-blende crystal structure. Thermal annealing under vacuum at temperatures between 150 °C and 200 °C induces a structural and morphological reconstruction of the HNCs whereby the PbSe core and the CdSe shell are reorganized into two hemispheres joined by a common {111} Se plane. This thermally induced reconstruction leads to considerable changes in the optical properties of the colloidal PbSe/CdSe HNCs.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000293190200018 Publication Date 2011-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 44 Open Access
Notes Approved (down) Most recent IF: NA
Call Number UA @ lucian @ c:irua:91945 Serial 3632
Permanent link to this record
 

 
Author Mlinar, V.; Peeters, F.M.
Title A three-dimensional model for artificial atoms and molecules: influence of substrate orientation and magnetic field dependence Type A1 Journal article
Year 2007 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 17 Issue 35 Pages 3687-3695
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000249080100013 Publication Date 2007-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 7 Open Access
Notes Approved (down) Most recent IF: NA
Call Number UA @ lucian @ c:irua:66124 Serial 3653
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Three-dimensional modeling of a direct current glow discharge in argon: is it better than one-dimensional modeling? Type A1 Journal article
Year 1997 Publication Fresenius' journal of analytical chemistry Abbreviated Journal Fresen J Anal Chem
Volume 359 Issue Pages 331-337
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos A1997YC02800005 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0937-0633;1432-1130; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 9 Open Access
Notes Approved (down) Most recent IF: NA
Call Number UA @ lucian @ c:irua:19608 Serial 3654
Permanent link to this record
 

 
Author Simon, Q.; Barreca, D.; Gasparotto, A.; Maccato, C.; Montini, T.; Gombac, V.; Fornasiero, P.; Lebedev, O.I.; Turner, S.; Van Tendeloo, G.
Title Vertically oriented CuO/ZnO nanorod arrays : from plasma-assisted synthesis to photocatalytic H2 production Type A1 Journal article
Year 2012 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 22 Issue 23 Pages 11739-11747
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract 1D CuO/ZnO nanocomposites were grown on Si(100) substrates by means of an original two-step synthetic strategy. ZnO nanorod (NR) arrays were initially deposited by plasma enhanced-chemical vapor deposition (PE-CVD) from an ArO2 atmosphere. Subsequently, tailored amounts of CuO were dispersed over zinc oxide matrices by radio frequency (RF)-sputtering of Cu from Ar plasmas, followed by thermal treatment in air. A thorough characterization of the obtained systems was carried out by X-ray photoelectron and X-ray excited-Auger electron spectroscopies (XPS and XE-AES), glancing incidence X-ray diffraction (GIXRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDXS), atomic force microscopy (AFM), transmission electron microscopy (TEM), electron diffraction (ED) and energy filtered-TEM (EF-TEM). Pure and highly oriented CuO/ZnO NR arrays, free from ternary ZnCuO phases and characterized by a copper(II) oxide content controllable as a function of the adopted RF-power, were successfully obtained. Interestingly, the structural relationships between the two oxides at the CuO/ZnO interface were found to depend on the overall CuO loading. The obtained nanocomposites displayed promising photocatalytic performances in H2 production by reforming of ethanolwater solutions under simulated solar illumination, paving the way to the sustainable conversion of solar light into chemical energy.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000304351400046 Publication Date 2012-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 74 Open Access
Notes Approved (down) Most recent IF: NA
Call Number UA @ lucian @ c:irua:98382 Serial 3840
Permanent link to this record
 

 
Author Esken, D.; Noei, H.; Wang, Y.; Wiktor, C.; Turner, S.; Van Tendeloo, G.; Fischer, R.A.
Title ZnO@ZIF-8 : stabilization of quantum confined ZnO nanoparticles by a zinc methylimidazolate framework and their surface structural characterization probed by CO2 adsorption Type A1 Journal article
Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 21 Issue 16 Pages 5907-5915
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microporous and activated zeolitic imidazolate framework (Zn(MeIM)2; MeIM = imidazolate-2-methyl; ZIF-8) was loaded with the MOCVD precursor diethyl zinc [Zn(C2H5)2]. Exposure of ZIF-8 to the vapour of the volatile organometallic molecule resulted in the formation of the inclusion compound [Zn(C2H5)2]0.38@ZIF-8 revealing two precursor molecules per cavity. In a second step the obtained material was treated with oxygen (5 vol% in argon) at various temperatures (oxidative annealing) to achieve the composite material ZnO0.35@ZIF-8. The new material was characterized with powder XRD, FT-IR, UV-vis, solid state NMR, elemental analysis, N2 sorption measurements, and transmission electron microscopy. The data give evidence for the presence of nano-sized ZnO particles stabilized by ZIF-8 showing a blue-shift of the UV-vis absorption caused by quantum size effect (QSE). The surface structure and reactivity of embedded ZnO nanoparticles were characterized via carbon dioxide adsorption at different temperatures monitored by ultra-high vacuum FTIR techniques. It was found that the surface of ZnO nanoparticles is dominated by polar OZnO and ZnZnO facets as well as by defect sites, which all exhibit high reactivity towards CO2 activation forming various adsorbed carbonate and chemisorbed CO2δ− species.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000289260000012 Publication Date 2011-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 76 Open Access
Notes Esteem 026019 Approved (down) Most recent IF: NA
Call Number UA @ lucian @ c:irua:88641 Serial 3936
Permanent link to this record
 

