toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Xu, X.; Jones, M.A.; Cassidy, S.J.; Manuel, P.; Orlandi, F.; Batuk, M.; Hadermann, J.; Clarke, S.J. pdf  url
doi  openurl
  Title Magnetic Ordering in the Layered Cr(II) Oxide Arsenides Sr2CrO2Cr2As2and Ba2CrO2Cr2As2 Type A1 Journal article
  Year 2020 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 59 Issue 21 Pages 15898-15912  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sr2CrO2Cr2As2 and Ba2CrO2Cr2As2 with Cr2+ ions in CrO2 sheets and in CrAs layers crystallize with the Sr2Mn3Sb2O2 structure (space group I4/mmm, Z = 2) and lattice parameters a = 4.00800(2) Å, c = 18.8214(1) Å (Sr2CrO2Cr2As2) and a = 4.05506(2) Å, c = 20.5637(1) Å (Ba2CrO2Cr2As2) at room temperature. Powder neutron diffraction reveals checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the arsenide layers below TN1Sr, of 600(10) K (Sr2CrO2Cr2As2) and TN1Ba 465(5) K (Ba2CrO2Cr2As2) with the moments initially directed perpendicular to the layers in both compounds. Checkerboard-type antiferromagnetic ordering of the Cr2+ ions in the oxide layer below 230(5) K for Ba2CrO2Cr2As2 occurs with these moments also perpendicular to the layers, consistent with the orientation preferences of d4 moments in the two layers. In contrast, below 330(5) K in Sr2CrO2Cr2As2, the oxide layer Cr2+ moments are initially oriented in the CrO2 plane; but on further cooling, these moments rotate to become perpendicular to the CrO2 planes, while the moments in the arsenide layers rotate by 90° with the moments on the two sublattices remaining orthogonal throughout [behavior recently reported independently by Liu et al. [Liu et al. Phys. Rev. B 2018, 98, 134416]]. In Sr2CrO2Cr2As2, electron diffraction and high resolution powder X-ray diffraction data show no evidence for a structural distortion that would allow the two Cr2+ sublattices to couple, but high resolution neutron powder diffraction data suggest a small incommensurability between the magnetic structure and the crystal structure, which may account for the coupling of the two sublattices and the observed spin reorientation. The saturation values of the Cr2+ moments in the CrO2 layers (3.34(1) μB (for Sr2CrO2Cr2As2) and 3.30(1) μB (for Ba2CrO2Cr2As2)) are larger than those in the CrAs layers (2.68(1) μB for Sr2CrO2Cr2As2 and 2.298(8) μB for Ba2CrO2Cr2As2) reflecting greater covalency in the arsenide layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000588738100035 Publication Date 2020-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes We thank the UK EPSRC (EP/M020517/1 and EP/P018874/ 1) and the Leverhulme Trust (RPG-2014-221) for funding and the ISIS pulsed neutron and muon source (RB1610357 and RB1700075) and the Diamond Light Source Ltd. (EE13284 and EE18786) for the award of beam time. We thank Dr. A. Baker and Dr. C. Murray for support on I11. Approved (up) Most recent IF: 4.6; 2020 IF: 4.857  
  Call Number EMAT @ emat @c:irua:176058 Serial 6704  
Permanent link to this record
 

 
Author Skaggs, C.M.; Kang, C.-J.; Perez, C.J.; Hadermann, J.; Emge, T.J.; Frank, C.E.; Pak, C.; Lapidus, S.H.; Walker, D.; Kotliar, G.; Kauzlarich, S.M.; Tan, X.; Greenblatt, M. pdf  url
doi  openurl
  Title Ambient and high pressure CuNiSb₂ : metal-ordered and metal-disordered NiAs-type derivative pnictides Type A1 Journal article
  Year 2020 Publication Inorganic Chemistry Abbreviated Journal Inorg Chem  
  Volume 59 Issue 19 Pages 14058-14069  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The mineral Zlatogorite, CuNiSb2, was synthesized in the laboratory for the first time by annealing elements at ambient pressure (CuNiSb2-AP). Rietveld refinement of synchrotron powder X-ray diffraction data indicates that CuNiSb2-AP crystallizes in the NiAs-derived structure (P (3) over bar m1, #164) with Cu and Ni ordering. The structure consists of alternate NiSb6 and CuSb6 octahedral layers via face-sharing. The formation of such structure instead of metal disordered NiAs-type structure (P6(3)/mmc, #194) is validated by the lower energy of the ordered phase by first-principle calculations. Interatomic crystal orbital Hamilton population, electron localization function, and charge density analysis reveal strong Ni-Sb, Cu-Sb, and Cu-Ni bonding and long weak Sb-Sb interactions in CuNiSb2-AP. The magnetic measurement indicates that CuNiSb2-AP is Pauli paramagnetic. First-principle calculations and experimental electrical resistivity measurements reveal that CuNiSb2-AP is a metal. The low Seebeck coefficient and large thermal conductivity suggest that CuNiSb2 is not a potential thermoelectric material. Single crystals were grown by chemical vapor transport. The high pressure sample (CuNiSb2-8 GPa) was prepared by pressing CuNiSb2-AP at 700 degrees C and 8 GPa. However, the structures of single crystal and CuNiSb2-8 GPa are best fit with a disordered metal structure in the P (3) over bar m1 space group, corroborated by transmission electron microscopy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000580381700028 Publication Date 2020-09-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.6; 2020 IF: 4.857  
  Call Number UA @ admin @ c:irua:174331 Serial 6714  
Permanent link to this record
 

 
Author Avranovich Clerici, E.; De Meyer, S.; Vanmeert, F.; Legrand, S.; Monico, L.; Miliani, C.; Janssens, K. url  doi
openurl 
  Title Multi-scale X-ray imaging of the pigment discoloration processes triggered by chlorine compounds in the Upper Basilica of Saint Francis of Assisi Type A1 Journal article
  Year 2023 Publication Molecules: a journal of synthetic chemistry and natural product chemistry Abbreviated Journal  
  Volume 28 Issue 16 Pages 6106-6123  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract In this paper, the chromatic alteration of various types of paints, present on mural painting fragments derived from the vaults of The Upper Basilica of Saint Francis of Assisi in Italy (12th-13th century), is studied using synchrotron radiation. Six painted mural fragments, several square centimeters in size, were available for analysis, originating from the ceiling paintings attributed to Cimabue and Giotto; they correspond to originally white, blue/green, and brown/yellow/orange areas showing discoloration. As well as collecting macroscopic X-ray fluorescence and diffraction maps from the entire fragments in the laboratory and at the SOLEIL synchrotron, corresponding paint cross-sections were also analyzed using microscopic X-ray fluorescence and powder diffraction mapping at the PETRA-III synchrotron. Numerous secondary products were observed on the painted surfaces, such as (a) copper tri-hydroxychloride in green/blue areas; (b) corderoite and calomel in vermillion red/cinnabar-rich paints; (c) plattnerite and/or scrutinyite assumed to be oxidation products of (hydro)cerussite (2PbCO(3)center dot Pb(OH)(2)) in the white areas, and (d) the calcium oxalates whewellite and weddellite. An extensive presence of chlorinated metal salts points to the central role of chlorine-containing compounds during the degradation of the 800-year-old paint, leading to, among other things, the formation of the rare mineral cumengeite (21PbCl(2)center dot 20Cu(OH) (2) center dot 6H(2)O).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001056388600001 Publication Date 2023-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1420-3049 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.6; 2023 IF: 2.861  
  Call Number UA @ admin @ c:irua:199265 Serial 8902  
Permanent link to this record
 

