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Deep learning for automated 
materials characterisation 
in core‑loss electron energy loss 
spectroscopy
Arno Annys 1, Daen Jannis 1,2 & Johan Verbeeck 1,2*

Electron energy loss spectroscopy (EELS) is a well established technique in electron microscopy 
that yields information on the elemental content of a sample in a very direct manner. One of the 
persisting limitations of EELS is the requirement for manual identification of core‑loss edges and 
their corresponding elements. This can be especially bothersome in spectrum imaging, where a large 
amount of spectra are recorded when spatially scanning over a sample area. This paper introduces a 
synthetic dataset with 736,000 labeled EELS spectra, computed from available generalized oscillator 
strength tables, that represents 107 K, L, M or N core‑loss edges and 80 chemical elements. Generic 
lifetime broadened peaks are used to mimic the fine structure due to band structure effects present 
in experimental core‑loss edges. The proposed dataset is used to train and evaluate a series of neural 
network architectures, being a multilayer perceptron, a convolutional neural network, a U‑Net, a 
residual neural network, a vision transformer and a compact convolutional transformer. An ensemble 
of neural networks is used to further increase performance. The ensemble network is used to 
demonstrate fully automated elemental mapping in a spectrum image, both by directly mapping the 
predicted elemental content and by using the predicted content as input for a physical model‑based 
mapping.

Electron energy loss spectroscopy (EELS) is an analytical technique in (scanning) transmission electron micros-
copy ((S)TEM) that yields information on the elemental content of a sample in a very direct manner. The energy 
at which a core-loss edge appears reveals what element-specific ionization occurred. EELS in STEM yields large 
amounts of data in the form of spectral images, which allow a mapping of the spatial distribution of elements 
in a sample at atomic scale. EELS spectra recorded with a sufficient energy-resolution reveal, through the fine 
structure of a core-loss edge, information on the electronic state of the sample, like oxidation state and bond-
ing. Besides a qualitative study of EELS spectra, like element identification and mapping, a quantitative study 
allows to determine the relative and absolute quantities of elements in the sample. Model-based  approaches1 to 
quantification require as input the elemental content of the spectrum. Therefore, it is currently still common-
practice for an expert to perform time-consuming visual inspections of EELS spectra for element identification.

Early attempts at automated identification and quantification of core-loss edges relied on the use of filter-based 
methods and tabulated edge properties, especially the edge onset  energy2,3. These methods had limited success 
in real-world applications due to their high noise sensitivity and difficulty in dealing with low jump-ratio edges. 
In the current age of artificial intelligence, data-driven methods, especially deep learning methods which use 
neural networks (NN), are capable of solving a large number of tasks, given that enough training data is supplied. 
Unsupervised techniques, like K-means  clustering4, non-negative matrix  factorization5,6 and auto-encoders7 
have been extensively applied in EELS for spectral decomposition. Supervised techniques, like NN and support 
vector machines, allow for more generic EELS applications like oxidation state  determination8–10, zero-loss peak 
 determination11, spectral  deconvolution12 and phase-transition  forecasting13. NN have also been successfully 
applied in many techniques similar to EELS like X-ray  diffraction14, vibrational  spectroscopy15, X-ray fluorescence 
 spectroscopy16, energy-dispersive X-ray  spectroscopy17 and molecular excitation  spectroscopy18. Deep learning 
was only recently applied for element identification in EELS by Kong et al.19, who developed a synthetic dataset 
containing K or L core-loss edges for 20 common elements. Their simulation method relied on the processing 
of experimental data. Core-loss edges from experimental spectra were extracted by multi-Gaussian fitting and 
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adapted by means of scaling, shifting and noising. Multiple edges and a background were then combined to form 
a synthetic spectrum. The main limitation of this approach is the limited amount of experimental data that is 
available, especially for heavier elements. Multiple elements in their dataset, like e.g. S and Cl, are represented 
by only a single experimental edge in the dataset formation. A lack of variation in training data limits NN in 
generalizing effectively when facing new data. Furthermore, their simulation method allowed only one fixed 
energy loss range, which severely reduces the practical applicability.

This paper proposes a purely computational EELS dataset, consisting of 736,000 spectra, based on available 
generalised oscillator strength (GOS) tables. The dataset represents 107 K, L, M or N core-loss edges and 80 
chemical elements. The dataset supplies ground-truth labels for both element identification and relative quan-
tification. Our simulated dataset has a flexible detector range thanks to zero padding of the spectra to a wide 
detector range of 0 to 3071 eV. Multiple NN architectures—being a multilayer perceptron, a convolutional neural 
network, a U-Net, a residual neural network, a vision transformer, a compact convolutional transformer and an 
ensemble—are optimized and evaluated in terms of efficiency and performance for element identification on 
both simulated and experimental data.