 
Author Vannier, R.-N.; Théry, O.; Kinowski, C.; Huvé, M.; Van Tendeloo, G.; Suard, E.; Abraham, F.
Title Zr substituted bismuth uranate Type A1 Journal article
Year 1999 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 9 Issue Pages 435-443
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000078572900019 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access
Notes Approved (down) Most recent IF: NA
Call Number UA @ lucian @ c:irua:29714 Serial 3937
Permanent link to this record
 

 
Author Smith, J.D.; Bladt, E.; Burkhart, J.A.C.; Winckelmans, N.; Koczkur, K.M.; Ashberry, H.M.; Bals, S.; Skrabalak, S.E.
Title Defect‐Directed Growth of Symmetrically Branched Metal Nanocrystals Type A1 Journal article
Year 2020 Publication Angewandte Chemie (International ed. Print) Abbreviated Journal Angew. Chem.
Volume 132 Issue 132 Pages 953-960
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Branched plasmonic nanocrystals (NCs) have attracted much attention due to electric field enhancements at their tips. Seeded growth provides routes to NCs with defined branching patterns and, in turn, near‐field distributions with defined symmetries. Here, a systematic analysis was undertaken in which seeds containing different distributions of planar defects were used to grow branched NCs in order to understand how their distributions direct the branching. Characterization of the products by multimode electron tomography and analysis of the NC morphologies at different overgrowth stages indicate that the branching patterns are directed by the seed defects, with the emergence of branches from the seed faces consistent with minimizing volumetric strain energy at the expense of surface energy. These results contrast with growth of branched NCs from single‐crystalline seeds and provide a new platform for the synthesis of symmetrically branched plasmonic NCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000505279500063 Publication Date 2020-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0044-8249 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes The authors thank Samantha Harvey for her initial observations of branched structures, Alexander Chen for his help with SAED, the staff of the Nanoscale Characterization Facility (Dr. Yi Yi),Electron Microscopy Center (Dr. David Morgan and Dr. Barry Stein), and Molecular Strucre Center at Indiana University. J.S. recognizes a fellowship provided by the Indiana Space Grant Consortium. E. B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). This project has received funding from the National Science Foundation (award number: 1602476), Research Corporation for Scietific Advancement (2017 Frontiers in Research Excellence and Discovery Award), and the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO).; sygma Approved (down) Most recent IF: NA
Call Number EMAT @ emat @c:irua:166581 Serial 6336
Permanent link to this record
 

 
Author Rumyantseva, M.N.; Vladimirova, S.A.; Platonov, V.B.; Chizhov, A.S.; Batuk, M.; Hadermann, J.; Khmelevsky, N.O.; Gaskov, A.M.
Title Sub-ppm H2S sensing by tubular ZnO-Co3O4 nanofibers Type A1 Journal article
Year 2020 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem
Volume 307 Issue Pages 127624
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Tubular ZnO – Co3O4 nanofibers were co-electrospun from polymer solution containing zinc and cobalt acetates. Phase composition, cobalt electronic state and element distribution in the fibers were investigated by XRD, SEM, HRTEM, HAADF-STEM with EDX mapping, and XPS. Bare ZnO has high selective sensitivity to NO and NO2, while ZnO-Co3O4 composites demonstrate selective sensitivity to H2S in dry and humid air. This effect is discussed in terms of transformation of cobalt oxides into cobalt sulfides and change in the acidity of ZnO oxide surface upon cobalt doping. Reduction in response and recovery time is attributed to the formation of a tubular structure facilitating gas transport through the sensitive layer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000508110400059 Publication Date 2019-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.401 Times cited Open Access Not_Open_Access
Notes This work was supported by RFBR grants No. 18-03-00091 and No. 18-03-00580. Approved (down) Most recent IF: NA
Call Number EMAT @ emat @c:irua:166449 Serial 6343
Permanent link to this record
 

