|   | 
Details
   web
Records
Author Barbier, M.; Vasilopoulos, P.; Peeters, F.M.
Title Single-layer and bilayer graphene superlattices: collimation, additional Dirac points and Dirac lines Type A1 Journal article
Year 2010 Publication Philosophical transactions of the Royal Society : mathematical, physical and engineering sciences Abbreviated Journal Philos T R Soc A
Volume 368 Issue 1932 Pages 5499-5524
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We review the energy spectrum and transport properties of several types of one-dimensional superlattices (SLs) on single-layer and bilayer graphene. In single-layer graphene, for certain SL parameters an electron beam incident on an SL is highly collimated. On the other hand, there are extra Dirac points generated for other SL parameters. Using rectangular barriers allows us to find analytical expressions for the location of new Dirac points in the spectrum and for the renormalization of the electron velocities. The influence of these extra Dirac points on the conductivity is investigated. In the limit of δ-function barriers, the transmission T through and conductance G of a finite number of barriers as well as the energy spectra of SLs are periodic functions of the dimensionless strength P of the barriers, Graphic, with vF the Fermi velocity. For a KronigPenney SL with alternating sign of the height of the barriers, the Dirac point becomes a Dirac line for P = π/2+nπ with n an integer. In bilayer graphene, with an appropriate bias applied to the barriers and wells, we show that several new types of SLs are produced and two of them are similar to type I and type II semiconductor SLs. Similar to single-layer graphene SLs, extra Dirac points are found in bilayer graphene SLs. Non-ballistic transport is also considered.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000283660000011 Publication Date 2010-11-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-503X;1471-2962; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.97 Times cited 64 Open Access
Notes ; This work was supported by IMEC, the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the Canadian NSERC through grant no. OGP0121756. ; Approved (up) Most recent IF: 2.97; 2010 IF: 2.459
Call Number UA @ lucian @ c:irua:85597 Serial 3023
Permanent link to this record
 

 
Author Nerantzaki, M.; Filippousi, M.; Van Tendeloo, G.; Terzopoulou, Z.; Bikiaris, D.; Goudouri, O.M.; Detsch, R.; Grueenewald, A.; Boccaccini, A.R.
Title Novel poly(butylene succinate) nanocomposites containing strontium hydroxyapatite nanorods with enhanced osteoconductivity for tissue engineering applications Type A1 Journal article
Year 2015 Publication Express polymer letters Abbreviated Journal Express Polym Lett
Volume 9 Issue 9 Pages 773-789
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Three series of poly(butylene succinate) (PBSu) nanocomposites containing 0.5, 1 and 2.5 wt% strontium hydroxyapatite [Sr-5(PO4)(3)OH] nanorods (SrHAp nrds) were prepared by in situ polymerisation. The structural effects of Sr-5(PO4)(3)OH nanorods, for the different concentrations, inside the polymeric matrix (PBSu), were studied through high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). HAADF-STEM measurements revealed that the SrHAp nanorods at low concentrations are dispersed inside the polymeric PBSu matrix while in 1 wt% some aggregates are formed. These aggregations affect the mechanical properties giving an enhancement for the concentration of 0.5 wt% SrHAp nrds in tensile strength, while a reduction is recorded for higher loadings of the nanofiller. Studies on enzymatic hydrolysis revealed that all nanocomposites present higher hydrolysis rates than neat PBSu, indicating that nanorods accelerate the hydrolysis degradation process. In vitro bioactivity tests prove that SrHAp nrds promote the formation of hydroxyapatite on the PBSu surface. All nanocomposites were tested also in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility showing SrHAp nanorods support cell attachment.
Address
Corporate Author Thesis
Publisher Budapest University of Technology and Economics Department of Polymer Engineering Place of Publication Budapest, Hungary Editor
Language Wos 000357287800004 Publication Date 2015-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1788-618X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.983 Times cited 21 Open Access
Notes 262348 Esmi Approved (up) Most recent IF: 2.983; 2015 IF: 2.761
Call Number c:irua:127009 Serial 2382
Permanent link to this record
 

 
Author Özen, M.; Mertens, M.; Snijkers, F.; Van Tendeloo, G.; Cool, P.
Title Texturing of hydrothermally synthesized BaTiO3 in a strong magnetic field by slip casting Type A1 Journal article
Year 2016 Publication Ceramics international Abbreviated Journal Ceram Int
Volume 42 Issue 42 Pages 5382-5390
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract Barium titanate powder was processed by slip casting in a rotating strong magnetic field of 9.4 T. The orientation factor of the sintered compact was analyzed by the X-ray diffraction technique and the microstructure (grain-size) was analyzed by scanning electron microscope. The hydrothermally prepared barium titanate was used as matrix material and the molten-salt synthesized barium titanate, with a larger particle-size, was used as template for the templated grain-growth process. Addition of large template particles was observed to increase the orientation factor of the sintered cast (5 vol% loading). Template particles acted as starting grains for the abnormal grain-growth process and the average grain-size was increased after sintering. Increasing the solid loading (15 vol%) resulted in a similar orientation factor with a decrease of the average grain size by more than half. However, addition of templates to the 15 vol% cast had a negative effect on the orientation factor. The impingement of growing particles was stated as the primary cause of particle misorientation resulting in a low orientation factor after sintering. Different heating conditions were tested and it was determined that a slow heating rate gave the highest orientation factor, the smallest average grain-size and the highest relative density. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Barking Editor
Language Wos 000369460500098 Publication Date 2015-12-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-8842 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.986 Times cited 11 Open Access
Notes Approved (up) Most recent IF: 2.986
Call Number UA @ lucian @ c:irua:132228 Serial 4260
Permanent link to this record
 

 
Author Özen, M.; Mertens, M.; Luyten, J.; Snijkers, F.; d' Hondt, H.; Cool, P.
Title Hydrothermal synthesis of carbonate-free submicron-sized barium titanate from an amorphous precursor : synthesis and characterization Type A1 Journal article
Year 2012 Publication Ceramics international Abbreviated Journal Ceram Int
Volume 38 Issue 1 Pages 619-625
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract In this paper, the amorphous barium titanate precursor was prepared by the peroxo-hydroxide method and post-treated by various drying procedures, such as: room temperature drying, room temperature vacuum drying and vacuum drying at 50 degrees C. The objective in the latter two treatments was to increase the Ti-O-Ba bonds of the precursor. The post-treated precursors were compared with the untreated (i.e., 'wet') precursor. Also, a barium titanate precursor was prepared by an alkoxide route. Afterwards, the precursors were hydrothermally treated at 200 degrees C in a 10 M NaOH solution. Vacuum drying of the precursor seemingly promoted the formation of Ti-O-Ti bonds in the hydrothermal end-product. The low Ba:Ti ratio (0.66) of the alkoxide-route prepared precursor lead to a multi-phase hydrothermal product with BaTiO(3) as the main phase. In contrast, phase pure BaTiO(3), i.e. without BaCO(3) contamination, was obtained for the precursor which was dried at room temperature. Cube-shaped and highly crystalline BaTiO(3) particles were observed by electron microscopy for the hydrothermally treated peroxo-hydroxide-route prepared precursor. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Barking Editor
Language Wos 000298766900083 Publication Date 2011-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-8842; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.986 Times cited 14 Open Access
Notes Approved (up) Most recent IF: 2.986; 2012 IF: 1.789
Call Number UA @ lucian @ c:irua:96263 Serial 1541
Permanent link to this record
 

