|   | 
Details
   web
Records
Author Fatermans, J.; Van Aert, S.; den Dekker, A.J.
Title The maximum a posteriori probability rule for atom column detection from HAADF STEM images Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 201 Issue Pages 81-91
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Recently, the maximum a posteriori (MAP) probability rule has been proposed as an objective and quantitative method to detect atom columns and even single atoms from high-resolution high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images. The method combines statistical parameter estimation and model-order selection using a Bayesian framework and has been shown to be especially useful for the analysis of the structure of beam-sensitive nanomaterials. In order to avoid beam damage, images of such materials are usually acquired using a limited incoming electron dose resulting in a low contrast-to-noise ratio (CNR) which makes visual inspection unreliable. This creates a need for an objective and quantitative approach. The present paper describes the methodology of the MAP probability rule, gives its step-by-step derivation and discusses its algorithmic implementation for atom column detection. In addition, simulation results are presented showing that the performance of the MAP probability rule to detect the correct number of atomic columns from HAADF STEM images is superior to that of other model-order selection criteria, including the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). Moreover, the MAP probability rule is used as a tool to evaluate the relation between STEM image quality measures and atom detectability resulting in the introduction of the so-called integrated CNR (ICNR) as a new image quality measure that better correlates with atom detectability than conventional measures such as signal-to-noise ratio (SNR) and CNR.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000466343800009 Publication Date 2019-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 1 Open Access OpenAccess
Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (No. W.O.010.16N, No. G.0368.15N, No. G.0502.18N). This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 770887). Approved (down) Most recent IF: 2.843
Call Number EMAT @ emat @UA @ admin @ c:irua:157176 Serial 5153
Permanent link to this record
 

 
Author Müller-Caspary, K.; Krause, F.F.; Winkler, F.; Béché, A.; Verbeeck, J.; Van Aert, S.; Rosenauer, A.
Title Comparison of first moment STEM with conventional differential phase contrast and the dependence on electron dose Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 203 Issue 203 Pages 95-104
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This study addresses the comparison of scanning transmission electron microscopy (STEM) measurements of momentum transfers using the first moment approach and the established method that uses segmented annular detectors. Using an ultrafast pixelated detector to acquire four-dimensional, momentum-resolved STEM signals, both the first moment calculation and the calculation of the differential phase contrast (DPC) signals are done for the same experimental data. In particular, we investigate the ability to correct the segment-based signal to yield a suitable approximation of the first moment for cases beyond the weak phase object approximation. It is found that the measurement of momentum transfers using segmented detectors can approach the first moment measurement as close as 0.13 h/nm in terms of a root mean square (rms) difference in 10 nm thick SrTiO3 for a detector with 16 segments. This amounts to 35% of the rms of the momentum transfers. In addition, we present a statistical analysis of the precision of first moment STEM as a function of dose. For typical experimental settings with recent hardware such as a Medipix3 Merlin camera attached to a probe-corrected STEM, we find that the precision of the measurement of momentum transfers stagnates above certain doses. This means that other instabilities such as specimen drift or scan noise have to be taken into account seriously for measurements that target, e.g., the detection of bonding effects in the charge density.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465021000013 Publication Date 2018-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 25 Open Access OpenAccess
Notes ; The direct electron detector (Medipix3 Merlin) was funded by the Hercules fund from the Flemish Government. K. Muller-Caspary acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the framework of the Helmholtz Young Investigator Group moreSTEM (VH-NG-1317) at Forschungszentrum Julich, Germany. F. F. Krause acknowledges funding from the Central Research Development Fund of the University of Bremen, Germany. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) and the Research Fund of the University of Antwerp. ; Approved (down) Most recent IF: 2.843
Call Number UA @ admin @ c:irua:160213 Serial 5242
Permanent link to this record
 

 
Author Susi, T.; Madsen, J.; Ludacka, U.; Mortensen, J.J.; Pennycook, T.J.; Lee, Z.; Kotakoski, J.; Kaiser, U.; Meyer, J.C.
Title Efficient first principles simulation of electron scattering factors for transmission electron microscopy Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 197 Issue 197 Pages 16-22
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron microscopy is a powerful tool for studying the properties of materials down to their atomic structure. In many cases, the quantitative interpretation of images requires simulations based on atomistic structure models. These typically use the independent atom approximation that neglects bonding effects, which may, however, be measurable and of physical interest. Since all electrons and the nuclear cores contribute to the scattering potential, simulations that go beyond this approximation have relied on computationally highly demanding all-electron calculations. Here, we describe a new method to generate ab initio electrostatic potentials when describing the core electrons by projector functions. Combined with an interface to quantitative image simulations, this implementation enables an easy and fast means to model electron scattering. We compare simulated transmission electron microscopy images and diffraction patterns to experimental data, showing an accuracy equivalent to earlier all-electron calculations at a much lower computational cost.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000456311700003 Publication Date 2018-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 3 Open Access
Notes Approved (down) Most recent IF: 2.843
Call Number UA @ admin @ c:irua:165938 Serial 6296
Permanent link to this record
 

 
Author Pennycook, T.J.; Martinez, G.T.; Nellist, P.D.; Meyer, J.C.
Title High dose efficiency atomic resolution imaging via electron ptychography Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 196 Issue 196 Pages 131-135
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Radiation damage places a fundamental limitation on the ability of microscopy to resolve many types of materials at high resolution. Here we evaluate the dose efficiency of phase contrast imaging with electron ptychography. The method is found to be far more resilient to temporal incoherence than conventional and spherical aberration optimized phase contrast imaging, resulting in significantly greater clarity at a given dose. This robustness is explained by the presence of achromatic lines in the four dimensional ptychographic dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000451180800018 Publication Date 2018-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 1 Open Access
Notes Approved (down) Most recent IF: 2.843
Call Number UA @ admin @ c:irua:165939 Serial 6301
Permanent link to this record
 