 
Author Biondo, O.; van Deursen, C.F.A.M.; Hughes, A.; van de Steeg, A.; Bongers, W.; van de Sanden, M.C.M.; van Rooij, G.; Bogaerts, A.
Title Avoiding solid carbon deposition in plasma-based dry reforming of methane Type A1 Journal Article
Year 2023 Publication Green Chemistry Abbreviated Journal Green Chem.
Volume 25 Issue 24 Pages 10485-10497
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Solid carbon deposition is a persistent challenge in dry reforming of methane (DRM), affecting both classical and plasma-based processes. In this work, we use a microwave plasma in reverse vortex flow configuration to overcome this issue in CO<sub>2</sub>/CH<sub>4</sub>plasmas. Indeed, this configuration efficiently mitigates carbon deposition, enabling operation even with pure CH<sub>4</sub>feed gas, in contrast to other configurations. At the same time, high reactor performance is achieved, with CO<sub>2</sub>and CH<sub>4</sub>conversions reaching 33% and 44% respectively, at an energy cost of 14 kJ L<sup>−1</sup>for a CO<sub>2</sub> : CH<sub>4</sub>ratio of 1 : 1. Laser scattering and optical emission imaging demonstrate that the shorter residence time in reverse vortex flow lowers the gas temperature in the discharge, facilitating a shift from full to partial CH<sub>4</sub>pyrolysis. This underscores the pivotal role of flow configuration in directing process selectivity, a crucial factor in complex chemistries like CO<sub>2</sub>/CH<sub>4</sub>mixtures and very important for industrial applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001110100100001 Publication Date 2023-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record
Impact Factor 9.8 Times cited Open Access
Notes Universiteit Antwerpen; Nederlandse Organisatie voor Wetenschappelijk Onderzoek; HORIZON EUROPE Marie Sklodowska-Curie Actions, 813393 ; Approved (down) Most recent IF: 9.8; 2023 IF: 9.125
Call Number PLASMANT @ plasmant @c:irua:202138 Serial 8978
Permanent link to this record
 

 
Author Slaets, J.; Aghaei, M.; Ceulemans, S.; Van Alphen, S.; Bogaerts, A.
Title CO2and CH4conversion in “real” gas mixtures in a gliding arc plasmatron: how do N2and O2affect the performance? Type A1 Journal article
Year 2020 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 22 Issue 4 Pages 1366-1377
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper we study dry reforming of methane (DRM) in a gliding arc plasmatron (GAP) in the presence of N<sub>2</sub>and O<sub>2</sub>. N<sub>2</sub>is added to create a stable plasma at equal fractions of CO<sub>2</sub>and CH<sub>4</sub>, and because emissions from industrial plants typically contain N<sub>2</sub>, while O<sub>2</sub>is added to enhance the process. We test different gas mixing ratios to evaluate the conversion and energy cost. We obtain conversions between 31 and 52% for CO<sub>2</sub>and between 55 and 99% for CH<sub>4</sub>, with total energy costs between 3.4 and 5.0 eV per molecule, depending on the gas mixture. This is very competitive when benchmarked with the literature. In addition, we present a chemical kinetics model to obtain deeper insight in the underlying plasma chemistry. This allows determination of the major reaction pathways to convert CO<sub>2</sub>and CH<sub>4</sub>, in the presence of O<sub>2</sub>and N<sub>2</sub>, into CO and H<sub>2</sub>. We show that N<sub>2</sub>assists in the CO<sub>2</sub>conversion, but part of the applied energy is also wasted in N<sub>2</sub>excitation. Adding O<sub>2</sub>enhances the CH<sub>4</sub>conversion, and lowers the energy cost, while the CO<sub>2</sub>conversion remains constant, and only slightly drops at the highest O<sub>2</sub>fractions studied, when CH<sub>4</sub>is fully oxidized into CO<sub>2</sub>.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000518034000032 Publication Date 2020-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited Open Access OpenAccess
Notes H2020 European Research Council, 810182 ; Fonds Wetenschappelijk Onderzoek, GoF9618n 12M7118N ; We acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and the FWO postdoctoral fellowship of M. A. (Grant number 12M7118N). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved (down) Most recent IF: 9.8; 2020 IF: 9.125
Call Number PLASMANT @ plasmant @c:irua:167136 Serial 6339
Permanent link to this record
 