 
Author Zamani, M.; Yapicioglu, H.; Kara, A.; Sevik, C.
Title Statistical analysis of porcelain tiles' technical properties : full factorial design investigation on oxide ratios and temperature Type A1 Journal article
Year 2023 Publication Physica scripta Abbreviated Journal
Volume 98 Issue 12 Pages 125953-18
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract This study focuses on optimizing the composition and firing temperature of porcelain tiles using statistical analysis techniques. A full factorial design, including model adequacy checking, analysis of variance, Pareto charts, interaction plots, regression model, and response optimizer is employed. The key factors were the Seger ratios of SiO2/Al2O3, Na2O/K2O, MgO/CaO, and firing temperature. The response variables investigated were bulk density, water absorption, linear shrinkage, coefficient of thermal expansion (at 500 degrees C), and strength. The statistical analysis revealed highly significant results, which were further validated, confirming their reliability for practical use in the production of porcelain tiles. The study demonstrated the effectiveness of utilizing Seger formulas and properties of typical raw materials to accurately predict the final properties of ceramic tiles. By employing SiO2/Al2O3 = 5.2, Na2O/K2O = 1.50, MgO/CaO = 3.0, and firing temperature of 1180 degrees C, optimized properties, such as maximum strength, maximum bulk density, and minimum water absorption, was achieved with a composite desirability of 0.9821.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001105879800001 Publication Date 2023-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949; 1402-4896 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access
Notes Approved (up) Most recent IF: 2.9; 2023 IF: 1.28
Call Number UA @ admin @ c:irua:202033 Serial 9097
Permanent link to this record
 

 
Author Ramesha, B.M.; Pawlak, B.; Arenas Esteban, D.; Reekmans, G.; Bals, S.; Marchal, W.; Carleer, R.; Adriaensens, P.; Meynen, V.
Title Partial hydrolysis of diphosphonate ester during the formation of hybrid Tio₂ nanoparticles : role of acid concentration Type A1 Journal article
Year 2023 Publication ChemPhysChem : a European journal of chemical physics and physical chemistry Abbreviated Journal
Volume Issue Pages e202300437-13
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract In the present work, a method was utilized to control the in‐situ partial hydrolysis of a diphosphonate ester in presence of a titania precursor and in function of acid content and its impact on the hybrid nanoparticles was assessed. The hydrolysis degree of organodiphosphonate ester linkers during the formation of hybrid organic‐inorganic metal oxide nanoparticles, are relatively underexplored . Quantitative solution NMR spectroscopy revealed that during the synthesis of TiO2 nanoparticles, an increase in acid concentration introduces a higher degree of partial hydrolysis of the TEPD linker into diverse acid/ester derivatives of TEPD. Increasing the HCl/Ti ratio from 1 to 3, resulted in an increase in degree of partial hydrolysis of the TEPD linker in solution from 4% to 18.8% under the here applied conditions. As a result of the difference in partial hydrolysis, the linker‐TiO2 bonding was altered. Upon subsequent drying of the colloidal TiO2 solution, different textures, at nanoscale and macroscopic scale, were obtained dependent on the HCl/Ti ratio and thus the degree of hydrolysis of TEPD. Understanding such linker‐TiO2 nanoparticle surface dynamics is crucial for making hybrid organic‐inorganic materials (i.e. (porous) metal phosphonates) employed in applications such as electronic/photonic devices, separation technology and heterogeneous catalysts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001071673900001 Publication Date 2023-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1439-4235; 1439-7641 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access OpenAccess
Notes This work was supported by the Research Foundation-Flanders (FWO Vlaanderen) Project G.0121.17 N. The work was further supported by Hasselt University and the Research Foundation – Flanders (FWO Vlaanderen) via the Hercules project AUHL/15/2 – GOH3816 N. V. M. acknowledges the Research Foundation Flanders (FWO) for project K801621 N. B. M. R. acknowledges, Prof. Dr. Christophe Detavernier and Dr. Davy Deduystche (COCOON, Ghent University) for PXRD and VT-XRD measurements, Prof. Dr. Christophe Van De Velde (iPRACS, University of Antwerp) and Dr. Radu Ciocarlan (LADCA, University of Antwerp) for helpful discussions on PXRD measurements and Dr. Nick Gys (University of Antwerp and VITO) for ICP-OES measurements. Approved (up) Most recent IF: 2.9; 2023 IF: 3.075
Call Number UA @ admin @ c:irua:198934 Serial 8911
Permanent link to this record
 

 
Author Truta, F.M.; Cruz, A.G.; Dragan, A.-M.; Tertis, M.; Cowen, T.; Stefan, M.-G.; Topala, T.; Slosse, A.; Piletska, E.; Van Durme, F.; Kiss, B.; De Wael, K.; Piletsky, S.A.; Cristea, C.
Title Design of smart nanoparticles for the electrochemical detection of 3,4-methylenedioxymethamphetamine to allow in field screening by law enforcement officers Type A1 Journal article
Year 2023 Publication Drug testing and analysis Abbreviated Journal
Volume Issue Pages 1-14
Keywords A1 Journal article; Pharmacology. Therapy; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract A portable and highly sensitive sensor was designed for the specific detection of 3,4-methyl-enedioxy-methamphetamine (MDMA), in a range of field-testing situations. The sensor can detect MDMA in street samples, even when other controlled substances drugs, or adulterants are present. In this work, we report for the first time a sensor using electroactive molecularly imprinted polymer nanoparticles computationally designed to recognize MDMA and then produced using solid phase synthesis. A composite comprising chitosan, reduced graphene oxide, and molecularly imprinted polymer nanoparticles synthesized for MDMA for the first time was immobilized on screen-printed carbon electrodes. The sensors displayed a satisfactory sensitivity (106.8 nA x mu M-1), limit of detection (1.6 nM; 0.31 ng/mL), and recoveries (92-99%). The accuracy of the results was confirmed through validation using Ultra-High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (UPLC-MS/MS). This technology could be used in forensic analysis and make it possible to selectively detect MDMA in street samples. A highly sensitive and portable sensor has been developed to detect MDMA in street samples. It uses electroactive molecularly imprinted polymer nanoparticles computationally designed to recognize MDMA, which were immobilized on screen-printed carbon electrodes with chitosan and graphene. The sensor showed good sensitivity and satisfactory recoveries (92-99%), confirmed with UPLC-MS/MS validation. This technology has the potential to be used in forensic analysis.image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001107703400001 Publication Date 2023-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access
Notes Approved (up) Most recent IF: 2.9; 2023 IF: 3.469
Call Number UA @ admin @ c:irua:202058 Serial 9020
Permanent link to this record
 

 
Author Deconinck, E.; Polet, M.A.; Canfyn, M.; Duchateau, C.; De Braekeleer, K.; Van Echelpoel, R.; De Wael, K.; Gremeaux, L.; Degreef, M.; Balcaen, M.
Title Evaluation of an electrochemical sensor and comparison with spectroscopic approaches as used today in practice for harm reduction in a festival setting: a case study : analysis of 3,4-methylenedioxymethamphetamine samples Type A1 Journal article
Year 2023 Publication Drug testing and analysis Abbreviated Journal
Volume Issue Pages 1-13
Keywords A1 Journal article; Pharmacology. Therapy; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract More and more countries and organisations emphasise the value of harm reduction measures in the context of illicit drug use and abuse. One of these measures is drug checking, a preventive action that can represent a quick win by tailored consultation on the risks of substance use upon analytical screening of a submitted sample. Unlike drop-in centres that operate within a fixed setting, enabling drug checking in a harm reduction context at events requires portable, easy to use analytical approaches, operated by personnel with limited knowledge of analytical chemistry. In this case study, four different approaches were compared for the characterisation of 3,4-methylenedioxymethamphetamine samples and this in the way the approaches would be applied today in an event context. The four approaches are mid-infrared (MIR), near-infrared, and Raman spectroscopy, which are today used in drug checking context in Belgium, as well as an electrochemical sensor approach initially developed in the context of law enforcement at ports. The MIR and the electrochemical approach came out best, with the latter allowing for a direct straightforward analysis of the percentage 3,4-methylenedioxymethamphetamine (as base equivalent) in the samples. However, MIR has the advantage that, in a broader drug checking context, it allows to screen for several molecules and so is able to identify unexpected active components or at least the group to which such components belong. The latter is also an important advantage in the context of the growing emergence of new psychotropic substances. MIR, NIR, Raman spectroscopy, and an electrochemical sensor (Narcoreader (R)) for MDMA analysis were compared in a realistic harm reduction context. NIR and Raman failed in simple library approaches. MIR and Narcoreader (R) were preferred. MIR came out as first choice. MIR and Narcoreader (R) have complementary (dis)advantages and could be used in a two-step approach: MIR for screening and Narcoreader (R) for dosage/risk evaluation of MDMA samples.image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001122493700001 Publication Date 2023-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access
Notes Approved (up) Most recent IF: 2.9; 2023 IF: 3.469
Call Number UA @ admin @ c:irua:202047 Serial 9032
Permanent link to this record
 