 
Author Leuthner, G.T.; Hummel, S.; Mangler, C.; Pennycook, T.J.; Susi, T.; Meyer, J.C.; Kotakoski, J.
Title Scanning transmission electron microscopy under controlled low-pressure atmospheres Type A1 Journal article
Year 2019 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 203 Issue 203 Pages 76-81
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Transmission electron microscopy (TEM) is carried out in vacuum to minimize the interaction of the imaging electrons with gas molecules while passing through the microscope column. Nevertheless, in typical devices, the pressure remains at 10(-7) mbar or above, providing a large number of gas molecules for the electron beam to crack, which can lead to structural changes in the sample. Here, we describe experiments carried out in a modified scanning TEM (STEM) instrument, based on the Nion UltraSTEM 100. In this instrument, the base pressure at the sample is around 2 x 10(-10 )mbar, and can be varied up to 10(-6) mbar through introduction of gases directly into the objective area while maintaining atomic resolution imaging conditions. We show that air leaked into the microscope column during the experiment is efficient in cleaning graphene samples from contamination, but ineffective in damaging the pristine lattice. Our experiments also show that exposure to O(2 )and H2O lead to a similar result, oxygen providing an etching effect nearly twice as efficient as water, presumably due to the two 0 atoms per molecule. H(2 )and N-2 environments have no influence on etching. These results show that the residual gas environment in typical TEM instruments can have a large influence on the observations, and show that chemical etching of carbon-based structures can be effectively carried out with oxygen.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465021000010 Publication Date 2019-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 4 Open Access
Notes Approved (down) Most recent IF: 2.843
Call Number UA @ admin @ c:irua:165937 Serial 6321
Permanent link to this record
 

 
Author Vanrompay, H.; Skorikov, A.; Bladt, E.; Béché, A.; Freitag, B.; Verbeeck, J.; Bals, S.
Title Fast versus conventional HAADF-STEM tomography of nanoparticles: advantages and challenges Type A1 Journal article
Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 221 Issue Pages 113191
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract HAADF-STEM tomography is a widely used experimental technique for analyzing nanometer-scale crystalline structures of a large variety of materials in three dimensions. Unfortunately, the acquisition of conventional HAADF-STEM tilt series can easily take up one hour or more, depending on the complexity of the experiment. It is therefore far from straightforward to investigate samples that do not withstand long acquisition or to acquire large amounts of tilt series during a single TEM experiment. The latter would lead to the ability to obtain statistically meaningful 3D data, or to perform in situ 3D characterizations with a much shorter time resolution. Various HAADF-STEM acquisition strategies have been proposed to accelerate the tomographic acquisition and reduce the required electron dose. These methods include tilting the holder continuously while acquiring a projection “movie” and a hybrid, incremental, methodology which combines the benefits of the conventional and continuous technique. However, until now an experimental evaluation has been lacking. In this paper, the different acquisition strategies will be experimentally compared in terms of speed, resolution and electron dose. This evaluation will be performed based on experimental tilt series acquired for various metallic nanoparticles with different shapes and sizes. We discuss the data processing involved with the fast HAADF-STEM tilt series and provide a general guideline when which acquisition strategy should be preferentially used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000612539600003 Publication Date 2020-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 15 Open Access OpenAccess
Notes We acknowledge Prof. Luis M. Liz-Marzán and co-workers of the Bionanoplasmonics Laboratory, CIC biomaGUNE, Spain for providing the Au@Ag nanoparticles, Prof. Sara. E. Skrabalak and co-workers of Indiana University, United States for the provision of the Au octopods and Prof. Teri W. Odom of Northwestern University, United States for the provision of the Au nanostars. H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G.0381.16N). This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). The authors acknowledge the entire EMAT technical staff for their support.; sygma Approved (down) Most recent IF: 2.843
Call Number EMAT @ emat @c:irua:174551 Serial 6660
Permanent link to this record
 

 
Author Li, C.; Tardajos, A.P.; Wang, D.; Choukroun, D.; Van Daele, K.; Breugelmans, T.; Bals, S.
Title A simple method to clean ligand contamination on TEM grids Type A1 Journal article
Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 221 Issue Pages 113195
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract Colloidal nanoparticles (NPs) including nanowires and nanosheets made by chemical methods involve many organic ligands. When the structure of NPs is investigated via transmission electron microscopy (TEM), the organic ligands act as a source for e-beam induced deposition and this causes substantial build-up of carbon layers in the investigated areas, which is typically referred to as “contamination” in the eld of electron mi- croscopy. This contamination is often more severe for scanning TEM, a technique that is based on a focused electron beam and hence higher electron dose rate. In this paper, we report a simple and effective method to clean drop-cast TEM grids that contain NPs with ligands. Using a combination of activated carbon and ethanol, this method effectively reduces the amount of ligands on TEM grids, and therefore greatly improves the quality of electron microscopy images and subsequent analytical measurements. This ef cient and facile method can be helpful during electron microscopy investigation of different kinds of nanomaterials that suffer from ligand- induced contamination.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000612539600002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 10 Open Access OpenAccess
Notes This research was funded by the University Antwerp GOA project (ID 33928). DW acknowledges an Individual Fellowship funded by the Marie Sklodowska-Curie Actions (MSCA) in Horizon 2020 program (grant 894254 SuprAtom). Approved (down) Most recent IF: 2.843
Call Number EMAT @ emat @c:irua:174947 Serial 6666
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Lobato, I.; Van Aert, S.
Title Modelling ADF STEM images using elliptical Gaussian peaks and its effects on the quantification of structure parameters in the presence of sample tilt Type A1 Journal article
Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume Issue Pages 113391
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A small sample tilt away from a main zone axis orientation results in an elongation of the atomic columns in ADF STEM images. An often posed research question is therefore whether the ADF STEM image intensities of tilted nanomaterials should be quantified using a parametric imaging model consisting of elliptical rather than the currently used symmetrical peaks. To this purpose, simulated ADF STEM images corresponding to different amounts of sample tilt are studied using a parametric imaging model that consists of superimposed 2D elliptical Gaussian peaks on the one hand and symmetrical Gaussian peaks on the other hand. We investigate the quantification of structural parameters such as atomic column positions and scattering cross sections using both parametric imaging models. In this manner, we quantitatively study what can be gained from this elliptical model for quantitative ADF STEM, despite the increased parameter space and computational effort. Although a qualitative improvement can be achieved, no significant quantitative improvement in the estimated structure parameters is achieved by the elliptical model as compared to the symmetrical model. The decrease in scattering cross sections with increasing sample tilt is even identical for both types of parametric imaging models. This impedes direct comparison with zone axis image simulations. Nonetheless, we demonstrate how reliable atom-counting can still be achieved in the presence of small sample tilt.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000704334200001 Publication Date 2021-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited Open Access OpenAccess
Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N, G.0267.18N, and EOS 30489208. S.V.A. acknowledges TOP BOF funding from the University of Antwerp.; esteem3JRA; esteem3reported Approved (down) Most recent IF: 2.843
Call Number EMAT @ emat @c:irua:181462 Serial 6810
Permanent link to this record
 