 
Author Rouwenhorst, K.H.R.; Engelmann, Y.; van ‘t Veer, K.; Postma, R.S.; Bogaerts, A.; Lefferts, L.
Title Plasma-driven catalysis: green ammonia synthesis with intermittent electricity Type A1 Journal article
Year 2020 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 22 Issue 19 Pages 6258-6287
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Movement Antwerp (MOVANT)
Abstract Ammonia is one of the most produced chemicals, mainly synthesized from fossil fuels for fertilizer applications. Furthermore, ammonia may be one of the energy carriers of the future, when it is produced from renewable electricity. This has spurred research on alternative technologies for green ammonia production. Research on plasma-driven ammonia synthesis has recently gained traction in academic literature. In the current review, we summarize the literature on plasma-driven ammonia synthesis. We distinguish between mechanisms for ammonia synthesis in the presence of a plasma, with and without a catalyst, for different plasma conditions. Strategies for catalyst design are discussed, as well as the current understanding regarding the potential plasma-catalyst synergies as function of the plasma conditions and their implications on energy efficiency. Finally, we discuss the limitations in currently reported models and experiments, as an outlook for research opportunities for further unravelling the complexities of plasma-catalytic ammonia synthesis, in order to bridge the gap between the currently reported models and experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000575015700002 Publication Date 2020-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited 4 Open Access
Notes ; ; Approved (down) Most recent IF: 9.8; 2020 IF: 9.125
Call Number PLASMANT @ plasmant @c:irua:172671 Serial 6430
Permanent link to this record
 

 
Author Vervloessem, E.; Gorbanev, Y.; Nikiforov, A.; De Geyter, N.; Bogaerts, A.
Title Sustainable NOxproduction from air in pulsed plasma: elucidating the chemistry behind the low energy consumption Type A1 Journal article
Year 2022 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 24 Issue 2 Pages 916-929
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract N-Based fertilisers are paramount to support our still-growing world population. Current industrial N<sub>2</sub>fixation is heavily fossil fuel-dependent, therefore, a lot of work is put into the development of fossil-free pathways. Plasma technology offers a fossil-free and flexible method for N<sub>2</sub>fixation that is compatible with renewable energy sources. We present here a pulsed plasma jet for direct NO<sub><italic>x</italic></sub>production from air. The pulsed power allows for a record-low energy consumption (EC) of 0.42 MJ (mol N)<sup>−1</sup>. This is the lowest reported EC in plasma-based N<sub>2</sub>fixation at atmospheric pressure thus far. We compare our experimental data with plasma chemistry modelling, and obtain very good agreement. Hence, we can use our model to explain the underlying mechanisms responsible for this low EC. The pulsed power and the corresponding pulsed gas temperature are the reason for the very low EC: they provide a strong vibrational–translational non-equilibrium and promote the non-thermal Zeldovich mechanism. This insight is important for the development of the next generation of plasma sources for energy-efficient NO<sub><italic>x</italic></sub>production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000739578400001 Publication Date 2021-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited Open Access Not_Open_Access
Notes H2020 European Research Council, grant agreement no. 810182 – SCOPE ERC Synergy project ; Herculesstichting; Fonds Wetenschappelijk Onderzoek, EOS ID 30505023 FWO grant ID GoF9618n ; Universiteit Antwerpen; This research was supported by the Excellence of Science FWO-FNRS project (NITROPLASM, FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI) and the UAntwerpen. We thank E. H. Choi and coworkers from the Plasma Bioscience Research Center (Korea) for providing the Soft Jet plasma source, as well as K. van’t Veer and C. Verheyen for the fruitful discussion on the electron loss fraction calculations. The graphical abstract was designed using resources from Flaticon.com. Approved (down) Most recent IF: 9.8
Call Number PLASMANT @ plasmant @c:irua:185450 Serial 6906
Permanent link to this record
 

 
Author Windels, S.; Diefenhardt, T.; Jain, N.; Marquez, C.; Bals, S.; Schlummer, M.; De Vos, D.E.
Title Catalytic upcycling of PVC waste-derived phthalate esters into safe, hydrogenated plasticizers Type A1 Journal article
Year 2022 Publication Green chemistry : cutting-edge research for a greener sustainable future Abbreviated Journal Green Chem
Volume 24 Issue 2 Pages 754-766
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Recycling of end-of-life polyvinyl chloride (PVC) calls for solutions to deal with the vast amounts of harmful phthalate plasticizers that have historically been incorporated in PVC. Here, we report on the upcycling of such waste-extracted phthalate esters into analogues of the much safer diisononyl 1,2-cyclohexanedicarboxylate plasticizer (DINCH), via a catalytic one-pot (trans)esterification-hydrogenation process. For most of the virgin phthalates, Ru/Al2O3 is a highly effective hydrogenation catalyst, yielding >99% ring-hydrogenated products under mild reaction conditions (0.1 mol% Ru, 80 degrees C, 50 bar H-2). However, applying this reaction to PVC-extracted phthalates proved problematic, (1) as benzyl phthalates are hydrogenolyzed to benzoic acids that inhibit the Ru-catalyst, and (2) because impurities in the plasticizer extract (PVC, sulfur) further retard the hydrogenation. These complications were solved by coupling the hydrogenation to an in situ (trans)esterification with a higher alcohol, and by pretreating the extract with an activated carbon adsorbent. In this way, a real phthalate extract obtained from post-consumer PVC waste was eventually completely (>99%) hydrogenated to phthalate-free, cycloaliphatic plasticizers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000726865200001 Publication Date 2021-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited 8 Open Access Not_Open_Access
Notes This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement no. 821366 (programma acronym: Circular Flooring). D. E. D. V. thanks FWO for project funding (SBO project S001819N Triple Cycle); N. J. and S. B. acknowledge the financial support from FWO and FNRS (EOS 30489208). Finally, the authors also thank S. Smolders for assistance with the TGA-MS experiments and D. Paredaens for his experimental contribution Approved (down) Most recent IF: 9.8
Call Number UA @ admin @ c:irua:184746 Serial 6958
Permanent link to this record
 