 
Author Annys, A.; Jannis, D.; Verbeeck, J.; Annys, A.; Jannis, D.; Verbeeck, J. url  doi
openurl 
  Title Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy Type A1 Journal article
  Year 2023 Publication Scientific reports Abbreviated Journal  
  Volume 13 Issue 1 Pages 13724  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Electron energy loss spectroscopy (EELS) is a well established technique in electron microscopy that yields information on the elemental content of a sample in a very direct manner. One of the persisting limitations of EELS is the requirement for manual identification of core-loss edges and their corresponding elements. This can be especially bothersome in spectrum imaging, where a large amount of spectra are recorded when spatially scanning over a sample area. This paper introduces a synthetic dataset with 736,000 labeled EELS spectra, computed from available generalized oscillator strength tables, that represents 107 K, L, M or N core-loss edges and 80 chemical elements. Generic lifetime broadened peaks are used to mimic the fine structure due to band structure effects present in experimental core-loss edges. The proposed dataset is used to train and evaluate a series of neural network architectures, being a multilayer perceptron, a convolutional neural network, a U-Net, a residual neural network, a vision transformer and a compact convolutional transformer. An ensemble of neural networks is used to further increase performance. The ensemble network is used to demonstrate fully automated elemental mapping in a spectrum image, both by directly mapping the predicted elemental content and by using the predicted content as input for a physical model-based mapping.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001052937600046 Publication Date 2023-08-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes A.A. would like to acknowledge the resources and services used in this work provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. J.V. acknowledges the IMPRESS project. The IMPRESS project has received funding from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. Approved (up) Most recent IF: 4.6; 2023 IF: 4.259  
  Call Number UA @ admin @ c:irua:198647 Serial 8846  
Permanent link to this record
 

 
Author Soltan, S.; Macke, S.; Ilse, S.E.; Pennycook, T.; Zhang, Z.L.; Christiani, G.; Benckiser, E.; Schuetz, G.; Goering, E. url  doi
openurl 
  Title Ferromagnetic order controlled by the magnetic interface of LaNiO3/La2/3Ca1/3MnO3 superlattices Type A1 Journal article
  Year 2023 Publication Scientific reports Abbreviated Journal  
  Volume 13 Issue 1 Pages 1-9  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Interface engineering in complex oxide superlattices is a growing field, enabling manipulation of the exceptional properties of these materials, and also providing access to new phases and emergent physical phenomena. Here we demonstrate how interfacial interactions can induce a complex charge and spin structure in a bulk paramagnetic material. We investigate a superlattice (SLs) consisting of paramagnetic LaNiO3 (LNO) and highly spin-polarized ferromagnetic La2/3Ca1/3MnO3 (LCMO), grown on SrTiO3 (001) substrate. We observed emerging magnetism in LNO through an exchange bias mechanism at the interfaces in X-ray resonant magnetic reflectivity. We find non-symmetric interface induced magnetization profiles in LNO and LCMO which we relate to a periodic complex charge and spin superstructure. High resolution scanning transmission electron microscopy images reveal that the upper and lower interfaces exhibit no significant structural variations. The different long range magnetic order emerging in LNO layers demonstrates the enormous potential of interfacial reconstruction as a tool for tailored electronic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000985158100013 Publication Date 2023-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access OpenAccess  
  Notes Approved (up) Most recent IF: 4.6; 2023 IF: 4.259  
  Call Number UA @ admin @ c:irua:197426 Serial 8867  
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Temst, K.; Vandenberghe, W.G.; Sorée, B. doi  openurl
  Title Atomistic modeling of spin and electron dynamics in two-dimensional magnets switched by two-dimensional topological insulators Type A1 Journal article
  Year 2023 Publication Physical review applied Abbreviated Journal  
  Volume 19 Issue 1 Pages 014040-14049  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract To design fast memory devices, we need material combinations that can facilitate fast read and write operations. We present a heterostructure comprising a two-dimensional (2D) magnet and a 2D topological insulator (TI) as a viable option for designing fast memory devices. We theoretically model the spin-charge dynamics between 2D magnets and 2D TIs. Using the adiabatic approximation, we combine the nonequi-librium Green's function method for spin-dependent electron transport and a time-quantified Monte Carlo method for simulating magnetization dynamics. We show that it is possible to switch a magnetic domain of a ferromagnet using the spin torque from spin-polarized edge states of a 2D TI. We show further that the switching of 2D magnets by TIs is strongly dependent on the interface exchange (Jint), and an opti-mal interface exchange, is required for efficient switching. Finally, we compare experimentally grown Cr compounds and show that Cr compounds with higher anisotropy (such as CrI3) result in a lower switching speed but a more stable magnetic order.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000920227500002 Publication Date 2023-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 4.6; 2023 IF: 4.808  
  Call Number UA @ admin @ c:irua:194312 Serial 7283  
Permanent link to this record
 

 
Author Foltyn, M.; Norowski, K.; Wyszynski, M.J.; De Arruda, A.S.; Milošević, M.V.; Zgirski, M. doi  openurl
  Title Probing confined vortices with a superconducting nanobridge Type A1 Journal article
  Year 2023 Publication Physical review applied Abbreviated Journal  
  Volume 19 Issue 4 Pages 044073-12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We realize a superconducting nanodevice in which vortex traps in the form of an aluminum square are integrated with a Dayem nanobridge. We perform field cooling of the traps arriving to different vortex configurations, dependent on the applied magnetic field, to demonstrate that the switching current of the bridge is highly sensitive to the presence and location of vortices in the trap. Our measurements exhibit unprecedented precision and ability to detect the first and successive vortex entries into all fabricated traps, from few hundred nm to 2 mu m in size. The experimental results are corroborated by Ginzburg-Landau simulations, which reveal the subtle yet crucial changes in the density of the superconducting condensate in the vicinity of the bridge with every additional vortex entry and relocation inside the trap. An ease of integration and simplicity make our design a convenient platform for studying dynamics of vortices in strongly confining geometries, involving a promise to manipulate vortex states electronically with simultaneous in situ control and monitoring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000980861100007 Publication Date 2023-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 4.6; 2023 IF: 4.808  
  Call Number UA @ admin @ c:irua:197356 Serial 8918  
Permanent link to this record
 