 
Author Janssens, K.; Dik, J.; Cotte, M.; Susini, J.
Title Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts Type A1 Journal article
Year 2010 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res
Volume 43 Issue 6 Pages 814-825
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Often, just micrometers below a paintings surface lies a wealth of information, both with Old Masters such as Peter Paul Rubens and Rembrandt van Rijn and with more recent artists of great renown such as Vincent Van Gogh and James Ensor. Subsurface layers may include underdrawing, underpainting, and alterations, and in a growing number of cases conservators have discovered abandoned compositions on paintings, illustrating artists practice of reusing a canvas or panel. The standard methods for studying the inner structure of cultural heritage (CH) artifacts are infrared reflectography and X-ray radiography, techniques that are optionally complemented with the microscopic analysis of cross-sectioned samples. These methods have limitations, but recently, a number of fundamentally new approaches for fully imaging the buildup of hidden paint layers and other complex three-dimensional (3D) substructures have been put into practice. In this Account, we discuss these developments and their recent practical application with CH artifacts. We begin with a tabular summary of 14 IR- and X-ray-based imaging methods and then continue with a discussion of each technique, illustrating CH applications with specific case studies. X-ray-based tomographic and laminographic techniques can be used to generate 3D renditions of artifacts of varying dimensions. These methods are proving invaluable for exploring inner structures, identifying the conservation state, and postulating the original manufacturing technology of metallic and other sculptures. In the analysis of paint layers, terahertz time-domain spectroscopy (THz-TDS) can highlight interfaces between layers in a stratigraphic buildup, whereas macrosopic scanning X-ray fluorescence (MA-XRF) has been employed to measure the distribution of pigments within these layers. This combination of innovative methods provides topographic and color information about the micrometer depth scale, allowing us to look into paintings in an entirely new manner. Over the past five years, several new variants of traditional IR- and X-ray-based imaging methods have been implemented by conservators and museums, and the first reports have begun to emerge in the primary research literature. Applying these state-of-the-art techniques in a complementary fashion affords a more comprehensive view of paintings and other artworks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278842500013 Publication Date 2010-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 20.268 Times cited 78 Open Access
Notes ; This research was supported by the Interuniversity Attraction Poles Programme-Belgian Science Policy (IUAP VI/16). The text also presents results of FWO (Brussels, Belgium) projects nr. G.0704.08 and G.0179.09 and from the UA-BOF GOA programme. ; Approved (up) Most recent IF: 20.268; 2010 IF: 21.852
Call Number UA @ admin @ c:irua:83983 Serial 5772
Permanent link to this record
 

 
Author Cotte, M.; Susini, J.; Dik, J.; Janssens, K.
Title Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward Type A1 Journal article
Year 2010 Publication Accounts of chemical research Abbreviated Journal Accounts Chem Res
Volume 43 Issue 6 Pages 705-714
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract A variety of analytical techniques augmented by the use of synchrotron radiation (SR), such as X-ray fluorescence (SR-XRF) and X-ray diffraction (SR-XRD), are now readily available, and they differ little, conceptually, from their common laboratory counterparts. Because of numerous advantages afforded by SR-based techniques over benchtop versions, however, SR methods have become popular with archaeologists, art historians, curators, and other researchers in the field of cultural heritage (CH). Although the CH community now commonly uses both SR-XRF and SR-XRD, the use of synchrotron-based X-ray absorption spectroscopy (SR-XAS) techniques remains marginal, mostly because CH specialists rarely interact with SR physicists. In this Account, we examine the basic principles and capabilities of XAS techniques in art preservation. XAS techniques offer a combination of features particularly well-suited for the chemical analysis of works of art. The methods are noninvasive, have low detection limits, afford high lateral resolution, and provide exceptional chemical sensitivity. These characteristics are highly desirable for the chemical characterization of precious, heterogeneous, and complex materials. In particular, the chemical mapping capability, with high spatial resolution that provides information about local composition and chemical states, even for trace elements, is a unique asset. The chemistry involved in both the objects history (that is, during fabrication) and future (that is, during preservation and restoration treatments) can be addressed by XAS. On the one hand, many studies seek to explain optical effects occurring in historical glasses or ceramics by probing the molecular environment of relevant chromophores. Hence, XAS can provide insight into craft skills that were mastered years, decades, or centuries ago but were lost over the course of time. On the other hand, XAS can also be used to characterize unwanted reactions, which are then considered alteration phenomena and can dramatically alter the objects original visual properties. In such cases, the bulk elemental composition is usually unchanged. Hence, monitoring oxidation state (or, more generally, other chemical modifications) can be of great importance. Recent applications of XAS in art conservation are reviewed and new trends are discussed, highlighting the value (and future possibilities) of XAS, which remains, given its potential, underutilized in the CH community.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278842500003 Publication Date 2010-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4842 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 20.268 Times cited 74 Open Access
Notes ; ; Approved (up) Most recent IF: 20.268; 2010 IF: 21.852
Call Number UA @ admin @ c:irua:83982 Serial 5861
Permanent link to this record
 

 
Author Yu, W.-B.; Hu, Z.-Y.; Jin, J.; Yi, M.; Yan, M.; Li, Y.; Wang, H.-E.; Gao, H.-X.; Mai, L.-Q.; Hasan, T.; Xu, B.-X.; Peng, D.-L.; Van Tendeloo, G.; Su, B.-L.
Title Unprecedented and highly stable lithium storage capacity of (001) faceted nanosheet-constructed hierarchically porous TiO₂/rGO hybrid architecture for high-performance Li-ion batteries Type A1 Journal article
Year 2020 Publication National Science Review Abbreviated Journal Natl Sci Rev
Volume 7 Issue 6 Pages 1046-1058
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Active crystal facets can generate special properties for various applications. Herein, we report a (001) faceted nanosheet-constructed hierarchically porous TiO2/rGO hybrid architecture with unprecedented and highly stable lithium storage performance. Density functional theory calculations show that the (001) faceted TiO2 nanosheets enable enhanced reaction kinetics by reinforcing their contact with the electrolyte and shortening the path length of Li+ diffusion and insertion-extraction. The reduced graphene oxide (rGO) nanosheets in this TiO2/rGO hybrid largely improve charge transport, while the porous hierarchy at different length scales favors continuous electrolyte permeation and accommodates volume change. This hierarchically porous TiO2/rGO hybrid anode material demonstrates an excellent reversible capacity of 250 mAh g(-1) at 1 C (1 C = 335 mA g(-1)) at a voltage window of 1.0-3.0 V. Even after 1000 cycles at 5 C and 500 cycles at 10 C, the anode retains exceptional and stable capacities of 176 and 160 mAh g(-1), respectively. Moreover, the formed Li2Ti2O4 nanodots facilitate reversed Li+ insertion-extraction during the cycling process. The above results indicate the best performance of TiO2-based materials as anodes for lithium-ion batteries reported in the literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000544175300013 Publication Date 2020-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-5138 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 20.6 Times cited 3 Open Access OpenAccess
Notes ; This work was supported by the National Key R&D Program of China (2016YFA0202602 and 2016YFA0202603), the National Natural Science Foundation of China (U1663225) and Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52). ; Approved (up) Most recent IF: 20.6; 2020 IF: 8.843
Call Number UA @ admin @ c:irua:170776 Serial 6648
Permanent link to this record
 