 
Author Pattyn, C.; Maira, N.; Buddhadasa, M.; Vervloessem, E.; Iseni, S.; Roy, N.C.; Remy, A.; Delplancke, M.-P.; De Geyter, N.; Reniers, F.
Title Disproportionation of nitrogen induced by DC plasma-driven electrolysis in a nitrogen atmosphere Type A1 Journal article
Year 2022 Publication Green Chemistry Abbreviated Journal Green Chem
Volume 24 Issue 18 Pages 7100-7112
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nitrogen disproportionation i.e. its simultaneous conversion to compounds of higher (NOx) and lower (NH3) oxidation states in a N-2 DC plasma-driven electrolysis process with a plasma cathode is investigated. This type of plasma-liquid interaction exhibits a growing interest for many applications, in particular nitrogen fixation where it represents a green alternative to the Haber-Bosch process. Optical emission spectroscopy, FTIR and electrochemical sensing systems are used to characterize the gas phase physico-chemistry while the liquid phase is analyzed via ionic chromatography and colorimetric assays. Experiments suggest that lowering the discharge current enhances nitrogen reduction and facilitates the transfer of nitrogen compounds to the liquid phase. Large amounts of water vapor appear to impact the gas discharge physico-chemistry and to favor the vibrational excitation of N-2, a key parameter for an energy-efficient nitrogen fixation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000847733600001 Publication Date 2022-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9262; 1463-9270 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.8 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 9.8
Call Number UA @ admin @ c:irua:190655 Serial 7145
Permanent link to this record
 

 
Author Kerkhofs, S.; Willhammar, T.; Van Den Noortgate, H.; Kirschhock, C.E.A.; Breynaert, E.; Van Tendeloo, G.; Bals, S.; Martens, J.A.
Title Self-Assembly of Pluronic F127—Silica Spherical Core–Shell Nanoparticles in Cubic Close-Packed Structures Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 5161-5169
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A new ordered mesoporous silica material (COK-19) with cubic symmetry is synthesized by silicate polycondensation in a citric acid/citrate buffered micellar solution of Pluronic F127 triblock copolymer near neutral pH. SAXS, nitrogen adsorption, TEM, and electron tomography reveal the final material has a cubic close packed symmetry (Fm3̅m) with isolated spherical mesopores interconnected through micropores. Heating of the synthesis medium from room temperature to 70 °C results in a mesopore size increase from 7.0 to 11.2 nm. Stepwise addition of the silicate source allows isolation of a sequence of intermediates that upon characterization with small-angle X-ray scattering uncovers the formation process via formation and aggregation of individual silica-covered Pluronic micelles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000359499100003 Publication Date 2015-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 39 Open Access OpenAccess
Notes J.A.M. acknowledges the Flemish government for long-term structural funding (Methusalem, METH/08/04). The Belgian government is acknowledged for financing the interuniversity poles of attraction (IAP-PAI, P7/05 FS2). G.V.T., S.B. and T.W. acknowledge financial support from European Research Council (ERC Starting Grant no. 335078-COLOURATOMS). E.B. acknowledges financial support the Flemish FWO for a postdoctoral fellowship (1265013N). The authors gratefully thank Kristof Houthoofd for performing the NMR experiments.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved (down) Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:127758 Serial 3977
Permanent link to this record
 

 
Author Wang, Y.; Sentosun, K.; Li, A.; Coronado-Puchau, M.; Sánchez-Iglesias, A.; Li, S.; Su, X.; Bals, S.; Liz-Marzán, L.M.
Title Engineering Structural Diversity in Gold Nanocrystals by Ligand-Mediated Interface Control Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 8032-8040
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Surface and interface control is fundamentally important for crystal growth engineering, catalysis, surface enhanced spectroscopies, and self-assembly, among other processes and applications. Understanding the role of ligands in regulating surface properties of plasmonic metal nanocrystals during growth has received considerable attention. However, the underlying mechanisms and the diverse functionalities of ligands are yet to be fully addressed. In this contribution,