 
Author Akande, S.O.; Samanta, B.; Sevik, C.; Cakir, D. doi  openurl
  Title First-principles investigation of mechanical and thermal properties of M Al B (M = Mo, W), Cr₂ AlB₂, and Ti₂ In B₂ Type A1 Journal article
  Year 2023 Publication Physical review applied Abbreviated Journal  
  Volume 20 Issue 4 Pages 044064-17  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The atomically laminated layered ternary transition-metal borides (the MAB phases) have demonstrated outstanding properties and have been applied in various fields. Understanding their thermal and mechanical properties is critical to determining their applicability in various fields such as high-temperature applications. To achieve this, we conducted first-principles calculations based on density-functional theory and the quasiharmonic approximation to determine the thermal expansion coefficients, Gruneisen parameters, bulk moduli, hardness, thermal conductivity, electron-phonon coupling parameters, and the structural and vibrational properties of MoAlB, WAlB, Cr2AlB2, and Ti2InB2. We found varying degrees of anisotropy in the thermal expansion and mechanical properties in spite of similarities in their crystal structures. MoAlB has a mild degree of anisotropy in its thermal expansion coefficient (TEC), while Cr2AlB2 and WAlB display the highest level of TEC anisotropy. We assessed various empirical models to calculate hardness and thermal conductivity, and correlated the calculated values with the material properties such as elastic moduli, Gruneisen parameter, Debye temperature, and type of bonding. Owing to their higher Gruneisen parameters, implying a greater degree of anharmonicity in lattice vibrations and lower phonon group velocities, MoAlB and WAlB have significantly lower lattice thermal conductivity values than those of Cr2AlB2 and Ti2InB2. The hardness and lattice thermal conductivity of MAB phases can be predicted with high accuracy if one utilizes an appropriate model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001106456600003 Publication Date 2023-10-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access  
  Notes Approved (up) Most recent IF: 4.6; 2023 IF: 4.808  
  Call Number UA @ admin @ c:irua:202078 Serial 9037  
Permanent link to this record
 

 
Author Gamon, J.; Bassat, J.-M.; Villesuzanne, A.; Duttine, M.; Batuk, M.; Vandemeulebroucke, D.; Hadermann, J.; Alassani, F.; Weill, F.; Durand, E.; Demourgues, A. pdf  doi
openurl 
  Title Impact of anionic ordering on the iron site distribution and valence states in oxyfluoride Sr2FeO3+xF1-x(x=0.08, 0.2) with a layered Perovskite network Type A1 Journal article
  Year 2023 Publication Inorganic chemistry Abbreviated Journal  
  Volume 62 Issue 27 Pages 10822-10832  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sr2FeO3+x F1-x (x = 0.08, 0.2), an n = 1 Ruddlesden-Popperphase, was synthesized from the oxidationof Sr2FeO3F in air at high temperature followinga fluorine for oxygen substitution and Fe3+ to Fe4+ oxidation. A structural investigation of both compounds was performedusing complementary and high-resolution techniques (Synchrotron X-rayand electron diffraction, Mo''ssbauer spectroscopy, HR-STEM)coupled to DFT calculation. This study reveals that oxidation leadsto a high degree of apical anion disorder coupled to antiphase boundaries. Sr2FeO3F, an oxyfluoride compoundwith an n = 1 Ruddlesden-Popper structure,was identifiedas a potential interesting mixed ionic and electronic conductor (MIEC).The phase can be synthesized under a range of different pO(2) atmospheres, leading to various degrees of fluorinefor oxygen substitution and Fe4+ content. A structuralinvestigation and thorough comparison of both argon- and air-synthesizedcompounds were performed by combining high-resolution X-ray and electrondiffraction, high-resolution scanning transmission electron microscopy,Mo''ssbauer spectroscopy, and DFT calculations. While the argon-synthesizedphase shows a well-behaved O/F ordered structure, this study revealedthat oxidation leads to averaged large-scale anionic disorder on theapical site. In the more oxidized Sr2FeO3.2F0.8 oxyfluoride, containing 20% of Fe4+, two differentFe positions can be identified with a 32%/68% occupancy (P4/nmm space group). This originates due to the presenceof antiphase boundaries between ordered domains within the grains.Relations between site distortion and valence states as well as stabilityof apical anionic sites (O vs F) are discussed. This study paves theway for further studies on both ionic and electronic transport propertiesof Sr2FeO3.2F0.8 and its use in MIEC-baseddevices, such as solid oxide fuel cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001018974700001 Publication Date 2023-06-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access Not_Open_Access  
  Notes Approved (up) Most recent IF: 4.6; 2023 IF: 4.857  
  Call Number UA @ admin @ c:irua:197789 Serial 8881  
Permanent link to this record
 

 
Author Luo, Y.; He, Y.; Ding, Y.; Zuo, L.; Zhong, C.; Ma, Y.; Sun, M. pdf  doi
openurl 
  Title Defective biphenylene as high-efficiency hydrogen evolution catalysts Type A1 Journal article
  Year 2023 Publication Inorganic chemistry Abbreviated Journal  
  Volume 63 Issue 2 Pages 1136-1141  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrocatalysts play a pivotal role in advancing the application of water splitting for hydrogen production. This research unveils the potential of defective biphenylenes as high-efficiency catalysts for the hydrogen evolution reaction. Using first-principles simulations, we systematically investigated the structure, stability, and catalytic performance of defective biphenylenes. Our findings unveil that defect engineering significantly enhances the electrocatalytic activity for hydrogen evolution. Specifically, biphenylene with a double-vacancy defect exhibits an outstanding Gibbs free energy of -0.08 eV, surpassing that of Pt, accompanied by a remarkable exchange current density of -3.08 A cm(-2), also surpassing that of Pt. Furthermore, we find the preference for the Volmer-Heyrovsky mechanism in the hydrogen evolution reaction, with a low energy barrier of 0.80 eV. This research provides a promising avenue for developing novel metal-free electrocatalysts for water splitting with earth-abundant carbon elements, making a significant step toward sustainable hydrogen production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001143581300001 Publication Date 2023-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.6 Times cited Open Access  
  Notes Approved (up) Most recent IF: 4.6; 2023 IF: 4.857  
  Call Number UA @ admin @ c:irua:202780 Serial 9018  
Permanent link to this record
 