Methods
Synthetic dataset formation. Specimen sampling. Dataset-formation methods based on experimental 
data are constrained by the limited amount of labeled data, especially for heavier elements. A completely com-
putational dataset has the advantage of allowing a much broader set of elements and edges. Figure 1 shows the 
elements and respective edges that are included in our presented dataset. H, He and Li are excluded because they 
do not have edges in the core-loss region. Elements heavier than Bi are excluded because they are rare. Instead 
of forming samples through arbitrary combinations of elements, samples are drawn from the list of materials on 
The Materials  Project20. For each element included in the dataset, a list of samples containing at least this element 
is drawn from The Materials Project. As a result of this approach, each element will fulfill a minimal occurrence 
in the dataset, but common elements will be more present in the dataset because they often occur as an addi-
tional element in a sample, next to the query element. Given the extreme differences in natural occurrence of 
elements, this approach compromises between biasing the dataset and losing all prior-knowledge. The training 
set contains, for each element, 1400 samples and 5 spectra for each sample. The test set and validation set each 
contain 300 samples for each element and respectively 5 and 2 spectra for each sample. An additional dataset 
is simulated where each spectrum contains only core-loss edges corresponding to a single element. This can be 
used to determine what pairs of elements are often confused.

Spectrum simulation. As can be seen in Fig. 1, some elements in the dataset are represented by two sets of 
edges. A spectrum could contain either a single one of these two sets, or both sets together. Since only a single 
set of edges should be sufficient in order to be able to identify an element, we allow the possibility for one of 
the two sets to fall outside of the detector range. A random detector range is chosen, using only the constraints 
that the query element must have at least one set of major edges within the detector range. This ensures that the 
minimal occurrence of each element is maintained like it is in the sample formation. The edges for the additional 
elements in the sample are included if they fall within the random detector range, meaning that the spectrum 
starts at least 10 eV before the edge onset and goes on for at least 25 eV beyond the edge onset. The content of 
a spectrum can thus—like it does in practice—differ from the general content of the sample depending on the 
chosen detector range.

The theory of inelastic electron scattering, which forms the foundation of the simulation of EELS spectra, 
has been extensively described by  Egerton21. Our spectrum simulation method relies on publicly available GOS 

Figure 1.  80 elements and respective 107 edges represented in the simulated dataset.
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 tables22 and edge onset energies from the EELS  atlas23. The calculation of a core-loss edge requires a series of 
parameters like the microscope’s acceleration voltage, beam convergence angle and collection angle. These param-
eters are randomly drawn from uniform distributions for each individual spectrum simulation. Additionally, a 
random chemical shift is applied to the onset energy of each edge. Since the available GOS tables do not consider 
solid-state effects, resulting core-loss edges do not portray fine structure. Calculating the fine structure for each 
sample in the dataset is extremely computationally expensive. Therefore, generic fine structures are used instead, 
which do not represent the true fine structure of a given edge in a specific material but do show a sufficiently 
similar profile. Such a generic fine structure is formed through a sum of randomly weighted Gaussian peaks, 
occurring at random energy losses in proximity to the onset energy, with lifetime broadened widths. As described 
by  Egerton21, the lifetime of the ionized atomic electron can be estimated as τf ≈ �i/ν where �i is the inelastic 
mean free path and ν =

√
2ε/m is the velocity of the ionized electron, with ε the energy loss above the edge onset. 

The width of the lifetime broadened Gaussian peaks is then determined from Heisenberg’s uncertainty principle 
Ŵf ≈ �/τf  . This method requires the electron’s inelastic mean free path, which was parameterised by Seah and 
 Dench24 for solids consisting of one element as �i = 538aε−2 + 0.41a

3/2ε1/2 , where �i and the atomic diameter 
a are expressed in nanometers. Since the atomic diameter within a sample is unknown, it is randomly sampled 
between 25 and 250 pm. Additional random parameters include the degree of the fine structure, i.e. the number 
of contributing Gaussian peaks and the width of the fine structure, i.e. the energy range above the edge onset in 
which fine structure occurs. The relative scale of the fine structure with respect to the calculated core-loss edge 
is made to depend on the fine structure’s ratio of most positive value to most negative value. The largest allowed 
ratio of fine structure peak amplitude to edge peak amplitude is 10. This simulates the effect of strong white lines. 
Similar to the fine structure approach, a generic low-loss region is simulated by a Lorentzian zero-loss peak with 
an arbitrary width plus an arbitrary number of plasmon peaks, simulated by the Drude model, with an arbitrary 
energy and width. The zero-loss peak and plasmon peaks are scaled by the probability Pn that an electron suffers 
n collisions, which under the assumption that each scattering event is independent corresponds to a Poisson 
process where Pn = 1

n!
(

t

�

)n
exp(− t

�
) . The scattering parameter t

�
 is also drawn from a uniform distribution. All 

core-loss edges are added and the sum is convolved with the low-loss region to simulate the effect of multiple 
scattering. This convolution tends to significantly decrease the amplitude of simulated white lines. An A(E/E0)−r 
background is added, where A and r are randomly drawn and E0 is the starting energy of the spectrum, which 
had also been randomly drawn. A jump-ratio—defined as the ratio of the peak amplitude of the core-loss edge 
before fine structure to the amplitude of the background at the edge onset—between 0.2 and 1.5 is enforced on 
one arbitrarily chosen edge. This directly determines the jump-ratio of all other edges in the spectrum, which 
can be boundlessly small or large. Poisson noise is applied and the signal to noise ratio is fully determined by 
the previous parameters, the background amplitude A in particular. A random instrumental shift—which in 
practice might result from misalignment or drift of the microscope or spectrometer components—is applied. 
Finally the spectrum is normalized and zero padded so that all spectra are of the required input shape for a NN. 
Table 1 shows the values of the parameters used for the simulation, or the distributions from which they are 
drawn. Figure 2 shows a schematic overview of the simulation procedure for CeO2.