we report a systematic study of ligand-mediated interface control in seeded growth of gold nanocrystals, leading to diverse and exotic nanostructures with an improved surface enhanced Raman scattering (SERS) activity. Three dimensional transmission electron microscopy (3D TEM) revealed an intriguing gold shell growth process mediated by the bifunctional ligand 1,4-benzenedithiol (BDT), which leads to a unique crystal growth mechanism as compared to other ligands, and subsequently to the concept of interfacial energy control mechanism. Volmer-Weber growth mode was proposed to be responsible for BDT-mediated seeded growth, favoring the strongest interfacial energy and generating an asymmetric island growth pathway with internal crevices/gaps. This additionally favors incorporation of BDT at the plasmonic nanogaps, thereby generating strong SERS activity with a maximum efficiency for a core-semishell configuration obtained along seeded growth. Numerical modeling was used to explain this observation. Interestingly, the same strategy can be used to engineer the structural diversity of this system, by using gold nanoparticle seeds with various sizes and shapes, and varying the [Au3+]/[Au0] ratio. This rendered a series of diverse and exotic plasmonic nanohybrids such as semishell-coated gold nanorods, with embedded Raman-active tags and Janus surface with distinct surface functionalities.

These would greatly enrich the plasmonic nanostructure toolbox for various studies and applications such as anisotropic nanocrystal engineering, SERS, and high-resolution Raman bioimaging or nanoantenna devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366223200023 Publication Date 2015-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 18 Open Access OpenAccess
Notes The authors thank Bart Goris for his help with electron tomography. This work was funded by the European Commission (Grant #310445-2, SAVVY). The authors acknowledge financial support from European Research Council (ERC Advanced Grant # 267867- PLASMAQUO, ERC Starting Grant #335078-COLOURATOMS). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI). Wang Y. and Su X. would like to acknowledge the Agency for Science, Technology and Research (A*STAR), Singapore, for the financial support under the Grant JCO 14302FG096. M. C.-P. acknowledges an FPU scholarship from the Spanish Ministry of Education, Culture and Sports.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved (down) Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:129598 c:irua:129598 Serial 3972
Permanent link to this record
 

 
Author Batuk, M.; Batuk, D.; Tsirlin, A.A.; Filimonov, D.S.; Sheptyakov, D.V.; Frontzek, M.; Hadermann, J.; Abakumov, A.M.
Title Layered oxychlorides [PbBiO2]An+1BnO3n-1Cl2(A = Pb/Bi, B = Fe/Ti) : intergrowth of the hematophanite and sillen phases Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 2946-2956
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract New layered structures corresponding to the general formula [PbBiO2]A(n+1)B(n)O(3n-1)Cl(2) Were prepared. Pb5BiFe3O10Cl2 (n = 3) and Pb5Bi2Fe4O13Cl2 (n = 4) are built as a stacking of truncated A(n+1)B(n)O(3n-1) perovskite blocks and alpha-PbO-type [A(2)O(2)](2+) (A = Pb, Bi) blocks combined with chlorine sheets. The alternation of these structural blocks can be represented as an intergrowth between the hematophanite and Sullen-type structural blocks. The crystal and-Magnetic structures of Pb5BiFe3O10Cl2 and Pb5Bi2Fe4O13Cl2 were investigated in the temperature range of 1.5-700 K using X-ray and neutron powder diffraction, transmission electron microscopy and Fe-57 Mossbauer spectroscopy. Both compounds crystallize in the I4/mmm space group with the unit cell parameters a approximate to a(p) approximate to 3.92 angstrom (a unit-cell parameter of the perovskite-structure), c approximate to 43.0 angstrom for the n = 3 member and c approximate to 53.5 angstrom for the n = 4 member. Despite the large separation between the slabs containing the Fe3+ ions (nearly 14 angstrom), long-range antiferromagnetic order sets in below similar to 600 K with the G-type arrangement of the Fe magnetic moments aligned along the c-axis. The possibility of mixing d(0) and d(n) cations at the B sublattice of these structures was also demonstrated by preparing the Ti-substituted n = 4 member Pb6BiFe3TiO13Cl2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353865800028 Publication Date 2015-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 11 Open Access
Notes Approved (down) Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:126060 Serial 1807
Permanent link to this record
 