 
Author Vermeulen, B.B.; Monteiro, M.G.; Giuliano, D.; Sorée, B.; Couet, S.; Temst, K.; Nguyen, V.D. doi  openurl
  Title Magnetization-switching dynamics driven by chiral coupling Type A1 Journal article
  Year 2024 Publication Physical review applied Abbreviated Journal  
  Volume 21 Issue 2 Pages 024050-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Dzyaloshinskii-Moriya interaction (DMI) is known to play a central role in stabilizing chiral spin textures such as skyrmions and domain walls (DWs). Electrical manipulation of DW and skyrmion motion offers possibilities for next-generation, scalable and energy-efficient spintronic devices. However, achieving the full potential of these nanoscale devices requires overcoming several challenges, including reliable electrical write and read techniques for these magnetic objects, and addressing pinning and Joule-heating concerns. Here, through micromagnetic simulations and analytical modeling, we show that DMI can directly induce magnetization switching of a nanomagnet with perpendicular magnetic anisotropy (PMA). We find that the switching is driven by the interplay between the DMI-induced magnetic frustration and the PMA. By introducing magnetic tunnel junctions to electrically access and control the magnetization direction of the PMA nanomagnet, we first show the potential of this concept to enable high-density fieldfree spin-orbit torque magnetic random-access memory. Ultimately, we demonstrate that it offers a way of transferring and processing spin information for logic operation without relying on current-driven DW or skyrmion motion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001187487900001 Publication Date 2024-02-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited Open Access  
  Notes Approved (up) Most recent IF: 4.6; 2024 IF: 4.808  
  Call Number UA @ admin @ c:irua:205518 Serial 9157  
Permanent link to this record
 

 
Author Yusupov, M.; Van der Paal, J.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes Type A1 Journal article
  Year 2017 Publication Biochimica et biophysica acta : G : general subjects Abbreviated Journal Bba-Gen Subjects  
  Volume 1861 Issue 1861 Pages 839-847  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Background: Strong electric fields are knownto affect cell membrane permeability,which can be applied for therapeutic purposes, e.g., in cancer therapy. A synergistic enhancement of this effect may be accomplished by the presence of reactive oxygen species (ROS), as generated in cold atmospheric plasmas. Little is known about the synergy between lipid oxidation by ROS and the electric field, nor on howthis affects the cell membrane permeability.

Method: We here conduct molecular dynamics simulations to elucidate the dynamics of the permeation process under the influence of combined lipid oxidation and electroporation. A phospholipid bilayer (PLB), consisting of di-oleoyl-phosphatidylcholine molecules covered with water layers, is used as a model system for the plasma membrane.

Results and conclusions:Weshow howoxidation of the lipids in the PLB leads to an increase of the permeability of the bilayer to ROS, although the permeation free energy barriers still remain relatively high. More importantly, oxidation of the lipids results in a drop of the electric field threshold needed for pore formation (i.e., electroporation) in the PLB. The created pores in the membrane facilitate the penetration of reactive plasma species deep into the cell interior, eventually causing oxidative damage.

General significance: This study is of particular interest for plasma medicine, as plasma generates both ROS and electric fields, but it is also of more general interest for applications where strong electric fields and ROS both come into play.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397366200012 Publication Date 2017-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-4165 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.702 Times cited Open Access OpenAccess  
  Notes This work is financially supported by the Fund for Scientific Research Flanders (FWO; grant numbers: 1200216N and 11U5416N). The work was carried out using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flem Approved (up) Most recent IF: 4.702  
  Call Number PLASMANT @ plasmant @ c:irua:140095 Serial 4413  
Permanent link to this record
 

 
Author Zhang, F.; Chevalier, J.; Olagnon, C.; Batuk, M.; Hadermann, J.; Van Meerbeek, B.; Vleugels, J. pdf  doi
openurl 
  Title Grain-boundary engineering for aging and slow-crack-growth resistant zirconia Type A1 Journal article
  Year 2017 Publication Journal of dental research Abbreviated Journal J Dent Res  
  Volume 96 Issue 7 Pages 774-779  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ceramic materials are prone to slow crack growth, resulting in strength degradation over time. Although yttria-stabilized zirconia (Y-TZP) ceramics have higher crack resistance than other dental ceramics, their aging susceptibility threatens their long-term performance in aqueous environments such as the oral cavity. Unfortunately, increasing the aging resistance of Y-TZP ceramics normally reduces their crack resistance. Our recently conducted systematic study of doping 3Y-TZP with various trivalent cations revealed that lanthanum oxide (La2O3) and aluminum oxide (Al2O3) have the most potent effect to retard the aging kinetics of 3Y-TZP. In this study, the crack-propagation behavior of La2O3 and Al2O3 co-doped 3Y-TZP ceramics was investigated by double-torsion methods. The grain boundaries were examined using scanning transmission electron microscopy and energy-dispersive spectroscopy (STEM-EDS). Correlating these analytic data with hydrothermal aging studies using different doping systems, a strategy to strongly bind the segregated dopant cations with the oxygen vacancies at the zirconia-grain boundary was found to improve effectively the aging resistance of Y-TZP ceramics without affecting the resistance to crack propagation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication St. Louis, Mo. Editor  
  Language Wos 000403934500010 Publication Date 2017-03-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0345 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.755 Times cited 3 Open Access Not_Open_Access  
  Notes ; This research was supported by the Research Fund of KU Leuven under project 0T/ 10/052 and the Research Foundation-Flanders (FWO-Vlaanderen) under grant G.0431.10N. We thank J.W. Seo for TEM and sample preparations. F. Zhang thanks the Research Fund of KU Leuven for her postdoctoral fellowship (PDM/15/153) and the JECS-Trust for the travel grant (No. 201599) to perform double-torsion testing in the MATEIS lab of INSA, Lyon, France. Jerome Chevalier would like to dedicate this paper to Maria Cattani Lorente, who recently passed away under tragic conditions. She was deeply involved in the study of dental zirconia and we will miss her. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article. ; Approved (up) Most recent IF: 4.755  
  Call Number UA @ lucian @ c:irua:144161 Serial 4660  
Permanent link to this record
 