 
Author Koo, J.; Dahl, A.B.; Bærentzen, J.A.; Chen, Q.; Bals, S.; Dahl, V.A.
Title Shape from projections via differentiable forward projector for computed tomography Type A1 Journal article
Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 224 Issue Pages 113239
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In computed tomography, the reconstruction is typically obtained on a voxel grid. In this work, however, we propose a mesh-based reconstruction method. For tomographic problems, 3D meshes have mostly been studied to simulate data acquisition, but not for reconstruction, for which a 3D mesh means the inverse process of estimating shapes from projections. In this paper, we propose a differentiable forward model for 3D meshes that bridge the gap between the forward model for 3D surfaces and optimization. We view the forward projection as a rendering process, and make it differentiable by extending recent work in differentiable rendering. We use the proposed forward model to reconstruct 3D shapes directly from projections. Experimental results for single-object problems show that the proposed method outperforms traditional voxel-based methods on noisy simulated data. We also apply the proposed method on electron tomography images of nanoparticles to demonstrate the applicability of the method on real data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000744576800008 Publication Date 2021-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 3 Open Access OpenAccess
Notes EU Horizon 2020 MSCA Innovative Training Network MUMMERING Grant Number 765604. Approved (down) Most recent IF: 2.843
Call Number EMAT @ emat @c:irua:183267 Serial 6825
Permanent link to this record
 

 
Author Madsen, J.; Pennycook, T.J.; Susi, T.
Title ab initio description of bonding for transmission electron microscopy Type A1 Journal article
Year 2021 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 231 Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The simulation of transmission electron microscopy (TEM) images or diffraction patterns is often required to interpret their contrast and extract specimen features. This is especially true for high-resolution phase-contrast imaging of materials, but electron scattering simulations based on atomistic models are widely used in materials science and structural biology. Since electron scattering is dominated by the nuclear cores, the scattering potential is typically described by the widely applied independent atom model. This approximation is fast and fairly accurate, especially for scanning TEM (STEM) annular dark-field contrast, but it completely neglects valence bonding and its effect on the transmitting electrons. However, an emerging trend in electron microscopy is to use new instrumentation and methods to extract the maximum amount of information from each electron. This is evident in the increasing popularity of techniques such as 4D-STEM combined with ptychography in materials science, and cryogenic microcrystal electron diffraction in structural biology, where subtle differences in the scattering potential may be both measurable and contain additional insights. Thus, there is increasing interest in electron scattering simulations based on electrostatic potentials obtained from first principles, mainly via density functional theory, which was previously mainly required for holography. In this Review, we discuss the motivation and basis for these developments, survey the pioneering work that has been published thus far, and give our outlook for the future. We argue that a physically better justified ab initio description of the scattering potential is both useful and viable for an increasing number of systems, and we expect such simulations to steadily gain in popularity and importance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000744190300006 Publication Date 2021-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited Open Access OpenAccess
Notes Approved (down) Most recent IF: 2.843
Call Number UA @ admin @ c:irua:183955 Serial 6850
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Antipov, E.V.
Title Chemistry and structure of anion-deficient perovskites with translational interfaces Type A1 Journal article
Year 2008 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc
Volume 91 Issue 6 Pages 1807-1813
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Columbus, Ohio Editor
Language Wos 000256410700010 Publication Date 2008-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7820;1551-2916; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.841 Times cited 39 Open Access
Notes Approved (down) Most recent IF: 2.841; 2008 IF: 2.101
Call Number UA @ lucian @ c:irua:70088 Serial 355
Permanent link to this record
 