Table 1.  Parameters of the spectrum simulation.

Parameter Value

Acceleration voltage ∈ [60, 100, 200, 300] kV

Convergence angle ∈ R; ∈ [1, 20] mrad

Collection angle ∈ R; ∈ [1, 100] mrad

Energy dispersion 1 eV

Spectrum start ∈ N; ∈ [75,Efirst edge − 10] eV

Spectrum end ∈ N; ∈ [Elast edge + 25, 3272] eV

Spectrum range (zero padding) 0 to 3071 eV

FWHM of zero-loss peak ∈ R; ∈ [1, 3] eV

Plasmon energy ∈ N; ∈ [3, 20] eV

Plasmon width ∈ N; ∈ [3, 20] eV

Number of plasmon peaks ∈ N; ∈ [2, 5]

Scattering parameter t
�

∈ R; ∈ [0.1, 1]

Jump-ratio ∈ R; ∈ [0.2, 1.5]
Background exponent ∈ R; ∈ [2.0, 4.0]

Background amplitude ∈ [103, 104, 105, 106, 107]
Fine structure width ∈ N; ∈ [50, 100] eV

Fine structure degree ∈ N; ∈ [10, 25]
Maximum fine structure scale 10

Atomic diameter ∈ R; ∈ [25, 250] pm

Chemical shift ∈ Z; ∈ [−5, 5] eV

Instrumental shift ∈ Z; ∈ [−5, 5] eV
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Experimental dataset. An experimental dataset containing 279 element occurrences in 197 spectra—
which are completely independent from the simulated training dataset—is formed using data from the Elec-
tron Energy Loss Data Center (EELDC)25, Gatan’s EELS  Atlas23 and the Electron Energy-Loss Spectroscopy and 
X-Ray Absorption Spectroscopy Database (EELSDB)26. Some spectra gathered from the EELSDB have citation 
information available:27–35. Pre-processing is kept as minimal as possible to ensure a fast flow of recorded spectra 
to the NN, enabling real-time predictions at the microscope. The pre-processing procedure is shown in Fig. 3, 
where an experimental spectrum is resampled to the required energy axis, zero padded to the full energy loss 
range and normalized.

Figure 4 shows the occurrence of each element in both the simulated and the experimental datasets. Car-
bon’s occurrence in the experimental spectra is ambiguous due to it’s common presence in the sample grid. As 
expected, there is a noticeable similarity between the occurrence of elements in the simulated and experimental 
datasets. The experimental dataset is randomly split into a validation set with 97 spectra and test set with 100 
spectra.

Element identification models. Since it is a priory unknown what NN architectures perform best for a 
given task on a given dataset, 6 NN architectures are compared in terms of efficiency and performance. The com-
pared architectures are a multilayer perceptron (MLP), a convolutional NN (CNN), a U-Net36, a residual NN 
(ResNet)37 and 2 transformer  networks38 being a vision transformer (ViT)39 and a compact convolutional trans-
former (CTT)40. The MLP is known to no longer be state-of-the-art in computer vision, amongst other reasons 
because it is not able to learn translation invariance as well as CNN. For element identification in EELS, there 
is limited need for such translation invariance, on the contrary, the onset energy is the most important form of 
information. Therefore, it is interesting still to consider the MLP. CNN—because of their immense importance 

Figure 2.  Diagram of the simulation of a CeO2 spectrum. (a) and (b) Core-loss edges are calculated from GOS 
tables and given a generic fine structure. (c) A generic low-loss region is simulated. (d) The summed core-loss 
edges are convolved by a generic low-loss region. (e) A power law background is added. (f) The final spectrum is 
normalised, zero padded and Poisson noise is applied.

Figure 3.  Pre-processing procedure for experimental spectra. A spline is used to resample the spectrum to the 
required energy axis and the resulting spectrum is zero padded and normalized.
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in computer vision—come in many configurations. The CNN chosen to be evaluated is a one dimensional ver-
sion of the well-known VGG-11  network41. The U-Net architecture—which was originally introduced as an 
image segmentation CNN—has proven very successful due to its ability to combine global and local contextual 
information. To form a classification prediction using the U-Net, a MLP classification head is appended. ResNets 
were successfully introduced to tackle the vanishing gradient problem in very deep CNN. A 35 layer deep ResNet 
is evaluated. Kong et al. have proposed a convolutional-bidirectional long short-term memory NN (CNN-BiL-
STM) for element identification in EELS spectra. However, the LSTM being a recurrent neural network (RNN) 
has the issue of being particularly slow due to the constraint to sequential computation. RNN and the LSTM are 
rapidly being replaced by attention-based architectures like transformers. The transformer was originally intro-
duced as a natural language processing model, but has also known great success in computer vision with i.a. the 
ViT. The ViT divides it’s input into patches that are encoded prior to being processed by a transformer encoder. 
The CCT was introduced to increase the efficiency of the ViT and replaces partitioning in to patches by convo-
lutional layers. The CTT’s design has many similarities to that of the CNN-BiLSTM. Additionally, an ensemble 
of models—which is a common technique used to improve robustness and accuracy in exchange for a longer 
inference  time42—is compared. In the ensemble network, the predictions of multiple models—which could be 
different instances of either the same or different architectures—are averaged. The constituents of the ensemble 
network are chosen depending on the performance of the above described architectures. We choose to limit the 
size of the ensemble network to one that can calculate inside the working memory of a NVIDIA GeForce RTX 
3060 GPU, as if it were a single NN.