 
Author Mahr, C.; Müller-Caspary, K.; Graf, M.; Lackmann, A.; Grieb, T.; Schowalter, M.; Krause, F.F.; Mehrtens, T.; Wittstock, A.; Weissmueller, J.; Rosenauer, A. doi  openurl
  Title Measurement of local crystal lattice strain variations in dealloyed nanoporous gold Type A1 Journal article
  Year 2018 Publication Materials research letters Abbreviated Journal Mater Res Lett  
  Volume 6 Issue 1 Pages 84-92  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reversible macroscopic length changes in nanoporous structures can be achieved by applying electric potentials or by exposing them to different gases or liquids. Thus, these materials are interesting candidates for applications as sensors or actuators. Macroscopic length changes originate from microscopic changes of crystal lattice parameters. In this report, we show spatially resolved measurements of crystal lattice strain in dealloyed nanoporous gold. The results confirm theory by indicating a compression of the lattice along the axis of cylindrically shaped ligaments and an expansion in radial direction. Furthermore, we show that curved npAu surfaces show inward relaxation of the surface layer. [GRAPHICS] .  
  Address  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Abingdon Editor  
  Language Wos 000428141500013 Publication Date 2017-11-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-3831 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.773 Times cited 4 Open Access Not_Open_Access  
  Notes ; This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under contracts no. RO2057/12-1 (SP 6), WI4497/1-1 (SP 2) and WE1424/17-1 (SP 3) within the research unit FOR2213 (www.nagocat.de). K.M.-C acknowledges support by the DFG under contract no. MU3660/1-1 and T.G. under contract no. RO2057/ 11-1. ; Approved (up) Most recent IF: 4.773  
  Call Number UA @ lucian @ c:irua:150921 Serial 4973  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Madjet, M.E.; El-Mellouhi, F.; Peeters, F.M. pdf  doi
openurl 
  Title Effect of crystal structure on the electronic transport properties of the organometallic perovskite CH3NH3PbI3 Type A1 Journal article
  Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal Sol Energ Mat Sol C  
  Volume 148 Issue 148 Pages 60-66  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of the crystal lattice structure of organometallic perovskite CH3NH3PbI3 on its electronic transport properties. Both dispersive interactions and spin-orbit coupling are taken into account in describing structural and electronic properties of the system. We consider two different phases of the material, namely the orthorhombic and cubic lattice structures, which are energetically stable at low (< 160 K) and high (> 330 K) temperatures, respectively. The sizable geometrical differences between the two structures in term of lattice parameters, PbI6 octahedral tilts, rotation and deformations, have considerable impact on the transport properties of the material. For example, at zero bias and for all considered electron energies, the cubic phase has a larger transmission than the orthorhombic one, although both show similar electronic densities of states. Depending on the applied voltage, the current in the cubic system can be several orders of magnitude larger as compared to the one obtained for the orthorhombic sample. We attribute this enhancement in the transmission to the presence of extended states in the cubic phase due to the symmetrically shaped and ordered PbI6 octaherdra. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos 000371944500011 Publication Date 2015-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 16 Open Access  
  Notes ; ; Approved (up) Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:133151 Serial 4163  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; El-Mellouhi, F.; Madjet, M.E.; Alharbi, F.H.; Peeters, F.M.; Kais, S. pdf  doi
openurl 
  Title Effect of halide-mixing on the electronic transport properties of organometallic perovskites Type A1 Journal article
  Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal Sol Energ Mat Sol C  
  Volume 148 Issue 148 Pages 2-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of iodide/chloride and iodide/bromide mixing on the electronic transport in lead based organometallic perovskite CH3NH3PbI3, which is known to be an effective tool to tune the electronic and optical properties of such materials. We found that depending on the level and position of the halide mixing, the electronic transport can be increased by more than a factor of 4 for a given voltage biasing. The largest current is observed for small concentration of bromide substitutions located at the equatorial sites. However, full halide substitution has a negative effect on the transport properties of this material: the current drops by an order of magnitude for both CH3NH3PbCl3 and CH3NH3PbBr3 samples. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos 000371944500002 Publication Date 2015-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 23 Open Access  
  Notes ; ; Approved (up) Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:133150 Serial 4165  
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Gasparotto, A.; Warwick, M.E.A.; Sada, C.; Turner, S.; Bazzo, A.; Andreu, T.; Pliekhova, O.; Korte, D.; Lavrenčič Štangar, U.; Van Tendeloo, G.; Morante, J.R.; Barreca, D. pdf  doi
openurl 
  Title Hematite-based nanocomposites for light-activated applications: Synergistic role of TiO2 and Au introduction Type A1 Journal article
  Year 2017 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 159 Issue 159 Pages 456-466  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Photo-activated processes have been widely recognized as cost-effective and environmentally friendly routes for both renewable energy generation and purification/cleaning technologies. We report herein on a plasma- assisted approach for the synthesis of Fe 2 O 3 -TiO 2 nanosystems functionalized with Au nanoparticles. Fe 2 O 3 nanostructures were grown by plasma enhanced-chemical vapor deposition, followed by the sequential sputtering of titanium and gold under controlled conditions, and final annealing in air. The target nanosystems were subjected to a thorough multi-technique characterization, in order to elucidate the interrelations between their chemico-physical properties and the processing conditions. Finally, the functional performances were preliminarily investigated in both sunlight-assisted H 2 O splitting and photocatalytic activity tests in view of self- cleaning applications. The obtained results highlight the possibility of tailoring the system behaviour and candidate the present Fe 2 O 3 -TiO 2 -Au nanosystems as possible multi-functional low-cost platforms for light-activated processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000388053600053 Publication Date 2016-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 15 Open Access Not_Open_Access  
  Notes The research leading to these results has received funding from the FP7 project “SOLAROGENIX” (NMP4-SL-2012-310333), as well as from Padova University ex-60% 2013-2016 projects, grant no. CPDR132937/13 (SOLLEONE) and the post-doc fellowship ACTION. INFINITY project in the framework of the EU Erasmus Mundus Action 2 is also acknowledged to provide a Ph.D. financial support as well as Slovenian Research Agency (program P2-0377). The authors are grateful to Dr. E. Toniato (Department of Chemistry, Padova University, Italy) for synthetic assistance and to Prof. E. Bontempi and Dr. M. Brisotto (Chemistry for Technologies Laboratory, Brescia University, Italy) for XRD analyses. Approved (up) Most recent IF: 4.784  
  Call Number EMAT @ emat @ c:irua:135833 Serial 4284  
Permanent link to this record
 

 
Author D'Olieslaeger, L.; Pfannmöller, M.; Fron, E.; Cardinaletti, I.; Van der Auweraer, M.; Van Tendeloo, G.; Bals, S.; Maes, W.; Vanderzande, D.; Manca, J.; Ethirajan, A. pdf  url
doi  openurl
  Title Tuning of PCDTBT : PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells Type A1 Journal article
  Year 2017 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 159 Issue 159 Pages 179-188  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report the controlled preparation of water processable nanoparticles (NPs) employing the push-pull polymer PCDTBT and the fullerene acceptor PC71BM in order to enable solar cell processing using eco-friendly solvent (i.e. water). The presented method provides the possibility to separate the formation of the active layer blend and the deposition of the active layer into two different processes. For the first time, the benefits of aqueous processability for the high-potential class of push-pull polymers, generally requiring high boiling solvents, are made accessible. With our method we demonstrate excellent control over the blend stoichiometry and efficient mixing. Furthermore, we provide visualization of the nano morphology of the different NPs to obtain structural information down to similar to 2 nm resolution using advanced analytical electron microscopy. The imaging directly reveals very small compositional demixing in the PCDTBT:PC71BM blend NPs, in the size range of about <5 nm, indicating fine mixing at the molecular level. The suitability of the proposed methodology and materials towards the aspects of eco-friendly processing of organic solar cells is demonstrated through a processing of lab scale NPs solar cell prototypes reaching a power conversion efficiency of 1.9%. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000388053600021 Publication Date 2016-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 32 Open Access OpenAccess  
  Notes ; This work was supported by BOF funding of Hasselt University, the Interreg project Organext, and the IAP 7/05 project FS2 (Functional Supramolecular Systems), granted by the Science Policy Office of the Belgian Federal Government (BELSPO). A.E. is a post-doctoral fellow of the Flanders Research Foundation (FWO). M.P. gratefully acknowledges the SIM NanoForce program for financial support. S.B. further acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors are thankful for technical support by J. Smits, T. Vangerven, and J. Baccus. ; ecas_sara Approved (up) Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:139157UA @ admin @ c:irua:139157 Serial 4450  
Permanent link to this record
 