 
Author Fang, P.a.; Gu, H.; Wang, P.l.; Van Landuyt, J.; Vleugels, J.; Van der Biest, O.;
Title Effect of powder coating on stabilizer distribution in CeO2-stabilized ZrO2 ceramics Type A1 Journal article
Year 2005 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc
Volume 88 Issue 7 Pages 1929-1934
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The phase and microstructure relationship of 12 mol% CeO2-stabilized ZrO2 ceramics prepared from coated powder was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersed Xray spectroscopy (EDS). As compared with the sample prepared with co-precipitated method, which exhibited a similar grain size distribution, the EDS analysis revealed that the powder coating induced a wide distribution of CeO2 solubility, which decreases monotonically with the increase of grain size. This variation of stabilizer content from grain to grain rendered many large grains in the monoclinic phase. Stronger cerium segregation to grain boundaries was observed between large grains, which often form thin amorphous films there. The inhomogeneous; CeO2 distribution keeps more tetragonal ZrO2 grains close to the phase boundary to facilitate the transforming toughness. Addition of an Al2O3 precursor in coated powders effectively raises the overall CeO2 stabilizer content in the grains and preserves more transformable tetragonal phase in the microstructure, which further enhanced the fracture toughness. The dependence of CeO2 solubility on grain size may be explained in a simple coating-controlled diffusion and growth process that deserves further investigation.
Address
Corporate Author Thesis
Publisher Place of Publication Columbus, Ohio Editor
Language Wos 000230128100040 Publication Date 2005-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7820;1551-2916; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.841 Times cited 11 Open Access
Notes Approved (down) Most recent IF: 2.841; 2005 IF: 1.586
Call Number UA @ lucian @ c:irua:103156 Serial 830
Permanent link to this record
 

 
Author Bals, S.; Verbeeck, J.; Van Tendeloo, G.; Liu, Y.-L.; Grivel, J.-C.
Title Quantitative electron microscopy of (Bi,Pb)2Sr2Ca2Cu3O10+\delta/Ag multifilament tapes during initial stages of annealing Type A1 Journal article
Year 2005 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc
Volume 88 Issue 2 Pages 431-436
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microstructural and compositional evolution during initial annealing of a superconducting (Bi,Pb)(2)Sr2Ca2Cu3O10+delta/Ag tape is studied using quantitative transmission electron microscopy. Special attention is devoted to the occurrence of Pb-rich liquids, which are crucial for the Bi2Sr2CaCu2O8+delta to (Bi,Pb)(2)Sr2Ca2Cu3O10+delta transformation. Ca and/or Pb-rich (Bi,Pb)(2)Sr2CaCu2O8+delta grains dissolve into a liquid, which reacts with Ca-rich phases to increase the liquid's Ca-content. This leads to (Bi,Pb)(2)Sr2Ca2Cu3O10+delta formation. Apparently, a Ca/Sr ratio of around I is sufficient to keep (Bi,Pb)(2)Sr2Ca2Cu3O10+delta nucleation going. It is confirmed that Ag particles are transported from the Ag-sheath into the oxide core by the liquid and not by mechanical treatment of the tape.
Address
Corporate Author Thesis
Publisher Place of Publication Columbus, Ohio Editor
Language Wos 000227510200030 Publication Date 2005-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7820;1551-2916; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.841 Times cited 1 Open Access
Notes Approved (down) Most recent IF: 2.841; 2005 IF: 1.586
Call Number UA @ lucian @ c:irua:54876UA @ admin @ c:irua:54876 Serial 2754
Permanent link to this record
 

 
Author van Oeffelen, L.; Van Roy, W.; Idrissi, H.; Charlier, D.; Lagae, L.; Borghs, G.
Title Ion current rectification, limiting and overlimiting conductances in nanopores Type A1 Journal article
Year 2015 Publication PLoS ONE Abbreviated Journal Plos One
Volume 10 Issue 10 Pages e0124171
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000354916100012 Publication Date 2015-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.806 Times cited 11 Open Access
Notes Approved (down) Most recent IF: 2.806; 2015 IF: 3.234
Call Number c:irua:126366 Serial 1744
Permanent link to this record
 

 
Author Ning, S.; Xu, W.; Ma, Y.; Loh, L.; Pennycook, T.J.; Zhou, W.; Zhang, F.; Bosman, M.; Pennycook, S.J.; He, Q.; Loh, N.D.
Title Accurate and Robust Calibration of the Uniform Affine Transformation Between Scan-Camera Coordinates for Atom-Resolved In-Focus 4D-STEM Datasets Type A1 Journal article
Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages 1-11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Accurate geometrical calibration between the scan coordinates and the camera coordinates is critical in four-dimensional scanning transmission electron microscopy (4D-STEM) for both quantitative imaging and ptychographic reconstructions. For atomic-resolved, in-focus 4D-STEM datasets, we propose a hybrid method incorporating two sub-routines, namely a J-matrix method and a Fourier method, which can calibrate the uniform affine transformation between the scan-camera coordinates using raw data, without a priori knowledge about the crystal structure of the specimen. The hybrid method is found robust against scan distortions and residual probe aberrations. It is also effective even when defects are present in the specimen, or the specimen becomes relatively thick. We will demonstrate that a successful geometrical calibration with the hybrid method will lead to a more reliable recovery of both the specimen and the electron probe in a ptychographic reconstruction. We will also show that, although the elimination of local scan position errors still requires an iterative approach, the rate of convergence can be improved, and the residual errors can be further reduced if the hybrid method can be firstly applied for initial calibration. The code is made available as a simple-to-use tool to correct affine transformations of the scan-camera coordinates in 4D-STEM experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000767045700001 Publication Date 2022-03-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited Open Access OpenAccess
Notes N. D. Loh kindly acknowledges support from NUS Early Career Research Award (R-154-000-B35-133), MOE’s AcRF Tier 1 grant nr. R-284-000-172-114 and NRF CRP grant number NRF-CRP16-2015-05. Q. He would also like to acknowledge the support of the National Research Foundation (NRF) Singapore, under its NRF Fellowship (NRF-NRFF11-2019-0002). W. Zhou acknowledges the support from Beijing Outstanding Young Scientist Program (BJJWZYJH01201914430039). F. Zhang acknowledges the support of the National Natural Science Foundation of China (11775105, 12074167). T. J. Pennycook acknowledges funding under the European Union’s Horizon 2020 research and innovation programme from the European Research Council (ERC) Grant agreement No. 802123-HDEM. Approved (down) Most recent IF: 2.8
Call Number EMAT @ emat @c:irua:186958 Serial 6957
Permanent link to this record
 