 
Author van der Stam, W.; Berends, A.C.; Rabouw, F.T.; Willhammar, T.; Ke, X.; Meeldijk, J.D.; Bals, S.; de Donega, C.M.
Title Luminescent CuInS2 quantum dots by partial cation exchange in Cu2-xS nanocrystals Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 621-628
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Here, we show successful partial cation exchange reactions in Cu2-xS nanocrystals (NCs) yielding luminescent CuInS2 (CIS) NCs. Our approach of mild reaction conditions ensures slow Cu extraction rates, which results in a balance with the slow In incorporation rate. With this method, we obtain CIS NCs with photoluminescence (PL) far in the near-infrared (NIR), which cannot be directly synthesized by currently available synthesis protocols. We discuss the factors that favor partial, self-limited cation exchange from Cu2-xS to CIS NCs, rather than complete cation exchange to In2S3. The product CIS NCs have the wurtzite crystal structure, which is understood in terms of conservation of the hexagonal close packing of the anionic sublattice of the parent NCs into the product NCs. These results are an important step toward the design of CIS NCs with sizes and shapes that are not attainable by direct synthesis protocols and may thus impact a number of potential applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000348618400028 Publication Date 2014-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 119 Open Access OpenAccess
Notes 335078 Colouratom; 262348 Esmi; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved (down) Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:125291 Serial 1858
Permanent link to this record
 

 
Author McCalla, E.; Abakumov, A.; Rousse, G.; Reynaud, M.; Sougrati, M.T.; Budic, B.; Mahmoud, A.; Dominko, R.; Van Tendeloo, G.; Hermann, R.P.; Tarascon, J.M.;
Title Novel complex stacking of fully-ordered transition metal layers in Li4FeSbO6 materials Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 1699-1708
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract As part of a broad project to explore Li4MM'O-6 materials (with M and M' being selected from a wide variety of metals) as positive electrode materials for Li-ion batteries, the structures of Li4FeSbO6 materials with both stoichiometric and slightly deficient lithium contents are studied here. For lithium content varying from 3.8 to 4.0, the color changes from yellow to black and extra superstructure peaks are seen in the XRD patterns. These extra peaks appear as satellites around the four superstructure peaks affected by the stacking of the transition metal atoms. Refinements of both XRD and neutron scattering patterns show a nearly perfect ordering of Li, Fe, and Sb in the transition metal layers of all samples, although these refinements must take the stacking faults into account in order to extract information about the structure of the TM layers. The structure of the most lithium rich sample, where the satellite superstructure peaks are seen, was determined with the help of HRTEM, XRD, and neutron scattering. The satellites arise due to a new stacking sequence where not all transition metal layers are identical but instead two slightly different compositions stack in an AABB sequence giving a unit cell that is four times larger than normal for such monoclinic layered materials. The more lithium deficient samples are found to contain metal site vacancies based on elemental analysis and Mossbauer spectroscopy results. The significant changes in physical properties are attributed to the presence of these vacancies. This study illustrates the great importance of carefully determining the final compositions in these materials, as very small differences in compositions may have large impacts on structures and properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000350919000032 Publication Date 2015-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 22 Open Access
Notes Approved (down) Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:125469 Serial 2373
Permanent link to this record
 

 
Author van der Stam, W.; Akkerman, Q.A.; Ke, X.; van Huis, M.A.; Bals, S.; de Donega, C.M.
Title Solution-processable ultrathin size- and shape-controlled colloidal Cu2-xS nanosheets Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 283-291
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ultrathin two-dimensional (2D) nanosheets (NSs) possess extraordinary properties that are attractive for both fundamental studies and technological devices. Solution-based bottom-up methods are emerging as promising routes to produce free-standing NSs, but the synthesis of colloidal NSs with well-defined size and shape has remained a major challenge. In this work, we report a novel method that yields 2 nm thick colloidal Cu2-xS NSs with well-defined shape (triangular or hexagonal) and size (100 nm to 3 mu m). The key feature of our approach is the use of a synergistic interaction between halides (Br or Cl) and copper-thiolate metal-organic frameworks to create a template that imposes 2D constraints on the Cu-catalyzed C-S thermolysis, resulting in nucleation and growth of colloidal 2D Cu2-xS NSs. Moreover, the NS composition can be postsynthetically tailored by exploiting topotactic cation exchange reactions. This is illustrated by converting the Cu2-xS NSs into ZnS and CdS NSs while preserving their size and shape. The method presented here thus holds great promise as a route to solution-processable compositionally diverse ultrathin colloidal NSs with well-defined shape and size.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000348085300036 Publication Date 2014-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 68 Open Access OpenAccess
Notes 335078 Colouratom; 246791 Countatoms; 312483 Esteem2; esteem2ta; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved (down) Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:123865 c:irua:123865 Serial 3052
Permanent link to this record
 