 
Author Lizin, S.; Van Passel, S.; Vranken, L. pdf  doi
openurl 
  Title Heterogeneity in the solar-powered consumer electronics market : a discrete choice experiments study Type A1 Journal article
  Year 2016 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 156 Issue Pages 140-146  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Solar-powered consumer electronics are a likely starting point for organic photovoltaic (OPV) market development. Therefore, a generic discrete choice experiments study can determine how Flemish consumers value solar-cell characteristics for solar-poweied consumer electronics. Such characteristics include efficiency, lifetime, aesthetics, integratability, and price. We contribute to the literature by investigating preference heterogeneity in a solar-power niche market with an experimental design with a fixed reference alternative. The error components random parameter logit (ECRPL) with interactions provides a better fit than the latent class (LC) model for our choice data. The main effects had the expected signs. Consequently, aesthetics and integratability are OPV's assets. Nevertheless, heterogeneity puts the results that are valid for the average consumer into perspective. Based on our findings, OPV commercialization efforts should target the experienced, impatient user who highly values design and functionality. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383304100015 Publication Date 2016-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 2 Open Access  
  Notes ; Sebastien Lizin thanks the Research Foundation Flanders (FWO) for funding his postdoctoral mandate with Grant number 12G5415N, without which it would have been impossible to revise this work. ; Approved (up) Most recent IF: 4.784  
  Call Number UA @ admin @ c:irua:137107 Serial 6207  
Permanent link to this record
 

 
Author Khelifi, S.; Brammertz, G.; Choubrac, L.; Batuk, M.; Yang, S.; Meuris, M.; Barreau, N.; Hadermann, J.; Vrielinck, H.; Poelman, D.; Neyts, K.; Vermang, B.; Lauwaert, J. pdf  url
doi  openurl
  Title The path towards efficient wide band gap thin-film kesterite solar cells with transparent back contact for viable tandem application Type A1 Journal article
  Year 2021 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 219 Issue Pages 110824  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Wide band gap thin-film kesterite solar cell based on non-toxic and earth-abundant materials might be a suitable candidate as a top cell for tandem configuration in combination with crystalline silicon as a bottom solar cell. For this purpose and based on parameters we have extracted from electrical and optical characterization techniques of Cu2ZnGeSe4 absorbers and solar cells, a model has been developed to describe the kesterite top cell efficiency limitations and to investigate the different possible configurations with transparent back contact for fourterminal tandem solar cell application. Furthermore, we have studied the tandem solar cell performance in view of the band gap and the transparency of the kesterite top cell and back contact engineering. Our detailed analysis shows that a kesterite top cell with efficiency > 14%, a band gap in the range of 1.5-1.7 eV and transparency above 80% at the sub-band gaps photons energies are required to achieve a tandem cell with higher efficiency than with a single silicon solar cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000591683500002 Publication Date 2020-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited Open Access OpenAccess  
  Notes The authors would like to acknowledge the SWInG project financed by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640868 and the Research Foundation Flanders-Hercules Foundation (FWO-Vlaanderen, project No AUGE/13/16:FT-IMAGER). Approved (up) Most recent IF: 4.784  
  Call Number EMAT @ emat @c:irua:174337 Serial 6706  
Permanent link to this record
 

 
Author Tikhomirov, V.K.; Rodríguez, V.D.; Méndez-Ramos, J.; del- Castillo, J.; Kirilenko, D.; Van Tendeloo, G.; Moshchalkov, V.V. pdf  doi
openurl 
  Title Optimizing Er/Yb ratio and content in Er-Yb co-doped glass-ceramics for enhancement of the up- and down-conversion luminescence Type A1 Journal article
  Year 2012 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 100 Issue Pages 209-215  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Er3+Yb3+ co-doped transparent glass-ceramics with varying Er/Yb content and ratio have been prepared. High quantum yields for up- and down-conversion luminescence by energy transfer from Yb3+ to Er3+ and from Er3+ to Yb3+, respectively, have been detected and optimized with respect to the Er/Yb content and ratio, and proposed in particular for up- and down-conversion of solar spectrum for enhancement of the efficiency of solar cells. The rise and decay kinetics for the population of the excited levels of Er3+ and Yb3+ have been studied and fit. Based on these experimental data, the mechanisms for the energy transfers have been suggested with emphasis on the optimized Er/Yb content and ratio for enhancement of the efficiency of the Er3+↔Yb3+ energy transfers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000303034700030 Publication Date 2012-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 66 Open Access  
  Notes Fwo Approved (up) Most recent IF: 4.784; 2012 IF: 4.630  
  Call Number UA @ lucian @ c:irua:97392 Serial 2493  
Permanent link to this record
 

 
Author Lizin, S.; Van Passel, S.; De Schepper, E.; Vranken, L. doi  openurl
  Title The future of organic photovoltaic solar cells as a direct power source for consumer electronics Type A1 Journal article
  Year 2012 Publication Solar Energy Materials And Solar Cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 103 Issue Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract As the search for marketable photovoltaic solar cells continues, organic photovoltaic (OPV) solar cells have been identified as a technology with many attractive features for commercialization. Most photovoltaic technologies on the market today were improved in the consumer electronics market segment. A similar evolution has been envisioned for OPV. Hence this paper investigates consumer preferences for solar cells directly powering consumer electronics. Choice experiments were designed and responses were collected using a random sample of 300 individuals from the Flemish region (northern part of Belgium). Results allow for computation of attribute importance, willingness to pay (WTP), and simulation of theoretical market share. These measures point towards OPV being able to reach considerable market share in the long run, bearing in mind that efforts are first needed in elevating OPV's efficiency and lifetime as they most determine consumers' preferences. Price is found to be the least important product characteristic for OPV solar cells to be incorporated in consumer electronics devices. We therefore warn against generalizing attributes' importance across the boundaries of market segments. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000306044300001 Publication Date 2012-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 25 Open Access  
  Notes ; The authors would kindly want to express their gratitude towards every survey respondent and participant for their preliminary work. Also the authors are much obliged to INTERREG and the ORGANEXT project for their financial support, without which it would have been impossible to conduct this research. Last but not least, we would like to thank the reviewers for their insightful comments which allowed for fine tuning our work. ; Approved (up) Most recent IF: 4.784; 2012 IF: 4.630  
  Call Number UA @ admin @ c:irua:127556 Serial 6267  
Permanent link to this record
 