 
Author Yu, C.-P.; Friedrich, T.; Jannis, D.; Van Aert, S.; Verbeeck, J.
Title Real-Time Integration Center of Mass (riCOM) Reconstruction for 4D STEM Type A1 Journal article
Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages 1-12
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A real-time image reconstruction method for scanning transmission electron microscopy (STEM) is proposed. With an algorithm requiring only the center of mass of the diffraction pattern at one probe position at a time, it is able to update the resulting image each time a new probe position is visited without storing any intermediate diffraction patterns. The results show clear features at high spatial frequency, such as atomic column positions. It is also demonstrated that some common post-processing methods, such as band-pass filtering, can be directly integrated in the real-time processing flow. Compared with other reconstruction methods, the proposed method produces high-quality reconstructions with good noise robustness at extremely low memory and computational requirements. An efficient, interactive open source implementation of the concept is further presented, which is compatible with frame-based, as well as event-based camera/file types. This method provides the attractive feature of immediate feedback that microscope operators have become used to, for example, conventional high-angle annular dark field STEM imaging, allowing for rapid decision-making and fine-tuning to obtain the best possible images for beam-sensitive samples at the lowest possible dose.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000792176100001 Publication Date 2022-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 7 Open Access OpenAccess
Notes Bijzonder Onderzoeksfonds UGent; H2020 European Research Council, 770887 ; H2020 European Research Council, 823717 ; H2020 European Research Council, ESTEEM3 / 823717 ; H2020 European Research Council, PICOMETRICS / 770887 ; Fonds Wetenschappelijk Onderzoek, 30489208 ; Herculesstichting; esteem3reported; esteem3jra Approved (down) Most recent IF: 2.8
Call Number EMAT @ emat @c:irua:188538 Serial 7068
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Yu, C.-P.; Sentürk, D.G.; Lobato, I.; Faes, C.; Van Aert, S.
Title Three Approaches for Representing the Statistical Uncertainty on Atom-Counting Results in Quantitative ADF STEM Type A1 Journal article
Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages 1-9
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A decade ago, a statistics-based method was introduced to count the number of atoms from annular dark-field scanning transmission electron microscopy (ADF STEM) images. In the past years, this method was successfully applied to nanocrystals of arbitrary shape, size, and composition (and its high accuracy and precision has been demonstrated). However, the counting results obtained from this statistical framework are so far presented without a visualization of the actual uncertainty about this estimate. In this paper, we present three approaches that can be used to represent counting results together with their statistical error, and discuss which approach is most suited for further use based on simulations and an experimental ADF STEM image.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000854930500001 Publication Date 2022-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.8 Times cited Open Access OpenAccess
Notes This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N, G.0267.18N, and EOS 30489208. S.V.A. acknowledges TOP BOF funding from the University of Antwerp. The authors are grateful to L.M. Liz-Marzán (CIC biomaGUNE and Ikerbasque) for providing the samples. esteem3reported; esteem3jra Approved (down) Most recent IF: 2.8
Call Number EMAT @ emat @c:irua:190585 Serial 7119
Permanent link to this record
 

 
Author Vega Ibañez, F.; Béché, A.; Verbeeck, J.
Title Can a programmable phase plate serve as an aberration corrector in the transmission electron microscope (TEM)? Type A1 Journal article
Year 2022 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume Issue Pages Pii S1431927622012260-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Current progress in programmable electrostatic phase plates raises questions about their usefulness for specific applications. Here, we explore different designs for such phase plates with the specific goal of correcting spherical aberration in the transmission electron microscope (TEM). We numerically investigate whether a phase plate could provide down to 1 angstrom ngstrom spatial resolution on a conventional uncorrected TEM. Different design aspects (fill factor, pixel pattern, symmetry) were evaluated to understand their effect on the electron probe size and current density. Some proposed designs show a probe size () down to 0.66 angstrom, proving that it should be possible to correct spherical aberration well past the 1 angstrom limit using a programmable phase plate consisting of an array of electrostatic phase-shifting elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000849975400001 Publication Date 2022-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited 3 Open Access OpenAccess
Notes All authors acknowledge funding from the Flemish Research Fund under contract G042820N “Exploring adaptive optics in transmission electron microscopy”. J.V. acknowledges funding from the European Union’s Horizon 2020 Research Infrastructure – Integrating Activities for Advanced Communities under grant agreement No 823717 – ESTEEM3 and from the University of Antwerp through a TOP BOF project.; esteem3reported; esteem3jra Approved (down) Most recent IF: 2.8
Call Number UA @ admin @ c:irua:190627 Serial 7134
Permanent link to this record
 