 
Author Ostrikov, K.; Neyts, E.C.; Meyyappan, M.
Title Plasma nanoscience : from nano-solids in plasmas to nano-plasmas in solids Type A1 Journal article
Year 2013 Publication Advances in physics Abbreviated Journal Adv Phys
Volume 62 Issue 2 Pages 113-224
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The unique plasma-specific features and physical phenomena in the organization of nanoscale soild-state systems in a broad range of elemental composition, structure, and dimensionality are critically reviewed. These effects lead to the possibility to localize and control energy and matter at nanoscales and to produce self-organized nano-solids with highly unusual and superior properties. A unifying conceptual framework based on the control of production, transport, and self-organization of precursor species is introduced and a variety of plasma-specific non-equilibrium and kinetics-driven phenomena across the many temporal and spatial scales is explained. When the plasma is localized to micrometer and nanometer dimensions, new emergent phenomena arise. The examples range from semiconducting quantum dots and nanowires, chirality control of single-walled carbon nanotubes, ultra-fine manipulation of graphenes, nano-diamond, and organic matter to nano-plasma effects and nano-plasmas of different states of matter.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000320913600001 Publication Date 2013-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-8732;1460-6976; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 21.818 Times cited 380 Open Access
Notes Approved (up) Most recent IF: 21.818; 2013 IF: 18.062
Call Number UA @ lucian @ c:irua:108723 Serial 2639
Permanent link to this record
 

 
Author Peeters, H.; Keulemans, M.; Nuyts, G.; Vanmeert, F.; Li, C.; Minjauw, M.; Detavernier, C.; Bals, S.; Lenaerts, S.; Verbruggen, S.W.
Title Plasmonic gold-embedded TiO2 thin films as photocatalytic self-cleaning coatings Type A1 Journal article
Year 2020 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ
Volume 267 Issue 267 Pages 118654
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)
Abstract Transparent photocatalytic TiO2 thin films hold great potential in the development of self-cleaning glass sur-

faces, but suffer from a poor visible light response that hinders the application under actual sunlight. To alleviate this problem, the photocatalytic film can be modified with plasmonic nanoparticles that interact very effectively with visible light. Since the plasmonic effect is strongly concentrated in the near surroundings of the nano- particle surface, an approach is presented to embed the plasmonic nanostructures in the TiO2 matrix itself, rather than deposit them loosely on the surface. This way the interaction interface is maximised and the plasmonic effect can be fully exploited. In this study, pre-fabricated gold nanoparticles are made compatible with the organic medium of a TiO2 sol-gel coating suspension, resulting in a one-pot coating suspension. After spin coating, homogeneous, smooth, highly transparent and photoactive gold-embedded anatase thin films are ob- tained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000518865300002 Publication Date 2020-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 22.1 Times cited 57 Open Access OpenAccess
Notes H.P. is grateful to the Research Foundation Flanders (FWO) for an aspirant PhD scholarship. Approved (up) Most recent IF: 22.1; 2020 IF: 9.446
Call Number EMAT @ emat @c:irua:165616 Serial 5446
Permanent link to this record
 

 
Author Mahadi, A.H.; Ye, L.; Fairclough, S.M.; Qu, J.; Wu, S.; Chen, W.; Papaioannou, E.; Ray, B.; Pennycook, T.J.; Haigh, S.J.; Young, N.P.; Tedsree, K.; Metcalfe, I.S.; Tsang, S.C.E.
Title Beyond surface redox and oxygen mobility at pd-polar ceria (100) interface : underlying principle for strong metal-support interactions in green catalysis Type A1 Journal article
Year 2020 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ
Volume 270 Issue Pages 118843
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract When ceria is used as a support for many redox catalysis involved in green catalysis, it is well-known that the overlying noble metal can gain access to a significant quantity of oxygen atoms with high mobility and fast reduction and oxidation properties under mild conditions. However, it is as yet unclear what the underlying principle and the nature of the ceria surface involved are. By using two tailored morphologies of ceria nanocrystals, namely cubes and rods, it is demonstrated from Scanning Transmission Electron Microscopy with Electron Energy Loss Spectroscopy (STEM-EELS) mapping and Pulse Isotopic Exchange (PIE) that ceria nano-cubes terminated with a polar surface (100) can give access to more than the top most layer of surface oxygen atoms. Also, they give higher oxygen mobility than ceria nanorods with a non-polar facet of (110). A new insight for the possible additional role of polar ceria surface plays in the oxygen mobility is obtained from Density Functional Theory (DFT) calculations which suggest that the (100) surface sites that has more than half-filled O on same plane can drive oxygen atoms to oxidise adsorbate(s) on Pd due to the strong electrostatic repulsion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000526110500007 Publication Date 2020-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 22.1 Times cited Open Access
Notes Approved (up) Most recent IF: 22.1; 2020 IF: 9.446
Call Number UA @ admin @ c:irua:183959 Serial 6856
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V.
Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal
Volume 337 Issue Pages 122977
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001056527600001 Publication Date 2023-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record
Impact Factor 22.1 Times cited Open Access Not_Open_Access
Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved (up) Most recent IF: 22.1; 2023 IF: 9.446
Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8797
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Mertens, M.; Bogaerts, A.; Meynen, V.
Title Plasma-based dry reforming of methane in a dielectric barrier discharge reactor: Importance of uniform (sub)micron packings/catalysts to enhance the performance Type A1 Journal Article
Year 2023 Publication APPLIED CATALYSIS B-ENVIRONMENTAL Abbreviated Journal
Volume 337 Issue Pages 122977
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract This study presents new insights on the effect of (sub)micrometer particle sized materials in plasma-based CO2-

CH4 reforming by investigating the performance of SiO2 spheres (with/without supported metal) of varying

particle sizes. (Sub)micron particles synthesized through the St¨ober method were used instead of (sub)millimeter

particles employed in previous studies. Increasing particle size (from 120 nm to 2390 nm) was found to first

increase and then decrease conversion and energy yield, with optimal performance achieved using 740 nm 5 wt%

Ni loaded SiO2, which improved CO2 and CH4 conversion, and energy yield to 44%, 55%, and 0.271 mmol/kJ,

respectively, compared to 20%, 27%, and 0.116 mmol/kJ in an empty reactor at the same flow rate. This is the

first to achieve significant performance improvement in a fully packed reactor, highlighting the importance of

selecting a suitable particle size. The findings can offer guidance towards rational design of catalysts for plasmabased

reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001056527600001 Publication Date 2023-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record
Impact Factor 22.1 Times cited Open Access Not_Open_Access
Notes This work is supported by the China Scholarship Council (No. 201806060123); and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). K.Z acknowledges the EASiCHEM project funded by the Flemish Strategic Basic Research Program of the Catalisti cluster and Flanders Innovation & Entrepreneurship (HBC.2018.0484). Approved (up) Most recent IF: 22.1; 2023 IF: 9.446
Call Number PLASMANT @ plasmant @c:irua:196955 Serial 8798
Permanent link to this record
 

 
Author Mao, J.; Jiang, Y.; Moldovan, D.; Li, G.; Watanabe, K.; Taniguchi, T.; Masir, M.R.; Peeters, F.M.; Andrei, E.Y.
Title Realization of a tunable artificial atom at a supercritically charged vacancy in graphene Type A1 Journal article
Year 2016 Publication Nature physics Abbreviated Journal Nat Phys
Volume 12 Issue 12 Pages 545-549
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Graphene’s remarkable electronic properties have fuelled the vision of a graphene-based platform for lighter, faster and smarter electronics and computing applications. One of the challenges is to devise ways to tailor graphene’s electronic properties and to control its charge carriers. Here we show that a single-atom vacancy in graphene can stably host a local charge and that this charge can be gradually built up by applying voltage pulses with the tip of a scanning tunnelling microscope. The response of the conduction electrons in graphene to the local charge is monitored with scanning tunnelling and Landau level spectroscopy, and compared to numerical simulations. As the charge is increased, its interaction with the conduction electrons undergoes a transition into a supercritical regime where itinerant electrons are trapped in a sequence of quasi-bound states which resemble an artificial atom. The quasi-bound electron states are detected by a strong enhancement of the density of states within a disc centred on the vacancy site which is surrounded by halo of hole states. We further show that the quasi-bound states at the vacancy site are gate tunable and that the trapping mechanism can be turned on and off, providing a mechanism to control and guide electrons in graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000377475700011 Publication Date 2016-02-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 22.806 Times cited 93 Open Access
Notes ; Funding was provided by DOE-FG02-99ER45742 (STM/STS), NSF DMR 1207108 (fabrication and characterization). Theoretical work supported by ESF-EUROCORES-EuroGRAPHENE, FWO-VI and Methusalem programme of the Flemish government. We thank V. F. Libisch, M. Pereira and E. Rossi for useful discussions. ; Approved (up) Most recent IF: 22.806
Call Number c:irua:134210 Serial 4011
Permanent link to this record
 