The original ResNet and ViT architectures use global average pooling (GAP) over the spatial dimensions so 
that feature maps can be passed to the MLP classification head. To append a MLP classification head to the U-Net 
architecture, some dimension reduction method must be applied as well. GAP of the energy axis suppresses 
crucial information for element identification. Alternatives to GAP are a learnable weighted sum of features, 
which is used in the original U-Net, or flattening, which has a high parameter cost. The ViT is also often used 
with a class token method and the CCT was introduced with the sequence pooling method, which also suppresses 
the spatial information. The best approach for each architecture is determined experimentally. The activation 
functions from the original architectures are maintained, except for the output layer. Since the task at hand is a 
multi-class and multi-label problem, one cannot use the common softmax activation function. Instead, sigmoid 
activation is used in all output layers, so that the model’s prediction can be interpreted as the confidence that an 
element is present. Either batch normalization or layer normalization are applied in all models. Figure 5 shows 
a schematic overview of the used U-Net and ViT architectures. Schematics for the remaining architectures are 
presented in the additional information (Supplementary Figures).

The NN are evaluated by precision, recall, and their harmonic mean, known as the F 1-score. These metrics are 
weighted by the occurrence of each element in the dataset. Furthermore, the evaluation includes the exact match 
rate (EMR), which measures the percentage of spectra where the predicted content exactly matches the true con-
tent, and the root mean square error (RMSE). All NN are trained using the Adam  optimizer43 and a custom loss 
function which is the sum of the binary cross-entropy loss function and a macro soft F 1 loss function. For each 
model the initial learning rate is optimized by a grid search, and the learning rate is halved on plateaus of the F 1
-score to increase convergence. When calculating the metrics for experimental data, the network’s predictions 
for carbon are not taken into account due to the ambiguity of the ground truth label. Since the task at hand is a 
multi-class and multi-label problem, the network’s output must be thresholded in order to be able to compute 
these metrics. The optimal threshold depends on the application and preference of the user. In what remains, the 
applied threshold is the one that minimizes the difference between precision and recall in the validation data.

Figure 4.  Occurrence of each element in (a) simulated training and test dataset (b) experimental dataset. 
Carbon’s occurrence in experimental spectra is ambiguous due to it’s common presence in the sample grid.
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Results and discussion
Element identification. The threshold for experimental data is noticeably higher than the threshold for 
simulated data, likely due to the many core-loss edges with boundlessly small jump-ratios in the simulated 
spectra. Table 2 compares the F 1-score, EMR and RMSE achieved by each model on both the simulated and 
experimental test set, utilizing the optimal threshold determined respectively on the simulated and experimen-
tal validation set. Despite it’s large number of parameters, the MLP demonstrates poor performance. While the 
CNN and ResNet exhibit good performance on simulated data, they struggle to generalize effectively to experi-
mental data, potentially attributable to their high number of trainable parameters. Only the U-Net and the ViT 
manage to achieve both an F 1-score exceeding 80% and an EMR of at least 60% on the experimental data. The 
CCT is generalizing better than the CCN and ResNet, but poorer than the ViT and U-Net.

Table 3 shows a more detailed evaluation of the ViT and U-Net, alongside an evaluation of an ensemble 
network consisting of two ViTs and three U-Nets. Note that the F 1-score must not be in between precision and 
recall because weighted averaging is used.

Figure 5.  Schematic overview of (a) the U-Net architecture (b) the ViT architecture. Visualization made using 
software adapted from  PlotNeuralNet44.

Table 2.  Comparison of the identification model architectures.

Model # of parameters [mln.]

Simulated test set Experimental test set

Inference time [s]F1-score EMR RMSE F1-score EMR RMSE

MLP 56 0.50 0.05 0.16 0.42 0.12 0.15 0.1

CNN 45 0.90 0.68 0.07 0.76 0.42 0.12 0.2

ResNet 41 0.89 0.68 0.07 0.77 0.53 0.10 0.3

U-Net 20 0.86 0.63 0.07 0.84 0.62 0.09 0.2

ViT 2 0.84 0.55 0.09 0.84 0.60 0.08 0.6

CCT 5 0.87 0.60 0.08 0.79 0.58 0.08 0.6
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Interpretation of these results is hindered by the absence of comparable results. The accuracy of a human 
expert has not been quantified and the task described by Kong et al. is not directly comparable. The EMR of 70% 
could at first glance be considered rather unsuccessful, but one should not forget that EMR is a very demand-
ing metric. A model with an EMR of 70% can not be interpreted as a model that only yields useful predictions 
70% of the time. Precision and recall both being 88% implies that a present element has an 88% chance of being 
detected and a detected element has an 88% chance of actually being present. A confusion matrix that quanti-
fies pairs of elements that are often confused by the ensemble network is given in the additional information 
(Supplementary Figures). Figure 6 shows six examples of experimental spectra with predictions by the ensemble 
network. These examples demonstrate how the network can correctly process spectra within a wide range of 
characteristics, for example ranging from minimal fine structure to strong white lines or ranging from broad to 
localised energy loss regions. The examples show two typical cases of mistaken predictions. First, the N edges for 
the neighbouring lanthanides often have differences in onset energies smaller than the variations due to chemical 
and instrumental shifts, causing confusion between neighbouring lanthanides. The second common mistake is 
due to the thresholding, where for example the correct elemental content is identified with high confidence, but 
plausible alternative elements also end up above the threshold. The tungsten example in Fig. 6 shows that the 
NN correctly identified tungsten with a significantly higher confidence than rhenium. Yet since the rhenium 
confidence exceeds the threshold, this kind of prediction is penalized by the EMR. It must be noted that the NN 
itself has no intrinsic knowledge of any threshold and that thresholding is a form of post-processing that can be 
replaced, improved or skipped depending on the application and preference of the user.

Table 3.  Evaluation of ViT, U-Net and ensemble model on the experimental test set.

Model F1-score Precision Recall EMR Threshold

ViT 0.84 0.86 0.86 0.60 0.80

U-Net 0.84 0.86 0.86 0.62 0.95

2×ViT+3×U-Net 0.86 0.88 0.88 0.70 0.75

Figure 6.  Examples of experimental spectra with predictions by the 2 ×ViT+3×U-Net ensemble.
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Elemental mapping. There are two distinct ways the presented NN can be used in order to fully automate 
elemental mapping in a spectrum image (SI). One method includes directly mapping the network’s predictions—
either before or after thresholding—for each individual spectrum in the SI. The alternative method is using the 
globally predicted elemental content as input for model-based quantification. In model-based  quantification1,34, 
a linear combination of calculated EELS cross  sections22—usually first convolved with the experimental low-loss 
spectrum—and a linearized power law background  model45 are fitted to the spectrum.

The NN’s predictions on many spectra will likely result in some false positive occurrences in very small con-
centrations, especially if the spectra are noisy. A selection criterion that only considers elements that are detected 
in at least 1% of the spectra is preimposed. Figure 7a and b summarize the SI of a LaMnO3/BaTiO3/SrTiO3 
superlattice sample that has been extensively described by Chen et al.46. A prediction by the ensemble network 
on all 7826 spectra in this SI takes approximately one minute on a standard desktop computer with an NVIDIA 
GeForce RTX 3060 GPU. Given the preimposed selection criterion, the detected elements equal the spectra’s 
content. The measured energy loss region does not encompass the strontium edges. Probe positions one, two 
and four are respectively in the SrTiO3 , BaTiO3 and LaMnO3 region while probe position three is in the transi-
tion region between BaTiO3 and LaMnO3 . Figure 7c shows the predictions by the ensemble NN and the results 
of a model-based quantification for comparison. The NN clearly predicts a superlattice structure that matches 
visual inspection and model-based quantification. Model-based quantification measures some La presence in 
the BaTiO3 region because it cannot perfectly distinguish the overlapping Ba and La edges.

Conclusion
In this work, a computer generated core-loss EELS dataset, which is useful for training neural networks that gen-
eralize effectively to experimental data, is presented. The dataset represents 107 distinct core-loss edges through 
all 80 elements from Be up to Bi. The use of generic fine structures and low-loss regions result in sufficiently 
realistic spectra while keeping computational cost limited. Zero padding of the spectra allows resulting models 
to be applied for experimental spectra measuring virtually any energy loss range within 75 to 3071 eV. We use the 
data to train a series of neural networks with the task to identify all elements in a given EELS spectrum. Out of 
a series of compared architectures, the U-Net and the vision transformer presented the best performance when 
applied to experimental data. Multiple U-Nets and vision transformers are combined in an ensemble network to 
further increase performance up to a simultaneous precision and recall of both 88%. The application potential 
is demonstrated by performing fully automated elemental mapping in a LaMnO3/BaTiO3/SrTiO3 superlattice 
sample. This work shows the potential for rapid element identification with neural networks and shows their 
strength in creating input parameters for a model-based quantification process. This combination can form 
the basis of an entirely unsupervised quantification workflow which is urgently needed to cope with the ever 
increasing amounts of data that are generated in modern STEM EELS experiments. At the same time they offer 
the potential to remove the dependency on tuning parameters that inevitably lead to experimenters bias and 
reproducibility issues that can plague EELS quantification methods.

Figure 7.  (a) Summed intensity of each spectrum in a SI of a LaMnO3/BaTiO3/SrTiO3 superlattice. (b) 
Spectra corresponding to marked probe positions. Vertical dashed lines show expected onset energies. (c) 
Mapping results: NN shows the probability of presence as predicted by the ensemble network, Ref. shows the 
result of a model-based quantification for comparison.
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Data availability
The simulated dataset and trained neural networks are made publicly available on Zenodo at 10. 5281/ zenodo. 
80049 12.

Code availability
Code on how to build and use the neural networks is made publicly available on GitHub at arnoa nnys/ EELS_ ID.

Received: 20 June 2023; Accepted: 17 August 2023

References
 1. Verbeeck, J. & Van Aert, S. Model based quantification of EELS spectra. Ultramicroscopy 101, 207–224. https:// doi. org/ 10. 1016/j. 

ultra mic. 2004. 06. 004 (2004).
 2. Kundmann, M. & Krivanek, O. Automated processing of parallel-detection EELS data. Microsc. Microanal. Microstruct. 2, 245–256. 

https:// doi. org/ 10. 1051/ mmm: 01991 00202- 30245 00 (1991).
 3. Kothleitner, G. & Hofer, F. Elemental occurrence maps: A starting point for quantitative eels spectrum image processing. Ultra-

microscopy 96, 491–508. https:// doi. org/ 10. 1016/ S0304- 3991(03) 00111-6 (2003).
 4. Chang, M.-T., Cai, R.-F., Chen, C.-C. & Lo, S.-C. Development of clustering algorithm applied for the EELS analysis of advanced 

devices. Microsc. Microanal. 26, 2112–2114. https:// doi. org/ 10. 1017/ S1431 92762 00204 86 (2020).
 5. Shiga, M., Muto, S., Tatsumi, K. & Tsuda, K. Matrix factorization for automatic chemical mapping from electron microscopic 

spectral imaging datasets. Trans. Mater. Res. Soc. Jpn. 41, 333–336. https:// doi. org/ 10. 14723/ tmrsj. 41. 333 (2016).
 6. Blum, T. et al. Machine learning for challenging EELS and EDS spectral decomposition. Microsc. Microanal. 25, 180–181. https:// 

doi. org/ 10. 1017/ S1431 92761 90016 36 (2019).
 7. Hachtel, J. et al. Beyond NMF: Advanced signal processing and machine learning methodologies for hyperspectral analysis in 

EELS. Microsc. Microanal. 27, 322–324. https:// doi. org/ 10. 1017/ S1431 92762 10017 20 (2021).
 8. Chatzidakis, M. & Botton, G. Towards calibration-invariant spectroscopy using deep learning. Sci. Rep. 9, 2126. https:// doi. org/ 

10. 1038/ s41598- 019- 38482-1 (2019).
 9. del Pozo-Bueno, D., Peiró, F. & Estradé, S. Support vector machine for EELS oxidation state determination. Ultramicroscopy 221, 

113190. https:// doi. org/ 10. 1016/j. ultra mic. 2020. 113190 (2021).
 10. Pate, C., Hart, J. & Taheri, M. Rapideels: Machine learning for denoising and classification in rapid acquisition electron energy 

loss spectroscopy. Sci. Rep. https:// doi. org/ 10. 1038/ s41598- 021- 97668-8 (2021).
 11. Roest, L. I., van Heijst, S. E., Maduro, L., Rojo, J. & Conesa-Boj, S. Charting the low-loss region in electron energy loss spectroscopy 

with machine learning. Ultramicroscopy 222, 113202. https:// doi. org/ 10. 1016/j. ultra mic. 2021. 113202 (2021).
 12. Shayan Mousavi, M. S., Pofelski, A. & Botton, G. Eelspecnet: Deep convolutional neural network solution for electron energy loss 

spectroscopy deconvolution. Microsc. Microanal. 27, 1626–1627. https:// doi. org/ 10. 1017/ S1431 92762 10059 97 (2021).
 13. Lewis, N. R. et al. Forecasting of in situ electron energy loss spectroscopy. npj Comput. Mater. https:// doi. org/ 10. 1038/ s41524- 022- 

00940-2 (2022).
 14. Sun, Y., Brockhauser, S. & Hegedűs, P. Comparing end-to-end machine learning methods for spectra classification. Appl. Sci. 

https:// doi. org/ 10. 3390/ app11 23115 20 (2021).
 15. Kazemzadeh, M., Hisey, C. L., Zargar-Shoshtari, K., Xu, W. & Broderick, N. G. Deep convolutional neural networks as a unified 

solution for Raman spectroscopy-based classification in biomedical applications. Opt. Commun. 510, 127977. https:// doi. org/ 10. 
1016/j. optcom. 2022. 127977 (2022).

 16. Jones, C., Daly, N., Higgitt, C. & Rodrigues, M. Neural network-based classification of x-ray fluorescence spectra of artists’ pig-
ments: An approach leveraging a synthetic dataset created using the fundamental parameters method. Herit. Sci. https:// doi. org/ 
10. 1186/ s40494- 022- 00716-3 (2022).

 17. Li, C., Wang, D. & Kong, L. Application of machine learning techniques in mineral classification for scanning electron microscopy-
energy dispersive x-ray spectroscopy (SEM-EDS) images. J. Petrol. Sci. Eng. 200, 108178. https:// doi. org/ 10. 1016/j. petrol. 2020. 
108178 (2021).

 18. Ghosh, K. et al. Deep learning spectroscopy: Neural networks for molecular excitation spectra. Adv. Sci. 6, 1801367. https:// doi. 
org/ 10. 1002/ advs. 20180 1367 (2019).

 19. Kong, L., Ji, Z. & Xin, H. Electron energy loss spectroscopy database synthesis and automation of core-loss edge recognition by 
deep-learning neural networks. Sci. Rep. 12, 22183. https:// doi. org/ 10. 1038/ s41598- 022- 25870-3 (2022).

 20. Jain, A. et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater. 
1, 011002. https:// doi. org/ 10. 1063/1. 48123 23 (2013).

 21. Egerton, R. Electron Energy-Loss Spectroscopy in the Electron Microscope 3rd edn. (Springer, 2011).
 22. Zhang, Z. et al. Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions https:// doi. 

org/ 10. 5281/ zenodo. 77295 85 (2023).
 23. Gatan. Eels atlas (2023).
 24. Seah, M. P. & Dench, W. A. Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free 

paths in solids. Surf. Interface Anal. 1, 2–11 (1979).
 25. Chae, J., Kim, J.-S., Nam, S.-Y., Kim, M. & Park, J. Introduction to the standard reference data of electron energy loss spectra and 

their database: eel.geri.re.kr. Appl. Microsc. https:// doi. org/ 10. 1186/ s42649- 019- 0015-3 (2020).
 26. Ewels, P., Sikora, T., Serin, V., Ewels, C. P. & Lajaunie, L. A complete overhaul of the electron energy-loss spectroscopy and x-ray 

absorption spectroscopy database: eelsdb.eu. Microsc. Microanal. 22, 717–724. https:// doi. org/ 10. 1017/ S1431 92761 60001 79 (2016).
 27. Tirry, W., Schryvers, D., Jorissen, K. & Lamoen, D. Electron-diffraction structure refinement of Ni4Ti3 precipitates in Ni52Ti48 . 

Acta Crystallogr. Sect. B Struct. Sci. 62, 966–971. https:// doi. org/ 10. 1107/ S0108 76810 60364 57 (2006).
 28. Feldhoff, A. et al. Spin-state transition of iron in (Ba0.5Sr0.5)(Fe08Zn0.2)O3−δ perovskite. J. Solid State Chem. 182, 2961–2971. 

https:// doi. org/ 10. 1016/j. jssc. 2009. 07. 058 (2009).
 29. Lajaunie, L., Boucher, F., Dessapt, R. & Moreau, P. Quantitative use of electron energy-loss spectroscopy Mo-M2,3 edges for the 

study of molybdenum oxides. Ultramicroscopy 149, 1–8. https:// doi. org/ 10. 1016/j. ultra mic. 2014. 11. 002 (2015).
 30. Hofer, F. & Golob, P. New examples for near-edge fine structures in electron energy loss spectroscopy. Ultramicroscopy 21, 379–383. 

https:// doi. org/ 10. 1016/ 0304- 3991(87) 90036-2 (1987).
 31. Gassner, G. et al. Structure of sputtered nanocomposite CrCx/a− C : H thin films. J. Vacuum Sci. Technol. B Microelectron. 

Nanometer Struct. Process. Meas. Phenomena 24, 1837–1843. https:// doi. org/ 10. 1116/1. 22167 13 (2006).
 32. Hug, G., Leapman, R. & Jaouen, A. A study of eels fine structure in three chromium carbide. In Microbeam Analysis (1995).
 33. Trasobares, S. et al. Monitoring the decomposition of melamine in the solid phase by electron energy loss chronospectroscopy. J. 

Phys. Chem. A 107, 228–235. https:// doi. org/ 10. 1021/ jp026 340j (2003).

https://doi.org/10.5281/zenodo.8004912
https://doi.org/10.5281/zenodo.8004912
https://github.com/arnoannys/EELS_Id
https://doi.org/10.1016/j.ultramic.2004.06.004
https://doi.org/10.1016/j.ultramic.2004.06.004
https://doi.org/10.1051/mmm:0199100202-3024500
https://doi.org/10.1016/S0304-3991(03)00111-6
https://doi.org/10.1017/S1431927620020486
https://doi.org/10.14723/tmrsj.41.333
https://doi.org/10.1017/S1431927619001636
https://doi.org/10.1017/S1431927619001636
https://doi.org/10.1017/S1431927621001720
https://doi.org/10.1038/s41598-019-38482-1
https://doi.org/10.1038/s41598-019-38482-1
https://doi.org/10.1016/j.ultramic.2020.113190
https://doi.org/10.1038/s41598-021-97668-8
https://doi.org/10.1016/j.ultramic.2021.113202
https://doi.org/10.1017/S1431927621005997
https://doi.org/10.1038/s41524-022-00940-2
https://doi.org/10.1038/s41524-022-00940-2
https://doi.org/10.3390/app112311520
https://doi.org/10.1016/j.optcom.2022.127977
https://doi.org/10.1016/j.optcom.2022.127977
https://doi.org/10.1186/s40494-022-00716-3
https://doi.org/10.1186/s40494-022-00716-3
https://doi.org/10.1016/j.petrol.2020.108178
https://doi.org/10.1016/j.petrol.2020.108178
https://doi.org/10.1002/advs.201801367
https://doi.org/10.1002/advs.201801367
https://doi.org/10.1038/s41598-022-25870-3
https://doi.org/10.1063/1.4812323
https://doi.org/10.5281/zenodo.7729585
https://doi.org/10.5281/zenodo.7729585
https://doi.org/10.1186/s42649-019-0015-3
https://doi.org/10.1017/S1431927616000179
https://doi.org/10.1107/S0108768106036457
https://doi.org/10.1016/j.jssc.2009.07.058
https://doi.org/10.1016/j.ultramic.2014.11.002
https://doi.org/10.1016/0304-3991(87)90036-2
https://doi.org/10.1116/1.2216713
https://doi.org/10.1021/jp026340j


10

Vol:.(1234567890)

Scientific Reports |        (2023) 13:13724  | https://doi.org/10.1038/s41598-023-40943-7

www.nature.com/scientificreports/

 34. Verbeeck, J., Van Aert, S. & Bertoni, G. Model-based quantification of EELS spectra: Including the fine structure. Ultramicroscopy 
106, 976–980. https:// doi. org/ 10. 1016/j. ultra mic. 2006. 05. 006 (2006).

 35. Serin, V., Colliex, C., Brydson, R., Matar, S. & Boucher, F. Eels investigations of the electron conduction band states in wurtzite 
AlN and oxygen-doped AlN(O). Phys. Rev. 58, 5106 (1998).

 36. Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Medical Image 
Computing and Computer-Assisted Intervention—MICCAI 2015, (eds Navab, N. et al.) 234–241 (Springer International Publishing, 
2015).

 37. He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR), 770–778, (IEEE Computer Society, 2016) https:// doi. org/ 10. 1109/ CVPR. 2016. 90 .

 38. Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems Vol. 30 (eds Guyon, I. et al.) 
(Curran Associates, Inc., 2017).

 39. Dosovitskiy, A. et al. An image is worth 16x16 words: Transformers for image recognition at scale. https:// doi. org/ 10. 48550/ arXiv. 
2010. 11929 (2021).

 40. Hassani, A. et al. Escaping the big data paradigm with compact transformers, https:// doi. org/ 10. 48550/ ARXIV. 2104. 05704 (2021).
 41. Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In 3rd International Conference 

on Learning Representations, (2015) https:// doi. org/ 10. 48550/ ARXIV. 1409. 1556 .
 42. Battiti, R. & Colla, A. M. Democracy in neural nets: Voting schemes for classification. Neural Netw. 7, 691–707. https:// doi. org/ 

10. 1016/ 0893- 6080(94) 90046-9 (1994).
 43. Kingma, D. & Ba, J. Adam: A method for stochastic optimization. In International Conference on Learning Representations (2014).
 44. Iqbal, H. Harisiqbal88/plotneuralnet v1.0.0, https:// doi. org/ 10. 5281/ zenodo. 25263 96 (2018).
 45. Cueva, P., Hovden, R., Mundy, J. A., Xin, H. L. & Muller, D. A. Data processing for atomic resolution electron energy loss spec-

troscopy. Microsc. Microanal. 18, 667–675. https:// doi. org/ 10. 1017/ S1431 92761 20002 44 (2012).
 46. Chen, B. et al. Signatures of enhanced out-of-plane polarization in asymmetric BaTiO3 superlattices integrated on silicon. Nat. 

Commun. https:// doi. org/ 10. 1038/ s41467- 021- 27898-x (2022).

Acknowledgements
A.A. would like to acknowledge the resources and services used in this work provided by the VSC (Flemish 
Supercomputer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government. J.V. 
acknowledges the IMPRESS project. The IMPRESS project has received funding from the HORIZON EUROPE 
framework program for research and innovation under grant agreement n. 101094299.

Author contributions
A.A. conceived and conducted the experiments and analysed the results under supervision of J.V. and D.J. All 
authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 40943-7.

Correspondence and requests for materials should be addressed to J.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1016/j.ultramic.2006.05.006
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/ARXIV.2104.05704
https://doi.org/10.48550/ARXIV.1409.1556
https://doi.org/10.1016/0893-6080(94)90046-9
https://doi.org/10.1016/0893-6080(94)90046-9
https://doi.org/10.5281/zenodo.2526396
https://doi.org/10.1017/S1431927612000244
https://doi.org/10.1038/s41467-021-27898-x
https://doi.org/10.1038/s41598-023-40943-7
https://doi.org/10.1038/s41598-023-40943-7
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy
	Methods
	Synthetic dataset formation. 
	Specimen sampling. 
	Spectrum simulation. 

	Experimental dataset. 
	Element identification models. 

	Results and discussion
	Element identification. 
	Elemental mapping. 

	Conclusion
	References
	Acknowledgements