 
Author Chen, Q.; Skorikov, A.; van der Hoeven, J.E.S.; van Blaaderen, A.; Albrecht, W.; Perez-Garza, H.H.; Bals, S.
Title Estimation of temperature homogeneity in MEMS-based heating nanochips via quantitative HAADF-STEM tomography Type A1 Journal article
Year 2023 Publication Particle and particle systems characterization Abbreviated Journal
Volume 41 Issue 2 Pages 1-8
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Sample holders for transmission electron microscopy (TEM) based on micro-electro-mechanical systems (MEMS) have recently become popular for investigating the behavior of nanomaterials under in situ or environmental conditions. The accuracy and reproducibility of these in situ holders are essential to ensure the reliability of experimental results. In addition, the uniformity of an applied temperature trigger across the MEMS chip is a crucial parameter. In this work, it is measured the temperature homogeneity of MEMS-based heating sample supports by locally analyzing the dynamics of heat-induced alloying of Au@Ag nanoparticles located in different regions of the support through quantitative fast high-angle annular dark-field scanning TEM tomography. These results demonstrate the superior temperature homogeneity of a microheater design based on a heating element shaped as a circular spiral with a width decreasing outwards compared to a double spiral-shaped designed microheater. The proposed approach to measure the local temperature homogeneity based on the thermal properties of bimetallic nanoparticles will support the future development of MEMS-based heating supports with improved thermal properties and in situ studies where high precision in the temperature at a certain position is required. This schematic delineates an approach to quantifying potential localized temperature deviation within a nanochip. Employing two comparable nanoparticles as thermal probes in discrete nanochip regions, the alloying kinetics of these nanoparticles are monitorable using in situ quantitative high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) tomography, thus enabling the precise estimation of local temperature deviations.image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001060394600001 Publication Date 2023-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.7 Times cited Open Access Not_Open_Access
Notes This project was funded from the European Commission and The Marie Sklodowska-Curie Innovative Training Network MUMMERING (Grant Agreement no. 765604) Approved (down) Most recent IF: 2.7; 2023 IF: 4.474
Call Number UA @ admin @ c:irua:199219 Serial 8863
Permanent link to this record
 

 
Author Vanrompay, H.; Buurlage, J.‐W.; Pelt, D.M.; Kumar, V.; Zhuo, X.; Liz‐Marzán, L.M.; Bals, S.; Batenburg, K.J.
Title Real‐Time Reconstruction of Arbitrary Slices for Quantitative and In Situ 3D Characterization of Nanoparticles Type A1 Journal article
Year 2020 Publication Particle & Particle Systems Characterization Abbreviated Journal Part Part Syst Char
Volume 37 Issue 37 Pages 2000073
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A detailed 3D investigation of nanoparticles at a local scale is of great importance to connect their structure and composition to their properties. Electron tomography has therefore become an important tool for the 3D characterization of nanomaterials. 3D investigations typically comprise multiple steps, including acquisition, reconstruction, and analysis/quantification. Usually, the latter two steps are performed offline, at a dedicated workstation. This sequential workflow prevents on-the-fly control of experimental parameters to improve the quality of the 3D reconstruction, to select a relevant nanoparticle for further characterization or to steer an in-situ tomography experiment. Here, we present an efficient approach to overcome these limitations, based on the real-time reconstruction of arbitrary 2D reconstructed slices through a 3D object. Implementation of this method may lead to generalized implementation of electron tomography for routine nanoparticle characterization in 3D.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000536357100001 Publication Date 2020-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited 10 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 1S32617N ; Fonds Wetenschappelijk Onderzoek, G026718N ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 639.073.506 016.Veni.192.235 ; H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G026718N). Financial support was provided by The Netherlands Organization for Scientific Research (NWO), project numbers 639.073.506 and 016.Veni.192.235. This project received funding as well from the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). H.V. and J.-W.B contributed equally to this work.; sygma Approved (down) Most recent IF: 2.7; 2020 IF: 4.474
Call Number EMAT @ emat @c:irua:169704 Serial 6371
Permanent link to this record
 

 
Author Lebedev, N.; Stehno, M.; Rana, A.; Gauquelin, N.; Verbeeck, J.; Brinkman, A.; Aarts, J.
Title Inhomogeneous superconductivity and quasilinear magnetoresistance at amorphous LaTiO₃/SrTiO₃ interfaces Type A1 Journal article
Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 33 Issue 5 Pages 055001
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have studied the transport properties of LaTiO3/SrTiO3 (LTO/STO) heterostructures. In spite of 2D growth observed in reflection high energy electron diffraction, transmission electron microscopy images revealed that the samples tend to amorphize. Still, we observe that the structures are conducting, and some of them exhibit high conductance and/or superconductivity. We established that conductivity arises mainly on the STO side of the interface, and shows all the signs of the two-dimensional electron gas usually observed at interfaces between STO and LTO or LaAlO3, including the presence of two electron bands and tunability with a gate voltage. Analysis of magnetoresistance (MR) and superconductivity indicates the presence of spatial fluctuations of the electronic properties in our samples. That can explain the observed quasilinear out-of-plane MR, as well as various features of the in-plane MR and the observed superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000588209300001 Publication Date 2020-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited 1 Open Access OpenAccess
Notes ; NL and JA gratefully acknowledge the financial support of the research program DESCO, which is financed by the Netherlands Organisation for Scientific Research (NWO). The authors thank J Jobst, S Smink, K Lahabi and G Koster for useful discussion. ; Approved (down) Most recent IF: 2.7; 2020 IF: 2.649
Call Number UA @ admin @ c:irua:173679 Serial 6545
Permanent link to this record
 

 
Author Corthals, S.; van Noyen, J.; Liang, D.; Ke, X.; Van Tendeloo, G.; Jacobs, P.; Sels, B.
Title A cyclic catalyst pretreatment in CO2 for high yield production of Carbon nanofibers with narrow diameter distribution Type A1 Journal article
Year 2011 Publication Catalysis letters Abbreviated Journal Catal Lett
Volume 141 Issue 11 Pages 1621-1624
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract This paper presents a cyclic catalyst pretreatment process to improve the CNF yield with narrow size distribution by sequentially feeding the CVD reactor with CH4/CO2 mixtures (carbon deposition) and CO2 (carbon removal) prior to the actual growth process. A mechanism based on a break-up of large Ni particles tentatively explains the beneficial effect of the cyclic carbon deposition/removal CVD procedure.
Address
Corporate Author Thesis
Publisher Place of Publication Basel Editor
Language Wos 000296471400006 Publication Date 2011-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1011-372X;1572-879X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.799 Times cited 1 Open Access
Notes Iwt; Iap Approved (down) Most recent IF: 2.799; 2011 IF: 2.242
Call Number UA @ lucian @ c:irua:91888 Serial 598
Permanent link to this record
 