 
Author Lukyanchuk, I.; Vinokur, V.M.; Rydh, A.; Xie, R.; Milošević, M.V.; Welp, U.; Zach, M.; Xiao, Z.L.; Crabtree, G.W.; Bending, S.J.; Peeters, F.M.; Kwok, W.K.
Title Rayleigh instability of confined vortex droplets in critical superconductors Type A1 Journal article
Year 2015 Publication Nature physics Abbreviated Journal Nat Phys
Volume 11 Issue 11 Pages 21-25
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Depending on the Ginzburg-Landau parameter kappa, superconductors can either be fully diamagnetic if kappa < 1/root 2 (type I superconductors) or allow magnetic flux to penetrate through Abrikosov vortices if kappa > 1/root 2 (type II superconductors; refs 1,2). At the Bogomolny critical point, kappa = kappa(c) = 1/root 2, a state that is infinitely degenerate with respect to vortex spatial configurations arises(3,4). Despite in-depth investigations of conventional type I and type II superconductors, a thorough understanding of the magnetic behaviour in the near-Bogomolny critical regime at kappa similar to kappa(c) remains lacking. Here we report that in confined systems the critical regime expands over a finite interval of kappa forming a critical superconducting state. We show that in this state, in a sample with dimensions comparable to the vortex core size, vortices merge into a multi-quanta droplet, which undergoes Rayleigh instability(5) on increasing kappa and decays by emitting single vortices. Superconducting vortices realize Nielsen-Olesen singular solutions of the Abelian Higgs model, which is pervasive in phenomena ranging from quantum electrodynamics to cosmology(6-9). Our study of the transient dynamics of Abrikosov-Nielsen-Olesen vortices in systems with boundaries promises access to non-trivial effects in quantum field theory by means of bench-top laboratory experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000346831100018 Publication Date 2014-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473;1745-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 22.806 Times cited 20 Open Access
Notes ; We would like to thank N. Nekrasov for illuminating discussions. The work was supported by the US Department of Energy, Office of Science Materials Sciences and Engineering Division (V.M.V., W.K.K., U.W., R.X., M.Z., Z.L.X., G.W.C. and partially I.L. through the Materials Theory Institute), by FP7-IRSES-SIMTECH and ITN-NOTEDEV programs (I.L.), and by the Flemish Science Foundation (FWO-Vlaanderen) (M.V.M. and F.M.P.). ; Approved (up) Most recent IF: 22.806; 2015 IF: 20.147
Call Number c:irua:122791 c:irua:122791 Serial 2815
Permanent link to this record
 

 
Author Roditchev, D.; Brun, C.; Serrier-Garcia, L.; Cuevas, J.C.; Bessa, V.H.L.; Milošević, M.V.; Debontridder, F.; Stolyarov, V.; Cren, T.
Title Direct observation of Josephson vortex cores Type A1 Journal article
Year 2015 Publication Nature physics Abbreviated Journal Nat Phys
Volume 11 Issue 11 Pages 332-337
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Superconducting correlations may propagate between two superconductors separated by a tiny insulating or metallic barrier, allowing a dissipationless electric current to flow(1,2). In the presence of a magnetic field, the maximum supercurrent oscillates(3) and each oscillation corresponding to the entry of one Josephson vortex into the barrier(4). Josephson vortices are conceptual blocks of advanced quantum devices such as coherent terahertz generators(5) or qubits for quantum computing(6), in which on-demand generation and control is crucial. Here, we map superconducting correlations inside proximity Josephson junctions(7) using scanning tunnelling microscopy. Unexpectedly, we find that such Josephson vortices have real cores, in which the proximity gap is locally suppressed and the normal state recovered. By following the Josephson vortex formation and evolution we demonstrate that they originate from quantum interference of Andreev quasiparticles(8), and that the phase portraits of the two superconducting quantum condensates at edges of the junction decide their generation, shape, spatial extent and arrangement. Our observation opens a pathway towards the generation and control of Josephson vortices by applying supercurrents through the superconducting leads of the junctions, that is, by purely electrical means without any need for a magnetic field, which is a crucial step towards high-density on-chip integration of superconducting quantum devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000352163100016 Publication Date 2015-02-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1745-2473;1745-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 22.806 Times cited 102 Open Access
Notes T.C., C.B., F.D., V.S. and D.R. acknowledge financial support from the French ANR project and the French-Russian program PICS-CNRS/RAS. The authors also thank V. Cherkez for assistance during experiments and V. Vinokur (Argonne National Laboratory, Illinois USA) and A. Buzdin (University of Bordeaux 1, France) for stimulating discussions. J.C.C. acknowledges financial support from the Spanish MICINN (Contract No. FIS2011-28851-C1). V.H.L.B. acknowledges support from CNPq Brazil and productive discussions with Prof. A. Chaves (UFC, Brazil). M.V.M. acknowledges support from Research Foundation Flanders (FWO-Vlaanderen) and CAPES Brazil (PVE project BEX1392/11-5). Approved (up) Most recent IF: 22.806; 2015 IF: 20.147
Call Number c:irua:132524 c:irua:132524 Serial 3943
Permanent link to this record
 

 
Author Lin, A.; Sahun, M.; Biscop, E.; Verswyvel, H.; De Waele, J.; De Backer, J.; Theys, C.; Cuypers, B.; Laukens, K.; Berghe, W.V.; Smits, E.; Bogaerts, A.
Title Acquired non-thermal plasma resistance mediates a shift towards aerobic glycolysis and ferroptotic cell death in melanoma Type A1 Journal article
Year 2023 Publication Drug resistance updates Abbreviated Journal
Volume 67 Issue Pages 100914
Keywords A1 Journal article; Pharmacology. Therapy; ADReM Data Lab (ADReM); Center for Oncological Research (CORE); Proteinscience, proteomics and epigenetic signaling (PPES); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract To gain insights into the underlying mechanisms of NTP therapy sensitivity and resistance, using the firstever

NTP-resistant cell line derived from sensitive melanoma cells (A375).

Methods: Melanoma cells were exposed to NTP and re-cultured for 12 consecutive weeks before evaluation

against the parental control cells. Whole transcriptome sequencing analysis was performed to identify differentially

expressed genes and enriched molecular pathways. Glucose uptake, extracellular lactate, media acidification,

and mitochondrial respiration was analyzed to determine metabolic changes. Cell death inhibitors were

used to assess the NTP-induced cell death mechanisms, and apoptosis and ferroptosis was further validated via

Annexin V, Caspase 3/7, and lipid peroxidation analysis.

Results: Cells continuously exposed to NTP became 10 times more resistant to NTP compared to the parental cell

line of the same passage, based on their half-maximal inhibitory concentration (IC50). Sequencing and metabolic

analysis indicated that NTP-resistant cells had a preference towards aerobic glycolysis, while cell death analysis

revealed that NTP-resistant cells exhibited less apoptosis but were more vulnerable to lipid peroxidation and

ferroptosis.

Conclusions: A preference towards aerobic glycolysis and ferroptotic cell death are key physiological changes in

NTP-resistance cells, which opens new avenues for further, in-depth research into other cancer types.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000925156500001 Publication Date 2022-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1368-7646 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 24.3 Times cited Open Access OpenAccess
Notes The authors would like to thank Dr. Christophe Deben and Ms. Hannah Zaryouh (Center for Oncological Research, University of Antwerp) for the use and their help with the D300e Digital Dispenser and Spark® Cyto, as well as Ms. Rapha¨elle Corremans (Laboratory Pathophysiology, University of Antwerp) for the use of their lactate meter. The authors would also like to acknowledge the help from Ms. Tias Verhezen and Mr. Cyrus Akbari, who was involved at the start of the project but could not continue due to the COVID-19 pandemic. The authors also acknowledge the resources and services provided by the VSC (Flemish Supercomputer Center). This work was funded in part by the Research Foundation – Flanders (FWO) and the Flemish Government. The FWO fellowships and grants that funded this work also include: 12S9221N (Abraham Lin), G044420N (Abraham Lin, Annemie Bogaerts), and 1S67621N (Hanne Verswyvel). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr. Willy Floren, and the Vereycken family. We would also like to acknowledge the support from the European Cooperation in Science & Technology (COST) Action on Therapeutical applications of Cold Plasmas (CA20114; PlasTHER). Approved (up) Most recent IF: 24.3; 2023 IF: 10.906
Call Number PLASMANT @ plasmant @c:irua:193167 Serial 7240
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Bykov, M.; Bykova, E.; Kozlenko, D.P.; Tsirlin, A.A.; Karkin, A.E.; Shchennikov, V.V.; Kichanov, S.E.; Gou, H.; Abakumov, A.M.; Egoavil, R.; Verbeeck, J.; McCammon, C.; Dyadkin, V.; Chernyshov, D.; van Smaalen, S.; Dubrovinsky, L.S.
Title Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation Type A1 Journal article
Year 2016 Publication Nature chemistry Abbreviated Journal Nat Chem
Volume 8 Issue 8 Pages 501-508
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Phase transitions that occur in materials, driven, for instance, by changes in temperature or pressure, can dramatically change the materials' properties. Discovering new types of transitions and understanding their mechanisms is important not only from a fundamental perspective, but also for practical applications. Here we investigate a recently discovered Fe4O5 that adopts an orthorhombic CaFe3O5-type crystal structure that features linear chains of Fe ions. On cooling below approximately 150 K, Fe4O5 undergoes an unusual charge-ordering transition that involves competing dimeric and trimeric ordering within the chains of Fe ions. This transition is concurrent with a significant increase in electrical resistivity. Magnetic-susceptibility measurements and neutron diffraction establish the formation of a collinear antiferromagnetic order above room temperature and a spin canting at 85 K that gives rise to spontaneous magnetization. We discuss possible mechanisms of this transition and compare it with the trimeronic charge ordering observed in magnetite below the Verwey transition temperature.
Address Bayerisches Geoinstitut, Universitat Bayreuth, Universitatsstrasse 30, D-95447, Bayreuth, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000374534100019 Publication Date 2016-04-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755-4330 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 25.87 Times cited 51 Open Access
Notes S.V.O. acknowledges the financial support of the Deutsche Forschungsgemeinschaft (DFG) under project OV-110/1-3. A.E.K. and V.V.S. acknowledge the support of the Russian Foundation for Basic Research (Project 14–02–00622a). H.G. acknowledges the support from the Alexander von Humboldt (AvH) Foundation and the National Natural Science Foundation of China (No. 51201148). A.M.A., R.E. and J.V. acknowledge financial support from the European Commission (EC) under the Seventh Framework Programme (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2. R.E. acknowledges support from the EC under FP7 Grant No. 246102 IFOX. A.M.A. acknowledges funding from the Russian Science Foundation (Grant No. 14-13- 00680). A.A.T. acknowledges funding and from the Federal Ministry for Education and Research through the Sofja Kovalevkaya Award of the AvH Foundation. Funding from the Fund for Scientific Research Flanders under FWO Project G.0044.13N is acknowledged. M.B. and S.v.S. acknowledge support from the DFG under Project Sm55/15-2. We acknowledge the European Synchrotron Radiation Facility for the provision of synchrotron radiation facilities.; esteem2jra2; esteem2jra3 Approved (up) Most recent IF: 25.87
Call Number c:irua:133593 c:irua:133593UA @ admin @ c:irua:133593 Serial 4068
Permanent link to this record
 

 
Author O'Sullivan, M.; Hadermann, J.; Dyer, M.S.; Turner, S.; Alaria, J.; Manning, T.D.; Abakumov, A.M.; Claridge, J.B.; Rosseinsky, M.J.
Title Interface control by chemical and dimensional matching in an oxide heterostructure Type A1 Journal article
Year 2016 Publication Nature chemistry Abbreviated Journal Nat Chem
Volume 8 Issue 8 Pages 347-353
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Interfaces between different materials underpin both new scientific phenomena, such as the emergent behaviour at oxide interfaces, and key technologies, such as that of the transistor. Control of the interfaces between materials with the same crystal structures but different chemical compositions is possible in many materials classes, but less progress has been made for oxide materials with different crystal structures. We show that dynamical self-organization during growth can create a coherent interface between the perovskite and fluorite oxide structures, which are based on different structural motifs, if an appropriate choice of cations is made to enable this restructuring. The integration of calculation with experimental observation reveals that the interface differs from both the bulk components and identifies the chemical bonding requirements to connect distinct oxide structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372505500013 Publication Date 2016-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755-4330; 1755-4349 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 25.87 Times cited 28 Open Access
Notes Approved (up) Most recent IF: 25.87
Call Number UA @ lucian @ c:irua:133189 Serial 4199
Permanent link to this record
 

 
Author Zhou, Y.; Che, F.; Liu, M.; Zou, C.; Liang, Z.; De Luna, P.; Yuan, H.; Li, J.; Wang, Z.; Xie, H.; Li, H.; Chen, P.; Bladt, E.; Quintero-Bermudez, R.; Sham, T.-K.; Bals, S.; Hofkens, J.; Sinton, D.; Chen, G.; Sargent, E.H.
Title Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons Type A1 Journal article
Year 2018 Publication Nature chemistry Abbreviated Journal Nat Chem
Volume 10 Issue 10 Pages 974-980
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The electrochemical reduction of CO2 to multi-carbon products has attracted much attention because it provides an avenue to the synthesis of value-added carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the efficiency of CO2 conversion to C-2 products remains below that necessary for its implementation at scale. Modifying the local electronic structure of copper with positive valence sites has been predicted to boost conversion to C-2 products. Here, we use boron to tune the ratio of Cu delta+ to Cu-0 active sites and improve both stability and C-2-product generation. Simulations show that the ability to tune the average oxidation state of copper enables control over CO adsorption and dimerization, and makes it possible to implement a preference for the electrosynthesis of C-2 products. We report experimentally a C-2 Faradaic efficiency of 79 +/- 2% on boron-doped copper catalysts and further show that boron doping leads to catalysts that are stable for in excess of similar to 40 hours while electrochemically reducing CO2 to multi-carbon hydrocarbons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000442395200013 Publication Date 2018-07-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1755-4330; 1755-4349 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 25.87 Times cited 700 Open Access OpenAccess
Notes ; This work was supported financially by funding from TOTAL S.A., the Ontario Research Fund: Research Excellence Program, the Natural Sciences and Engineering Research Council of Canada, the CIFAR Bio-Inspired Solar Energy programme, a University of Toronto Connaught grant, the Ministry of Science, Natural Science Foundation of China (21471040, 21271055 and 21501035), the Innovation-Driven Plan in Central South University project (2017CX003), a project from State Key Laboratory of Powder Metallurgy in Central South University, the Thousand Youth Talents Plan of China and Hundred Youth Talents Program of Hunan and the China Scholarship Council programme. This work benefited from the soft X-ray microcharacterization beamline at CLS, sector 20BM at the APS and the Ontario Centre for the Characterisation of Advanced Materials at the University of Toronto. H.Y. acknowledges financial support from the Research Foundation-Flanders (FWO postdoctoral fellowship). C.Z. acknowledges support from the International Academic Exchange Fund for Joint PhD Students from Tianjin University. P.D.L. acknowledges financial support from the Natural Sciences and Engineering Research Council in the form of the Canada Graduate Scholarship-Doctoral award. S.B. and E.B. acknowledge financial support from the European Research Council (ERC Starting Grant # 335078-COLOURATOMS). The authors thank B. Zhang, N. Wang, C. T. Dinh, T. Zhuang, J. Li and Y. Zhao for fruitful discussions, as well as Y. Hu and Q. Xiao from CLS, and Z. Finfrock and M. Ward from APS for their help during the course of study. Computations were performed on the SOSCIP Consortium's Blue Gene/Q computing platform. SOSCIP is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada, Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions. ; ecas_sara Approved (up) Most recent IF: 25.87
Call Number UA @ lucian @ c:irua:153693UA @ admin @ c:irua:153693 Serial 5091
Permanent link to this record
 

 
Author Arisnabarreta, N.; Hao, Y.; Jin, E.; Salame, A.; Muellen, K.; Robert, M.; Lazzaroni, R.; Van Aert, S.; Mali, K.S.; De Feyter, S.
Title Single-layered imine-linked porphyrin-based two-dimensional covalent organic frameworks targeting CO₂ reduction Type A1 Journal article
Year 2024 Publication Advanced energy materials Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The reduction of carbon dioxide (CO2) using porphyrin-containing 2D covalent organic frameworks (2D-COFs) catalysts is widely explored nowadays. While these framework materials are normally fabricated as powders followed by their uncontrolled surface heterogenization or directly grown as thin films (thickness >200 nm), very little is known about the performance of substrate-supported single-layered (approximate to 0.5 nm thickness) 2D-COFs films (s2D-COFs) due to its highly challenging synthesis and characterization protocols. In this work, a fast and straightforward fabrication method of porphyrin-containing s2D-COFs is demonstrated, which allows their extensive high-resolution visualization via scanning tunneling microscopy (STM) in liquid conditions with the support of STM simulations. The as-prepared single-layered film is then employed as a cathode for the electrochemical reduction of CO2. Fe porphyrin-containing s2D-COF@graphite used as a single-layered heterogeneous catalyst provided moderate-to-high carbon monoxide selectivity (82%) and partial CO current density (5.1 mA cm(-2)). This work establishes the value of using single-layered films as heterogene ous catalysts and demonstrates the possibility of achieving high performance in CO2 reduction even with extremely low catalyst loadings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001177577200001 Publication Date 2024-02-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record
Impact Factor 27.8 Times cited Open Access
Notes N.A. acknowledges a postdoctoral fellowship from the Research Foundation- Flanders (FWO) via grant 12ZS623N. S.D.F. acknowledges support from FWO (G0A4120N, G0H2122N, G0A5U24N), KU Leuven Internal Funds (grants C14/18/06, C14/19/079, C14/23/090), European Union under the Horizon Europe grant 101046231 (FantastiCOF), and M-ERA.NET via FWO (G0K9822N). S.D.F., K.M., Y.H., R.L., and S.V.A. were thankful to the FWO and FNRS for the financial support through the EOS program (grant 30489208, 40007495). Research in Mons was also supported by the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif- CÉCI, and by the Walloon Region (ZENOBE and LUCIA Tier-1 supercomputers). E.J. appreciated the support from the Alexander von Humboldt Foundation, the Max Planck Society, the FLAG-ERA Grant OPERA by DFG 437130745, the National Natural Science Foundation of China (22288101), and the 111 Project (B17020). Partial financial support to M.R. from the Institut Universitaire de France (IUF) was warmly thanked. Approved (up) Most recent IF: 27.8; 2024 IF: 16.721
Call Number UA @ admin @ c:irua:204856 Serial 9172
Permanent link to this record
 

 
Author Jenkinson, K.; Liz-Marzan, L.M.; Bals, S.
Title Multimode electron tomography sheds light on synthesis, structure, and properties of complex metal-based nanoparticles Type A1 Journal article
Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 34 Issue 36 Pages 2110394-19
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Electron tomography has become a cornerstone technique for the visualization of nanoparticle morphology in three dimensions. However, to obtain in-depth information about a nanoparticle beyond surface faceting and morphology, different electron microscopy signals must be combined. The most notable examples of these combined signals include annular dark-field scanning transmission electron microscopy (ADF-STEM) with different collection angles and the combination of ADF-STEM with energy-dispersive X-ray or electron energy loss spectroscopies. Here, the experimental and computational development of various multimode tomography techniques in connection to the fundamental materials science challenges that multimode tomography has been instrumental to overcoming are summarized. Although the techniques can be applied to a wide variety of compositions, the study is restricted to metal and metal oxide nanoparticles for the sake of simplicity. Current challenges and future directions of multimode tomography are additionally discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000831332200001 Publication Date 2022-04-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.4 Times cited 10 Open Access OpenAccess
Notes The authors thank the financial support of the European Research Council (ERC-AdG-2017 787510, ERC-CoG-2019 815128) and of the European Commission (EUSMI, Grant 731019 and ESTEEM3, Grant 823717). Approved (up) Most recent IF: 29.4
Call Number UA @ admin @ c:irua:189616 Serial 7087
Permanent link to this record
 

 
Author Ni, B.; Mychinko, M.; Gómez‐Graña, S.; Morales‐Vidal, J.; Obelleiro‐Liz, M.; Heyvaert, W.; Vila‐Liarte, D.; Zhuo, X.; Albrecht, W.; Zheng, G.; González‐Rubio, G.; Taboada, J.M.; Obelleiro, F.; López, N.; Pérez‐Juste, J.; Pastoriza‐Santos, I.; Cölfen, H.; Bals, S.; Liz‐Marzán, L.M.
Title Chiral Seeded Growth of Gold Nanorods Into 4‐Fold Twisted Nanoparticles with Plasmonic Optical Activity Type A1 Journal article
Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater
Volume Issue Pages 2208299
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A robust and reproducible methodology to prepare stable inorganic nanoparticles with chiral morphology might hold the key to the practical utilization of these materials. We describe herein an optimized chiral growth method to prepare 4-fold twisted gold nanorods, where the amino acid cysteine is used as a dissymmetry inducer. Four tilted ridges were found to develop on the surface of single-crystal nanorods upon repeated reduction of HAuCl4, in the presence of cysteine as the chiral inducer and ascorbic acid as a reducing agent. From detailed electron microscopy analysis of the crystallographic structures, we propose that dissymmetry results from the development of chiral facets in the form of protrusions (tilted ridges) on the initial nanorods, eventually leading to a twisted shape. The role of cysteine is attributed to assisting enantioselective facet evolution, which is supported by density functional theory simulations of the surface energies, modified upon adsorption of the chiral molecule. The development of R-type and S-type chiral structures (small facets, terraces, or kinks) would thus be non-equal, removing the mirror symmetry of the Au NR and in turn resulting in a markedly chiral morphology with high plasmonic optical activity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000888886000001 Publication Date 2022-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.4 Times cited 35 Open Access OpenAccess
Notes This work was supported by the MCIN/AEI/10.13039/501100011033 (Grants PID2019-108954RB-I00, PID2020-117371RA-I00, PID2020-117779RB-I00, and Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency Grant No. MDM-2017-0720), Xunta de Galicia/FEDER (Grant GRC ED431C 2020/09) and the European Regional Development Fund (ERDF). M.M., W.H. and S.B. acknowledge financial support from the European Commission under the Horizon 2020 Programme by ERC Consolidator grant no. 815128 (REALNANO). W.A. acknowledges financial support from the research program of AMOLF, which is partly financed by the Dutch Research Council (NWO). J. M.-V. and N. L. thank the Spanish Ministry of Science and Innovation for financial support (RTI2018- 101394-B-I00 and Severo Ochoa Grant MCIN/AEI/10.13039/501100011033 CEX2019-000925-S) and the Barcelona Supercomputing Center-MareNostrum (BSC-RES) for providing generous computer resources. S.G.-G. acknowledges the MCIN. B. N. acknowledges a postdoctoral fellowship of the Alexander von Humboldt Foundation. G. G.-R. acknowledges the Deutsche Forschungsgemeinschaft (GO 3526/1-1) for financial support. H.C. thanks Deutsche Forschungsgemeinschaft (DFG) SFB 1214 project B1 for funding. G.C-Z. acknowledges National Natural Science Foundation of China (Grant No. 21902148). Approved (up) Most recent IF: 29.4
Call Number EMAT @ emat @c:irua:191808 Serial 7115
Permanent link to this record
 

 
Author Han, S.; Tang, C.S.; Li, L.; Liu, Y.; Liu, H.; Gou, J.; Wu, J.; Zhou, D.; Yang, P.; Diao, C.; Ji, J.; Bao, J.; Zhang, L.; Zhao, M.; Milošević, M.V.; Guo, Y.; Tian, L.; Breese, M.B.H.; Cao, G.; Cai, C.; Wee, A.T.S.; Yin, X.
Title Orbital-hybridization-driven charge density wave transition in CsV₃Sb₅ kagome superconductor Type A1 Journal article
Year 2022 Publication Advanced materials Abbreviated Journal Adv Mater
Volume Issue Pages 1-9
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Owing to its inherent non-trivial geometry, the unique structural motif of the recently discovered kagome topological superconductor AV(3)Sb(5) (A = K, Rb, Cs) is an ideal host of diverse topologically non-trivial phenomena, including giant anomalous Hall conductivity, topological charge order, charge density wave (CDW), and unconventional superconductivity. Despite possessing a normal-state CDW order in the form of topological chiral charge order and diverse superconducting gaps structures, it remains unclear how fundamental atomic-level properties and many-body effects including Fermi surface nesting, electron-phonon coupling, and orbital hybridization contribute to these symmetry-breaking phenomena. Here, the direct participation of the V3d-Sb5p orbital hybridization in mediating the CDW phase transition in CsV3Sb5 is reported. The combination of temperature-dependent X-ray absorption and first-principles studies clearly indicates the inverse Star-of-David structure as the preferred reconstruction in the low-temperature CDW phase. The results highlight the critical role that Sb orbitals play and establish orbital hybridization as the direct mediator of the CDW states and structural transition dynamics in kagome unconventional superconductors. This is a significant step toward the fundamental understanding and control of the emerging correlated phases from the kagome lattice through the orbital interactions and provides promising approaches to novel regimes in unconventional orders and topology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000903664200001 Publication Date 2022-12-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.4 Times cited 1 Open Access OpenAccess
Notes Approved (up) Most recent IF: 29.4
Call Number UA @ admin @ c:irua:193500 Serial 7328
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Jannis, D.; Cunha, D.M.; Halisdemir, U.; Piamonteze, C.; Lee, J.H.; Belhadi, J.; Eltes, F.; Abel, S.; Jovanovic, Z.; Spreitzer, M.; Fompeyrine, J.; Verbeeck, J.; Bibes, M.; Huijben, M.; Rijnders, G.; Koster, G.
Title Strain-engineered metal-to-insulator transition and orbital polarization in nickelate superlattices integrated on silicon Type A1 Journal article
Year 2020 Publication Advanced Materials Abbreviated Journal Adv Mater
Volume Issue Pages 2004995
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Epitaxial growth of SrTiO3 (STO) on silicon greatly accelerates the monolithic integration of multifunctional oxides into the mainstream semiconductor electronics. However, oxide superlattices (SLs), the birthplace of many exciting discoveries, remain largely unexplored on silicon. In this work, LaNiO3/LaFeO3 SLs are synthesized on STO-buffered silicon (Si/STO) and STO single-crystal substrates, and their electronic properties are compared using dc transport and X-ray absorption spectroscopy. Both sets of SLs show a similar thickness-driven metal-to-insulator transition, albeit with resistivity and transition temperature modified by the different amounts of strain. In particular, the large tensile strain promotes a pronounced Ni 3dx2-y2 orbital polarization for the SL grown on Si/STO, comparable to that reported for LaNiO3 SL epitaxially strained to DyScO3 substrate. Those results illustrate the ability to integrate oxide SLs on silicon with structure and property approaching their counterparts grown on STO single crystal, and also open up new prospects of strain engineering in functional oxides based on the Si platform.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000588146500001 Publication Date 2020-11-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.4 Times cited 18 Open Access OpenAccess
Notes ; This work is supported by the international M-ERA.NET project SIOX (project 4288) and H2020 project ULPEC (project 732642). M.S. acknowledges funding from Slovenian Research Agency (Grants No. J2-9237 and No. P2-0091). This work received support from the ERC CoG MINT (#615759) and from a PHC Van Gogh grant. M.B. thanks the French Academy of Science and the Royal Netherlands Academy of Arts and Sciences for supporting his stays in the Netherlands. This project has received funding as a transnational access project from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823717 – ESTEEM3. N.G. and J.V. acknowledge GOA project “Solarpaint” of the University of Antwerp. ; esteem3TA; esteem3reported Approved (up) Most recent IF: 29.4; 2020 IF: 19.791
Call Number UA @ admin @ c:irua:173516 Serial 6617
Permanent link to this record
 

 
Author Yang, C.-Q.; Zhi, R.; Rothmann, M.U.; Xu, Y.-Y.; Li, L.-Q.; Hu, Z.-Y.; Pang, S.; Cheng, Y.-B.; Van Tendeloo, G.; Li, W.
Title Unveiling the intrinsic structure and intragrain defects of organic-inorganic hybrid perovskites by ultralow dose transmission electron microscopy Type A1 Journal article
Year 2023 Publication Advanced materials Abbreviated Journal
Volume Issue Pages 1-9
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Transmission electron microscopy (TEM) is a powerful tool for unveiling the structural, compositional, and electronic properties of organic-inorganic hybrid perovskites (OIHPs) at the atomic to micrometer length scales. However, the structural and compositional instability of OIHPs under electron beam radiation results in misunderstandings of the microscopic structure-property-performance relationship in OIHP devices. Here, ultralow dose TEM is utilized to identify the mechanism of the electron-beam-induced changes in OHIPs and clarify the cumulative electron dose thresholds (critical dose) of different commercially interesting state-of-the-art OIHPs, including methylammonium lead iodide (MAPbI(3)), formamidinium lead iodide (FAPbI(3)), FA(0.83)Cs(0.17)PbI(3), FA(0.15)Cs(0.85)PbI(3), and MAPb(0.5)Sn(0.5)I(3). The critical dose is related to the composition of the OIHPs, with FA(0.15)Cs(0.85)PbI(3) having the highest critical dose of approximate to 84 e angstrom(-2) and FA(0.83)Cs(0.17)PbI(3) having the lowest critical dose of approximate to 4.2 e angstrom(-2). The electron beam irradiation results in the formation of a superstructure with ordered I and FA vacancies along (c), as identified from the three major crystal axes in cubic FAPbI(3), (c), (c), and (c). The intragrain planar defects in FAPbI(3) are stable, while an obvious modification is observed in FA(0.83)Cs(0.17)PbI(3) under continuous electron beam exposure. This information can serve as a guide for ensuring a reliable understanding of the microstructure of OIHP optoelectronic devices by TEM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000950461600001 Publication Date 2023-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 29.4 Times cited Open Access Not_Open_Access
Notes Approved (up) Most recent IF: 29.4; 2023 IF: 19.791
Call Number UA @ admin @ c:irua:195116 Serial 7349
Permanent link to this record
 

 
Author Jenkinson, K.; Spadaro, M.C.; Golovanova, V.; Andreu, T.; Morante, J.R.; Arbiol, J.; Bals, S.
Title Direct operando visualization of metal support interactions induced by hydrogen spillover during CO₂ hydrogenation Type A1 Journal article
Year 2023 Publication Advanced materials Abbreviated Journal
Volume 35 Issue 51 Pages 2306447-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The understanding of catalyst active sites is a fundamental challenge for the future rational design of optimized and bespoke catalysts. For instance, the partial reduction of Ce4+ surface sites to Ce3+ and the formation of oxygen vacancies are critical for CO2 hydrogenation, CO oxidation, and the water gas shift reaction. Furthermore, metal nanoparticles, the reducible support, and metal support interactions are prone to evolve under reaction conditions; therefore a catalyst structure must be characterized under operando conditions to identify active states and deduce structure-activity relationships. In the present work, temperature-induced morphological and chemical changes in Ni nanoparticle-decorated mesoporous CeO2 by means of in situ quantitative multimode electron tomography and in situ heating electron energy loss spectroscopy, respectively, are investigated. Moreover, operando electron energy loss spectroscopy is employed using a windowed gas cell and reveals the role of Ni-induced hydrogen spillover on active Ce3+ site formation and enhancement of the overall catalytic performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001106139400001 Publication Date 2023-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record
Impact Factor 29.4 Times cited Open Access OpenAccess
Notes Approved (up) Most recent IF: 29.4; 2023 IF: 19.791
Call Number UA @ admin @ c:irua:201143 Serial 9022
Permanent link to this record