 
Author Wolf, D.; Rodriguez, L.A.; Béché, A.; Javon, E.; Serrano, L.; Magen, C.; Gatel, C.; Lubk, A.; Lichte, H.; Bals, S.; Van Tendeloo, G.; Fernández-Pacheco, A.; De Teresa, J.M.; Snoeck, E.
Title 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 6771-6778
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap, and carries great potential to impact areas such as data storage, sensing and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nanometers by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic non-planar nanodevices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000362920700037 Publication Date 2015-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 50 Open Access OpenAccess
Notes This work was supported by the European Union under the Seventh Framework Program under a contract for an Inte-grated Infrastructure Initiative Reference 312483-ESTEEM2. S.B. and A.B. gratefully acknowledge funding by ERC Starting grants number 335078 COLOURATOMS and number 278510 VORTEX. AF-P acknowledges an EPSRC Early Career fellowship and support from the Winton Foundation. E.S., C.G. and L.A. R. acknowledge the French ANR program for support though the project EMMA.; esteem2jra4; ECASJO;; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved (down) Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:129180 c:irua:129180 c:irua:129180 Serial 3950
Permanent link to this record
 

 
Author Morozov, V.A.; Arakcheeva, A.V.; Pattison, P.; Meert, K.W.; Smet, P.F.; Poelman, D.; Gauquelin, N.; Verbeeck, J.; Abakumov, A.M.; Hadermann, J.
Title KEu(MoO4)2 : polymorphism, structures, and luminescent properties Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 5519-5530
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper, with the example of two different polymorphs of KEu(MoO4)2, the influence of the ordering of the A-cations on the luminescent properties in scheelite related compounds (A′,A″)n[(B′,B″)O4]m is investigated. The polymorphs were synthesized using a solid state method. The study confirmed the existence of only two polymorphic forms at annealing temperature range 9231203 K and ambient pressure: a low temperature anorthic α-phase and a monoclinic high temperature β-phase with an incommensurately modulated structure. The structures of both polymorphs were solved using transmission electron microscopy and refined from synchrotron powder X-ray diffraction data. The monoclinic β-KEu(MoO4)2 has a (3+1)-dimensional incommensurately modulated structure (superspace group I2/b(αβ0)00, a = 5.52645(4) Å, b = 5.28277(4) Å, c = 11.73797(8) Å, γ = 91.2189(4)o, q = 0.56821(2)a*0.12388(3)b*), whereas the anorthic α-phase is (3+1)-dimensional commensurately modulated (superspace group I1̅(αβγ)0, a = 5.58727(22) Å, b = 5.29188(18)Å, c = 11.7120(4) Å, α = 90.485(3)o, β = 88.074(3)o, γ = 91.0270(23)o, q = 1/2a* + 1/2c*). In both cases the modulation arises due to Eu/K cation ordering at the A site: the formation of a 2-dimensional Eu3+ network is characteristic for the α-phase, while a 3-dimensional Eu3+-framework is observed for the β-phase structure. The luminescent properties of KEu(MoO4)2 samples prepared under different annealing conditions were measured, and the relation between their optical properties and their structures is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000360323700011 Publication Date 2015-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 26 Open Access
Notes 278510 Vortex; Fwo G039211n; G004413n ECASJO_; Approved (down) Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:127244 Serial 3537
Permanent link to this record
 

 
Author Sun, M.; Rousse, G.; Abakumov, A.M.; Saubanere, M.; Doublet, M.-L.; Rodriguez-Carvajal, J.; Van Tendeloo, G.; Tarascon, J.-M.
Title Li2Cu2O(SO4)2: a possible electrode for sustainable Li-based batteries showing a 4.7 V redox activity vs Li+/Li0 Type A1 Journal article
Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 27 Issue 27 Pages 3077-3087
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Li-ion batteries rely on the use of insertion positive electrodes with performances scaling with the redox potential of the 31) metals accompanying Liuptake/removal. Although not commonly studied, the Cu2+/Cu3+ redox potential has been predicted from theoretical calculations to possibly offer a high operating voltage redox couple. We herein report the synthesis and crystal structure of a hitherto-unknown oxysulfate phase, Li2Cu2O(SO4)(2), which contains infinite edgesharing CuO4 chains and presents attractive electrochemical redox activity with respect to Li+/Li, namely amphoteric characteristics. Li2Cu2O(SO4)(2) shows redox activity at 4.7 V vs Li+/Li corresponding to the oxidation of Cu2+ to Cu3+ enlisting ligand holes and associated with the reversible uptake-removal of 0.3 Li. Upon reduction, this compound reversibly uptakes similar to 2 Li at an average potential of about 2.5 V vs Li+/Li, associated with the Cu2+/Cu+ redox couple. The mechanism of the reactivity upon reduction is discussed in detail, with particular attention to the occasional appearance of an oscillation wave in the discharge profile. Our work demonstrates that Cu-based compounds can indeed be fertile scientific ground in the search for new high-energy-density electrodes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000353865800043 Publication Date 2015-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 20 Open Access
Notes Approved (down) Most recent IF: 9.466; 2015 IF: 8.354
Call Number c:irua:126061 Serial 3541
Permanent link to this record