 
Author Gaouyat, L.; He, Z.; Colomer, J.-F.; Lambin, P.; Mirabella, F.; Schryvers, D.; Deparis, O. pdf  doi
openurl 
  Title Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets Type A1 Journal article
  Year 2014 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 122 Issue Pages 303-308  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Conversion of solar energy into thermal energy helps reducing consumption of non-renewable energies. Cermets (ceramicmetal composites) are versatile materials suitable, amongst other applications, for solar selective absorbers. Although the presence of metallic Ni particles in the dielectric matrix is a prerequisite for efficient solar selective absorption in NiCrOx cermets, no clear evidence of such particles is reported so far. By combining comprehensive chemical and structural analyses, we reveal the presumed nanostructure which is at the origin of the remarkable optical properties of this cermet material. Using sputtered NiCrOx layers in a solar absorber multilayer stack on aluminium substrate allows us to achieve solar absorptance as high as α=96.1% while keeping thermal emissivity as low as ε=2.2%, both values being comparable to best values recorded so far. With the nanostructure of sputtered NiCrOx cermets eventually revealed, further optimization of solar absorbers can be anticipated and technological exploitation of cermet materials in other applications can be foreseen.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000331494200040 Publication Date 2013-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 12 Open Access  
  Notes Approved (up) Most recent IF: 4.784; 2014 IF: 5.337  
  Call Number UA @ lucian @ c:irua:113086 Serial 2902  
Permanent link to this record
 

 
Author Drozhzhin, O.A.; Sumanov, V.D.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Baranov, A.N.; Stevenson, K.J.; Antipov, E.V. pdf  url
doi  openurl
  Title Switching between solid solution and two-phase regimes in the Li1-xFe1-yMnyPO4 cathode materials during lithium (de)insertion: combined PITT, in situ XRPD and electron diffraction tomography study Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 191 Issue 191 Pages 149-157  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The electrochemical properties and phase transformations during (de)insertion of Li+ in LiFePO4, LiFe0.9Mn0.1PO4 and LiFe0.5Mn0.5PO4 are studied by means of galvanostatic cycling, potential intermittent titration technique (PITT) and in situ X-ray powder diffraction. Different modes of switching between the solid solution and two-phase regimes are revealed which are influenced by the Mn content in Li1-xFe1-yMnyPO4. Additionally, an increase in electrochemical capacity with the Mn content is observed at high rates of galvanostatic cycling (10C, 20C), which is in good agreement with the numerically estimated contribution of the solid solution mechanism determined from PITT data. The observed asymmetric behavior of the phase transformations in Li1-xFe0.5Mn0.5PO4 during charge and discharge is discussed. For the first time, the crystal structures of electrochemically deintercalated Li1-xFe0.5Mn0.5PO4 with different Li content – LiFe0.5Mn0.5PO4, Li0.5Fe0.5Mn0.5PO4 and Li0.1Fe0.5Mn0.5PO4 – are refined, including the occupancy factors of the Li position. This refinement is done using electron diffraction tomography data. The crystallographic analyses of Li1-xFe0.5Mn0.5PO4 reveal that at x = 0.5 and 0.9 the structure retains the Pnma symmetry and the main motif of the pristine x = 0 structure without noticeable short range order effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371143200018 Publication Date 2016-01-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 27 Open Access  
  Notes This work was supported by the Russian Foundation of Basic Research (grants No. 14-29-04064 and 14-03-31473), Skolkovo Institute of Science and Technology, and the Lomonosov Moscow State University Program of Development. J. Hadermann, O. M. Karakulina and A. M. Abakumov acknowl- edge support from FWO under grant G040116N. Approved (up) Most recent IF: 4.798  
  Call Number c:irua:131911 Serial 4032  
Permanent link to this record
 

 
Author Vanrenterghem, B.; Papaderakis, A.; Sotiropoulos, S.; Tsiplakides, D.; Balomenou, S.; Bals, S.; Breugelmans, T. pdf  url
doi  openurl
  Title The reduction of benzylbromide at Ag-Ni deposits prepared by galvanic replacement Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 196 Issue 196 Pages 756-768  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract A two-step procedure was applied to prepare bimetallic Ag-Ni glassy carbon supported catalysts (Ag-Ni/GC). First Ni layers were prepared by means of electrodeposition in an aqueous deaerated nickel chloride + nickel sulfamate + boric acid solution. Second, the partial replacement of Ni layers by Ag was achieved upon immersion of the latter in solutions containing silver nitrate. Three different pretreatment protocols were used after preparation of the Ag/Ni deposits; as prepared, cathodised in alkali and scanned in acid. After the pretreatment the surface was characterised by means of spectroscopy techniques (scanning electron microscopy and energy dispersive x-ray) and electrochemically in an alkali NaOH solution through cyclic voltammetry (CV). Afterwards the modified electrodes were tested for the reduction of benzylbromide in acetonitrile solutions by using CV and were found to show improved activity compared to bulk Ag electrode. The highest activity towards benzylbromide reduction was observed for pre-cathodised Ag-Ni electrodes. A final stage of the research focuses on the development of a practical Ag/Ni foam catalyst for the reduction of benzylbromide. Due to the high electrochemical active surface area of Ag/Ni foam, a higher conversion of benzyl bromide was obtained in comparison with bulk Ag.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372877400083 Publication Date 2016-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 21 Open Access OpenAccess  
  Notes The quanta 250 FEG microscope of the Electron Microscopy for Material Science group at the University of Antwerp was funded by the Hercules foundation of the Flemish government. Sara Bals acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved (up) Most recent IF: 4.798  
  Call Number c:irua:132081 Serial 4065  
Permanent link to this record
 

 
Author Ryabova, A.S.; Napolskiy, F.S.; Poux, T.; Istomin, S.Y.; Bonnefont, A.; Antipin, D.M.; Baranchikov, A.Y.; Levin, E.E.; Abakumov, A.M.; Kéranguéven, G.; Antipov, E.V.; Tsirlina, G.A.; Savinova, E.R.; pdf  url
doi  openurl
  Title Rationalizing the influence of the Mn(IV)/Mn(III) red-Ox transition on the electrocatalytic activity of manganese oxides in the oxygen reduction reaction Type A1 Journal article
  Year 2016 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 187 Issue 187 Pages 161-172  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Knowledge on the mechanisms of oxygen reduction reaction (ORR) and descriptors linking the catalytic activity to the structural and electronic properties of transition metal oxides enable rational design of more efficient catalysts. In this work ORR electrocatalysis was studied on a set of single and complex Mn (III) oxides with a rotating disc electrode method and cyclic voltammetry. We discovered an exponential increase of the specific electrocatalytic activity with the potential of the surface Mn(IV)/Mn(III) red-ox couple, suggesting the latter as a new descriptor for the ORR electrocatalysis. The observed dependence is rationalized using a simple mean-field kinetic model considering availability of the Mn( III) centers and adsorbate-adsorbate interactions. We demonstrate an unprecedented activity of Mn2O3, ca. 40 times exceeding that of MnOOH and correlate the catalytic activity of Mn oxides to their crystal structure. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000367235600019 Publication Date 2015-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 51 Open Access  
  Notes Approved (up) Most recent IF: 4.798  
  Call Number UA @ lucian @ c:irua:131096 Serial 4237  
Permanent link to this record
 