 
Author Rehor, I.; Mackova, H.; Filippov, S.K.; Kucka, J.; Proks, V.; Slegerova, J.; Turner, S.; Van Tendeloo, G.; Ledvina, M.; Hruby, M.; Cigler, P.;
Title Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings Type A1 Journal article
Year 2014 Publication ChemPlusChem Abbreviated Journal Chempluschem
Volume 79 Issue 1 Pages 21-24
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The novel synthesis of a polymeric interface grown from the surface of bright fluorescent nanodiamonds is reported. The polymer enables bioorthogonal attachment of various molecules by click chemistry; the particles are resistant to nonspecific protein adsorption and show outstanding colloidal stability in buffers and biological media. The coating fully preserves the unique optical properties of the nitrogen-vacancy centers that are crucial for bioimaging and sensoric applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000337974900002 Publication Date 2013-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2192-6506; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.797 Times cited 34 Open Access
Notes EU 7FP Program (no.262348); European Soft Matter Infrastructure; ESMI; ERC (grant no.246791)-COUNTATOMS; FWO Approved (down) Most recent IF: 2.797; 2014 IF: 2.997
Call Number UA @ lucian @ c:irua:113088 Serial 1235
Permanent link to this record
 

 
Author Van Havenbergh, K.; Turner, S.; Driesen, K.; Bridel, J.-S.; Van Tendeloo, G.
Title Solidelectrolyte interphase evolution of carbon-coated silicon nanoparticles for lithium-ion batteries monitored by transmission electron microscopy and impedance spectroscopy Type A1 Journal article
Year 2015 Publication Energy technology Abbreviated Journal Energy Technol-Ger
Volume 3 Issue 3 Pages 699-708
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The main drawbacks of silicon as the most promising anode material for lithium-ion batteries (theoretical capacity=3572 mAh g−1) are lithiation-induced volume changes and the continuous formation of a solidelectrolyte interphase (SEI) upon cycling. A recent strategy is to focus on the influence of coatings and composite materials. To this end, the evolution of the SEI, as well as an applied carbon coating, on nanosilicon electrodes during the first electrochemical cycles is monitored. Two specific techniques are combined: Transmission Electron Microscopy (TEM) is used to study the surface evolution of the nanoparticles on a very local scale, whereas electrochemical impedance spectroscopy (EIS) provides information on the electrode level. A TEMEELS fingerprint signal of carbonate structures from the SEI is discovered, which can be used to differentiate between the SEI and a graphitic carbon matrix. Furthermore, the shielding effect of the carbon coating and the thickness evolution of the SEI are described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000357869100003 Publication Date 2015-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2194-4288; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.789 Times cited Open Access
Notes IWT Flanders Approved (down) Most recent IF: 2.789; 2015 IF: 2.824
Call Number c:irua:126676 Serial 3051
Permanent link to this record
 

 
Author Schryvers, D.; Boullay, P.; Potapov, P.L.; Kohn, R.V.; Ball, J.M.
Title Microstructures and interfaces in Ni-Al martensite: comparing HRTEM observations with continuum theories Type A1 Journal article
Year 2002 Publication International journal of solids and structures Abbreviated Journal Int J Solids Struct
Volume 39 Issue Pages 3543-3554
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000176752500014 Publication Date 2002-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-7683; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.76 Times cited 13 Open Access
Notes Approved (down) Most recent IF: 2.76; 2002 IF: 1.080
Call Number UA @ lucian @ c:irua:48771 Serial 2078
Permanent link to this record
 

 
Author Van Aert, S.; den Dekker, A.J.; van Dyck, D.; van den Bos, A.
Title High-resolution electron microscopy and electron tomography: resolution versus precision Type A1 Journal article
Year 2002 Publication Journal of structural biology Abbreviated Journal J Struct Biol
Volume 138 Issue Pages 21-33
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000177978800003 Publication Date 2002-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1047-8477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.767 Times cited 33 Open Access
Notes Approved (down) Most recent IF: 2.767; 2002 IF: 4.194
Call Number UA @ lucian @ c:irua:47520 Serial 1446
Permanent link to this record
 

 
Author Tang, Y.; Chen, Z.; Borbely, A.; Ji, G.; Zhong, S.Y.; Schryvers, D.; Ji, V.; Wang, H.W.
Title Quantitative study of particle size distribution in an in-situ grown Al-TiB2 composite by synchrotron X-ray diffraction and electron microscopy Type A1 Journal article
Year 2015 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 102 Issue 102 Pages 131-136
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Synchrotron X-ray diffraction and transmission electron microscopy (TEM) were applied to quantitatively characterize the average particle size and size distribution of free-standing TiB2 particles and TiB2 particles in an insitu grown Al–TiB2 composite. The detailed evaluations were carried out by X-ray line profile analysis using the restrictedmoment method and multiplewhole profile fitting procedure (MWP). Both numericalmethods indicate that the formed TiB2 particles are well crystallized and free of crystal defects. The average particle size determined from different Bragg reflections by the restricted moment method ranges between 25 and 55 nm, where the smallest particle size is determined using the 110 reflection suggesting the highest lateral-growth velocity of (110) facets. TheMWP method has shown that the in-situ grown TiB2 particles have a very low dislocation density (~1011 m−2) and their size distribution can be described by a log-normal distribution. Good agreement was found between the results obtained from the restricted moment and MWP methods, which was further confirmed by TEM.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000355335200017 Publication Date 2015-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 41 Open Access
Notes This work is financially supported by the National Natural Science Foundation of China (Grant No. 51201099 and No. 51301108) and the China Postdoctoral Science Foundation (Grant No. 2013T60443 and No. 2012M520891). The authors are grateful for the project 2013BB03 supported by NPL, CAEP. Many thanks are also due to the faculty of BL14B beamline at the Shanghai Synchrotron Radiation Facility for their help on synchrotron experiments. Approved (down) Most recent IF: 2.714; 2015 IF: 1.845
Call Number c:irua:126443 Serial 2764
Permanent link to this record
 

 
Author Yan, L.; Tan, Z.; Ji, G.; Li, Z.; Fan, G.; Schryvers, D.; Shan, A.; Zhang, D.
Title A quantitative method to characterize the Al4C3-formed interfacial reaction: the case study of MWCNT/Al composites Type A1 Journal article
Year 2015 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 112 Issue 112 Pages 213-218
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The Al4C3-formed interfacial reaction plays an important role in tuning the mechanical and thermal properties of carbon/aluminum (C/Al) composites reinforced with carbonaceous materials such as multi-wall carbon nanotube (MWCNT) and graphene nanosheet. In terms of the hydrolysis nature of Al4C3, an electrochemical dissolution method was developed to quantitatively characterize the extent of C/Al interfacial reaction, which involves dissolving the composite samples in alkaline solution first, then collecting and measuring the CH4 gas released by Al4C3 hydrolysis with a gas chromatograph. Through a case study with powder metallurgy fabricated 2.0 wt.% MWCNT/Al composites, the detectability limit of the proposed method is 0.4 wt.% Al4C3, corresponding to 5 % extent of interfacial reaction with a measurement error of ±3 %. And then, with the already known MWCNT/Al reaction extent vs different sintering temperature and time, the reaction kinetics with an activation energy of 281 kJ mol-1 was successfully derived. Therefore, this rapid, sensitive, accurate method supplies an useful tool to optimize the processing and properties of all kinds of C/Al composites via interface design/control.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000370109200026 Publication Date 2015-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 24 Open Access
Notes The authors would like to acknowledge the financial support of the National Basic Research Program of China (973 Program, No. 2012CB619600), the National High-Tech R&D Program (863 Program, No. 2012AA030611), the National Natural Science Foundation (Nos. 51071100, 51131004, 51401123, 51511130038) and the research grant (Nos. 14DZ2261200, 15JC1402100, 14520710100) from Shanghai government. Dr. Z.Q. Tan would also like to thank the project funded by the China Postdoctoral Science Foundation (No. 2014M561469). The research leading to these results has partially received funding from the European Union Seventh Framework Program under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative – I3).; esteem2_jra2 Approved (down) Most recent IF: 2.714; 2015 IF: 1.845
Call Number c:irua:130066 c:irua:130066 Serial 3997
Permanent link to this record
 

 
Author Espinoza Torres, C.; Condó, A.M.; Haberkorn, N.; Zelaya, E.; Schryvers, D.; Guimpel, J.; Lovey, F.C.
Title Structures in textured Cu-Al-Ni shape memory thin films grown by sputtering Type A1 Journal article
Year 2014 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 96 Issue Pages 256-262
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structure and texture formation in CuAlNi thin films of different thicknesses (1 μm to 5 μm) grown by DC magnetron sputtering without any intentional heating of the substrate are reported. The as-grown films present grains with an average size of 20 nm. The films with thickness of 1 μm have a single metastable phase with a hexagonal structure and are textured with planes (0002) parallel to the plane of the films. It was observed that thicker films present phase coexistence between metastable hexagonal and body centered cubic structures with a gradual increment of the body centered cubic phase fraction. The films with thickness of 5 μm are textured with planes (0002) and View the MathML source101¯0 in the hexagonal structure, whereas in the body centered cubic structure the films are textured with {110} planes parallel to the plane of the films. This fact can be associated with self-heating of the substrate during the growth of the films and with the relative stability of the metastable phases. Free standing films annealed in a second step (1123 K for 1 h) present austenitic phase with L21 structure and sub-micrometric grains textured with {220}L21 planes parallel to the plane of the films. The martensitic transformation temperature was determined from the analysis of resistance against temperature measurements.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000343346400032 Publication Date 2014-08-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 9 Open Access
Notes (CONICET PIP 11220090100457) and MINCYT-FWO International Exchange Project FW/09/03 is also acknowledged Approved (down) Most recent IF: 2.714; 2014 IF: 1.845
Call Number UA @ lucian @ c:irua:118931 Serial 3321
Permanent link to this record
 

 
Author Ji, G.; Tan, Z.; Shabadi, R.; Li, Z.; Grünewald, W.; Addad, A.; Schryvers, D.; Zhang, D.
Title Triple ion beam cutting of diamond/Al composites for interface characterization Type A1 Journal article
Year 2014 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 89 Issue Pages 132-137
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A novel triple ion beam cutting technique was employed to prepare high-quality surfaces of diamond/Al composites for interfacial characterization, which has been unachievable so far. Near-perfect and artifact-free surfaces were obtained without mechanical pre-polishing. Hence, the as-prepared surfaces are readily available for further study and also, ready to be employed in a focus ion beam system for preferential selection of transmission electron microscopy samples. Dramatically different diamond/Al interface configurations – sub-micrometer Al2O3 particles and clean interfaces were unambiguously revealed.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000333513400015 Publication Date 2014-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 9 Open Access
Notes Fwo Approved (down) Most recent IF: 2.714; 2014 IF: 1.845
Call Number UA @ lucian @ c:irua:113394 Serial 3735
Permanent link to this record