 
Author Deshmukh, S.; Sankaran, K.J.; Korneychuk, S.; Verbeeck, J.; Mclaughlin, J.; Haenen, K.; Roy, S.S. doi  openurl
  Title Nanostructured nitrogen doped diamond for the detection of toxic metal ions Type A1 Journal article
  Year 2018 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 283 Issue 283 Pages 1871-1878  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract This work demonstrates the applicability of one-dimensional nitrogen-doped diamond nanorods (N-DNRs) for the simultaneous electrochemical (EC) detection of Pb2+ and Cd2+ ions in an electrolyte solution. Well separated voltammetric peaks are observed for Pb2+ and Cd2+ ions using N-DNRs as a working electrode in square wave anodic stripping voltammetry measurements. Moreover, the cyclic voltammetry response of N-DNR electrodes towards the Fe(CN)(6)(/4-)/Fe(CN)(6)(/3-) redox reaction is better as compared to undoped DNR electrodes. This enhancement of EC performance in N-DNR electrodes is accounted by the increased amount of sp(2) bonded nanographitic phases, enhancing the electrical conductivity at the grain boundary (GB) regions. These findings are supported by transmission electron microscopy and electron energy loss spectroscopy studies. Consequently, the GB defect induced N-DNRs exhibit better adsorption of metal ions, which makes such samples promising candidates for next generation EC sensing devices. (C) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441077900203 Publication Date 2018-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 22 Open Access  
  Notes Sujit Deshmukh indebted to Shiv Nadar University for providing Ph. D. scholarship. The FEI Quanta SEM and Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S. K. and J. V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. Kamatchi Jothiramalingam Sankaran is a Postdoctoral Fellow of the Research Foundation-Flanders (FWO). Prof. Ken Haenen acknowledges the Methusalem “NANO” network for financial support. Approved (up) Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:153072 Serial 5366  
Permanent link to this record
 

 
Author Pauwels, D.; Ching, H.Y.V.; Samanipour, M.; Neukermans, S.; Hereijgers, J.; Van Doorslaer, S.; De Wael, K.; Breugelmans, T. pdf  url
doi  openurl
  Title Identifying intermediates in the reductive intramolecular cyclisation of allyl 2-bromobenzyl ether by an improved electron paramagnetic resonance spectroelectrochemical electrode design combined with density functional theory calculations Type A1 Journal article
  Year 2018 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 271 Issue 271 Pages 10-18  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract The electrochemical activation of C-X bonds requires very negative electrode potentials. Lowering the overpotentials and increasing the catalytic activity requires intensive electrocatalytic research. A profound understanding of the reaction mechanism and the influence of the electrocatalyst allows optimal tuning of the electrocatalyst. This can be achieved by combining electrochemical techniques with electron paramagnetic resonance (EPR) spectroscopy. Although this was introduced in the mid-twentieth century, the application of this combined approach in electrocatalytic research is underexploited. Several reasons can be listed, such as the limited availability of EPR instrumentation and electrochemical devices for such in situ experiments. In this work, a simple and inexpensive construction adapted for in situ EPR electrocatalytic research is proposed. The proof of concept is provided by studying a model reaction, namely the reductive cyclisation of allyl 2-bromobenzyl ether which has interesting industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000430369800002 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 2 Open Access  
  Notes ; The authors would like to thank Melissa Van Landeghem for her assistance with the experimental work and analysis of the data. Jonas Hereijgers greatly acknowledges the Research Foundation Flanders (FWO) for support through a Post-Doctoral grant (12Q8817N). H.Y. Vincent Ching gratefully acknowledges the University of Antwerp for a Post-Doctoral grant. Sabine Van Doorslaer and Tom Breugelmans acknowledge the FWO for research funding (research grant G093317N). ; Approved (up) Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:150463 Serial 5652  
Permanent link to this record
 

 
Author Lybaert, J.; Tehrani, K.A.; De Wael, K. pdf  url
doi  openurl
  Title Mediated electrolysis of vicinal diols by neocuproine palladium catalysts Type A1 Journal article
  Year 2017 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 247 Issue Pages 685-691  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Organic synthesis (ORSY)  
  Abstract Synthetic electrochemistry agrees well with the principles of sustainable chemistry, therefore it is considered as a more environmentally friendly approach than some current synthetic methods Here, we present a new strategy for the chemoselective oxidation of vicinal diols, viz. the integration of neocuproine palladium catalysts and electrosynthesis. Benzoquinones are used as an effective mediator as the reduced species (hydroquinones) can be easily reoxidized at relative low potentials at an electrode surface. NeocuproinePd(OAc)2 efficiently works as a catalyst in an electrolysis reaction for vicinal diols at room temperature. This is a remarkable observation given the fact that aerobic oxidation reactions of alcohols typically need a more complex catalyst, i.e. [neocuproinePdOAc]2[OTf]2. In this article we describe the optimization of the electrolysis conditions for the neocuproinePd(OAc)2 catalyst to selectively oxidize diols. The suggested approach leads to conversion of alcohols with high yields and provides an interesting alternative to perform oxidation reactions under mild conditions by the aid of electrochemistry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000408582300072 Publication Date 2017-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access  
  Notes ; ; Approved (up) Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:144118 Serial 5706  
Permanent link to this record
 

 
Author Gaetani, C.; Gheno, G.; Borroni, M.; De Wael, K.; Moretto, L.M.; Ugo, P. pdf  url
doi  openurl
  Title Nanoelectrode ensemble immunosensing for the electrochemical identification of ovalbumin in works of art Type A1 Journal article
  Year 2019 Publication Electrochimica acta Abbreviated Journal Electrochim Acta  
  Volume 312 Issue 312 Pages 72-79  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This research is aimed to the study and application of an electrochemical immunosensor for the detection of ovalbumin (OVA) from egg white (or albumen) used as a binder in some works of art, such as some historical photographic prints and tempera paintings. The immunosensor takes advantage of the interesting biodetection capabilities offered by nanoelectrode ensembles (NEEs). The NEEs used to this aim are prepared by template deposition of gold nanoelectrodes within the pores of track-etched polycarbonate (PC) membranes. The affinity of polycarbonate for proteins is exploited to capture OVA from the aqueous extract obtained by incubation in phosphate buffer of a small sample fragment (<1 mg). The captured protein is reacted selectively with anti-OVA antibody, labelled with glucose oxidase (GOx). In the case of positive response, the addition of the GOx substrate (i.e. glucose) and a suitable redox mediator (a ferrocenyl derivative) reflects in the up rise of an electrocatalytic oxidation current, which depends on the OVA amount captured on the NEE, this amount correlating with OVA concentration in the extract. After optimization, the sensor is successfully applied to identify OVA in photographic prints dating back to the late 19th century, as well as in ancient tempera paintings from the 15th and 18th centuries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468595500008 Publication Date 2019-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited 2 Open Access  
  Notes ; ; Approved (up) Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:159573 Serial 5743  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: