toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gielis, J. pdf  url
doi  openurl
  Title Phi-bonacci in Ancient Greece Type A1 Journal article
  Year 2021 Publication Symmetry : culture and science Abbreviated Journal  
  Volume 32 Issue 1 Pages 25-40  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Fibonacci numbers are a very popular subject in mathematics, culture and science. A major open question is why the ancient Greeks overlooked this series, while they were very familiar with the golden mean and division in extreme and mean ratio. Furthermore, they could compute the square root of five to a high degree of precision using Theon 's ladder. This fact is based on tables built with side and diagonal numbers, and it is a simple and incredibly efficient method to compute roots of integers, though it is little known even now among most of the experts. The biologist D 'Arcy Wentworth Thompson showed that the same method could be used to generate the Fibonacci series using a simple shift in the computation of the tables. He argues, quite convincingly, that the ancient Greeks could not have overlooked this. Actually, the same method can be used to generate all possible regular phyllotaxis patterns.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000643822700002 Publication Date 2021-03-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0865-4824 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178322 Serial 8376  
Permanent link to this record
 

 
Author Peeters, B.; Safdar, S.; Carlier, B.; Spasic, D.; Daems, D.; Lammertyn, J. pdf  openurl
  Title PCR amplified DNAzyme-amplicons for generic solid-phase antimicrobial resistance screening Type P1 Proceeding
  Year 2019 Publication Abbreviated Journal  
  Volume Issue Pages 971-974 T2 - Transducers 2019 : Eurosensors XXXIII  
  Keywords P1 Proceeding; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Fiber optic surface plasmon resonance (FO-SPR) has shown its potential for the detection of nucleic acids and more recently the technology has been combined with catalytic active strands such as DNAzymes. In this work, an innovative, generic solid-phase DNA sensor concept is presented, based on FO-SPR and PCR amplified DNAzyme activity. Improved levels of specificity and sensitivity were obtained down to picomolar concentrations. Moreover, the FO-SPR sensor concept enables AuNP amplified DNA target detection, independent of the target sequence length. The FO-SPR sensor was demonstrated for the screening of the mobile colistin resistance (MCR-2) gene, a gene important for the antimicrobial resistance in Gram-negative species such as E. Coli.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000539487000245 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:166108 Serial 8367  
Permanent link to this record
 

 
Author Van Grieken, R.; Van 't dack, L.; Costa Dantas, C.; Moura de Amorim, W.; Maenhaut, W. pdf  doi
openurl 
  Title Elemental constituents of atmospheric aerosols in Recife, North-East Brazil Type A3 Journal article
  Year 1982 Publication Environmental pollution: series B : chemical and physical Abbreviated Journal  
  Volume 4 Issue 2 Pages 143-163  
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Few data are available on the inorganic atmospheric pollution in the rapidly expanding cities of South America, like Recife, on the Atlantic Coast of North-east Brazil. Therefore, the elemental composition of atmospheric aerosols was investigated for nine sites in the Recife conurbation and a fairly remote site in the area. Total aerosol samples were collected on cellulose filters for analysis by energy dispersive X-ray fluorescence and cascade impactors were used to collect the aerosols as a function of particle size for subsequent analysis by proton-induced X-ray emission. Local soil aliquots were also analysed. About eighteen elements were quantified in all cases. The average total atmospheric concentrations appeared to be well above natural levels but usually lower than, or comparable with, those of North American and European cities. Dispersal of sea spray and of local soil (often contaminated with, for example, Cu, Zn and Pb from industrial sources) contributes predominantly to the total atmospheric load in Recife. However, the particle size fraction results also indicated strong excesses in the small particle mode for S, K, V, Mn, Ni, Cu, Zn, Br and Pb, mainly in the downtown area. Again, the corresponding enrichment factors were only moderate in comparison with other published urban data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2003-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-148x; 1878-0695 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:111437 Serial 7894  
Permanent link to this record
 

 
Author Fabri, C.; Tsagris, M.; Moretti, M.; Van Passel, S. pdf  doi
openurl 
  Title Adaptation to climate change : the irrigation technology mix of Italian farmers Type A1 Journal article
  Year 2023 Publication Applied economic perspectives and policy Abbreviated Journal  
  Volume Issue Pages 1-22  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract (down) Farmers should increasingly adopt more water‐efficient irrigation technologies—such as drip irrigation—as a result of climate warming and aggravating water scarcity. We analyze how Italian farmers adapt to climate change by changing their irrigation technology mix. We apply a two‐stage econometric model to data from 5876 Italian farms. We find that farmers' initial reaction to increasing temperatures is reducing their surface‐irrigated fractions. When temperatures increase further, farmers switch toward more sprinkler irrigation. Our results show that farmers are not autonomously moving to drip irrigation in response to climate change, suggesting that government incentives are needed to encourage this transition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001125360800001 Publication Date 2023-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-5790 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.8 Times cited Open Access  
  Notes Approved Most recent IF: 5.8; 2023 IF: 1.361  
  Call Number UA @ admin @ c:irua:201688 Serial 9184  
Permanent link to this record
 

 
Author Wozniak, T.; Faria, P.E., Jr.; Seifert, G.; Chaves, A.; Kunstmann, J. url  doi
openurl 
  Title Exciton g factors of van der Waals heterostructures from first-principles calculations Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 101 Issue 23 Pages 235408-235411  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) External fields are a powerful tool to probe optical excitations in a material. The linear energy shift of an excitation in a magnetic field is quantified by its effective g factor. Here we show how exciton g factors and their sign can be determined by converged first-principles calculations. We apply the method to monolayer excitons in semiconducting transition metal dichalcogenides and to interlayer excitons in MoSe2/WSe2 heterobilayers and obtain good agreement with recent experimental data. The precision of our method allows us to assign measured g factors of optical peaks to specific transitions in the band structure and also to specific regions of the samples. This revealed the nature of various, previously measured interlayer exciton peaks. We further show that, due to specific optical selection rules, g factors in van der Waals heterostructures are strongly spin and stacking-dependent. The calculation of orbital angular momenta requires the summation over hundreds of bands, indicating that for the considered two-dimensional materials the basis set size is a critical numerical issue. The presented approach can potentially be applied to a wide variety of semiconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000537315100009 Publication Date 2020-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:170219 Serial 7944  
Permanent link to this record
 

 
Author Gupta, A.; Baron, G.V.; Perreault, P.; Lenaerts, S.; Ciocarlan, R.-G.; Cool, P.; Mileo, P.G.M.; Rogge, S.; Van Speybroeck, V.; Watson, G.; Van Der Voort, P.; Houlleberghs, M.; Breynaert, E.; Martens, J.; Denayer, J.F.M. url  doi
openurl 
  Title Hydrogen clathrates : next generation hydrogen storage materials Type A1 Journal article
  Year 2021 Publication Energy Storage Materials Abbreviated Journal  
  Volume 41 Issue Pages 69-107  
  Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Extensive research has been carried on the molecular adsorption in high surface area materials such as carbonaceous materials and MOFs as well as atomic bonded hydrogen in metals and alloys. Clathrates stand among the ones to be recently suggested for hydrogen storage. Although, the simulations predict lower capacity than the expected by the DOE norms, the additional benefits of clathrates such as low production and operational cost, fully reversible reaction, environmentally benign nature, low risk of flammability make them one of the most promising materials to be explored in the next decade. The inherent ability to tailor the properties of clathrates using techniques such as addition of promoter molecules, use of porous supports and formation of novel reverse micelles morphology provide immense scope customisation and growth. As rapidly evolving materials, clathrates promise to get as close as possible in the search of “holy grail” of hydrogen storage. This review aims to provide the audience with the background of the current developments in the solid-state hydrogen storage materials, with a special focus on the hydrogen clathrates. The in-depth analysis of the hydrogen clathrates will be provided beginning from their discovery, various additives utilised to enhance their thermodynamic and kinetic properties, challenges in the characterisation of hydrogen in clathrates, theoretical developments to justify the experimental findings and the upscaling opportunities presented by this system. The review will present state of the art in the field and also provide a global picture for the path forward.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000685118300009 Publication Date 2021-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8297 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178744 Serial 8045  
Permanent link to this record
 

 
Author Gebremariam, Y.A.; Dessein, J.; Wondimagegnhu, B.A.; Breusers, M.; Lenaerts, L.; Adgo, E.; Van Passel, S.; Minale, A.S.; Frankl, A. url  doi
openurl 
  Title Listen to the radio and go on field trips : a study on farmers' attributes to opt for extension methods in Northwest Ethiopia Type A1 Journal article
  Year 2024 Publication AIMS Agriculture and Food Abbreviated Journal  
  Volume 9 Issue 1 Pages 3-29  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering Management (ENM)  
  Abstract (down) Extension professionals are expected to help disseminate agricultural technologies, information, knowledge and skills to farmers. In order to develop valuable and long-lasting extension services, it is essential to understand the methods of extension that farmers find most beneficial. This understanding helps adopt improved practices, overcome barriers, provide targeted interventions and continuously improve agricultural extension programs. Thus, assessing factors affecting farmers' choice of agricultural extension methods is essential for developing extension methods that comply with farmers' needs and socio-economic conditions. Therefore, we analyzed the factors affecting farmers' preferences in extension methods, using cross-sectional data collected from 300 households in two sample districts and 16 Kebelles in Ethiopia between September 2019 and March 2020. Four extension methods, including training, demonstration, office visits and phone calls were considered as outcome variables. We fitted a multivariate probit model to estimate the factors that influence farmers' choice of extension methods. The results of the study showed that the number of dependents in the household head, formal education and membership of Idir (an informal insurance program a community or group runs to meet emergencies) were negatively associated with farmers' choices to participate in different extension methods compared to no extension. On the other hand, the sex of the household head, farm experience, participation in non-farm activities, monetary loan access, owning a mobile phone, radio access and membership of cooperatives were found to have a statistically significant positive impact on farmers' choices of extension methods. Based on these findings, the government and the concerned stakeholders should take farmers' socio-economic and institutional traits into account when selecting and commissioning agricultural extension methods. This could help to develop contextually relevant extension strategies that are more likely to be chosen and appreciated by farmers. Furthermore, such strategies can aid policymakers in designing extension programs that cater to farmers' needs and concerns. In conclusion, farmers' socio-economic and institutional affiliation should be taken into consideration when selecting agricultural extension methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001124466300001 Publication Date 2023-12-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2471-2086 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.8 Times cited Open Access  
  Notes Approved Most recent IF: 1.8; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:202154 Serial 9209  
Permanent link to this record
 

 
Author Larraín, M.; Billen, P.; Van Passel, S. pdf  doi
openurl 
  Title The effect of plastic packaging recycling policy interventions as a complement to extended producer responsibility schemes : a partial equilibrium model Type A1 Journal article
  Year 2022 Publication Waste Management Abbreviated Journal Waste Manage  
  Volume 153 Issue Pages 355-366  
  Keywords A1 Journal article; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract (down) Extended producer responsibility (EPR) schemes have effectively increased the plastic waste that is separately collected. However, due to the structure of the recycling industry, EPR cannot increase recycling rates up to the target levels.Additional policy instruments to increase recycling rates such as recycled content targets, green dot fees bonus for recycled content, recycling targets and taxes on non-recycled plastic packaging have been discussed on a political level in the last years. However, very little research has quantitatively studied the effectiveness of these policy interventions.Using a partial equilibrium model, this paper examines the effectiveness of the implementation of the aforementioned policy instruments to increase recycling rates and the impact on different stakeholders of the value chain: plastic producers, consumers, producer responsibility organization and recyclers.Results show that direct interventions (recycled content standards and recycling targets) have the benefit of decoupling the recycling industry from external markets such as the oil market. They can be a good starting point to increase recycling, but in the long term they may be restricting by not presenting incentives to achieve recycling levels beyond the targeted amounts and by limiting technological innovation. On the contrary, eco-nomic interventions such as a green dot fee bonus or a packaging tax create economic incentives for recycling. However, these incentives are diminished by the lower perceived quality of packaging with higher recycled content levels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000868915000004 Publication Date 2022-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.1  
  Call Number UA @ admin @ c:irua:191367 Serial 7370  
Permanent link to this record
 

 
Author Van Dyck, P.; Markowicz, A.; Van Grieken, R. doi  openurl
  Title Influence of sample thickness, excitation energy and geometry on particle size effects in XRF Type A1 Journal article
  Year 1985 Publication X-ray spectrometry Abbreviated Journal  
  Volume 14 Issue 4 Pages 183-187  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Expressions are presented for calculating the matrix effect and the pure particle size effect in the XRF analysis of particulate samples with a discrete particle size. The equations are based on the absorption-weighted radiometric diameter concept. Two excitationdetection geometries are considered, with the angles between the sample plane and both the incident and emerging radiation being either 90° (π geometry) or 45° (π/2 geometry). Calculations were made for different sample loadings and exciting radiation energies. The influence of these parameters on the matrix and pure particle size effects is shown. From the results, it is possible to predict the performances of alternative experimental correction procedures for the particle size effect, involving dual measurements at different excitation energies or in different excitationdetection geometries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1985ATB6100007 Publication Date 2005-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116486 Serial 8097  
Permanent link to this record
 

 
Author Roegiers, J. file  openurl
  Title Development of combined photocatalytic and active carbon fiber technology for indoor air purification based on Multiphysics models Type Doctoral thesis
  Year 2021 Publication Abbreviated Journal  
  Volume Issue Pages XXX, 197 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Exposure to volatile organic compounds (VOCs) remains a major public health concern. Indoor VOC concentrations typically far exceed outdoor levels due to a variety of emission sources and the stringent insulation measures that are imposed today. Many attempts have been made to use photocatalysis for indoor air purification. In an ideal situation, photocatalysis is capable of complete mineralization of VOCs to H2O and CO2, without any byproduct formation. Moreover, the process can take place at standard atmospheric conditions, i.e. ambient temperature and atmospheric pressure. However, successful exploitation is still impeded due to low conversion efficiency, significant pressure loss (and hence a high energy consumption) and byproduct formation. In the first part of this thesis an attempt was made to tackles these problems by designing a novel type of photocatalytic (PCO) reactor. The PCO device consists of a cylindrical vessel filled with TiO2-coated glass tubes and equipped with UV fluorescence lamps. It was investigated in terms of fluid dynamics, coating properties, UV-light distribution and photocatalytic activity. Experimental data was later used to develop and calibrate a Multiphysics model. The model proved to be a useful tool for designing and upscaling the PCO reactor. Consequently, an optimized prototype reactor was constructed and tested according the CEN-EN-16846-1 standard for VOC removal. Although the prototype showed promising results for lab-scale conditions, it struggled with byproduct formation when purifying ppb-level VOCs. In the second part of this thesis, activated carbon adsorption was investigated in order to combine it with photocatalysis. Activated carbon fiber was opted for its fast kinetics, high adsorption capacity and thermo-electrical regeneration. The filter was studied in detail regarding the adsorption of polar and apolar VOCs at indoor air concentration levels and regeneration capabilities. Experimental data was used to develop a Multiphysics model for activated carbon adsorption as well. Consequently, a novel type of ACF filter was developed using the Multiphysics model, which was equipped with electrodes in the tips of the pleats for effective thermal regeneration. In the last part, the combination of both ACF and PCO was studied using a realistic case study. Based on the Multiphysics model, the feasibility of a so-called hybrid air purification device could be investigated. The Multiphysics model shows promising results for this hybrid PCO-ACF system and hence, a demo setup was constructed for future research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:181137 Serial 6860  
Permanent link to this record
 

 
Author Ysebaert, T. openurl 
  Title Modelling and experimental validation of deposition on vegetation to facilitate urban particulate matter mitigation Type Doctoral thesis
  Year 2023 Publication Abbreviated Journal  
  Volume Issue Pages xxvi, 234 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Exposure to air pollution, such as particulate matter (PM), causes adverse health effects, particularly to the respiratory tract and cardiovascular system. PM is the collective name for all kinds of particles ranging from small particles and liquid droplets, which contain organic compounds, acids and metals, to soil or dust particles. One distinguishes PM10, PM2.5 and PM0.1, which have aerodynamic particle sizes smaller than 10, 2.5 and 0.1 µm, respectively. It is mainly the latter that is the most harmful, as PM0.1 penetrates deep into the respiratory system and carries relatively more toxic substances than the other PM fractions. Over a 15-year period, PM concentrations in European member states have fallen by about 30%. Nevertheless, the World Health Organisation (WHO) air quality guidelines, which became stricter in 2021, are exceeded in most places around the world. Particularly in cities, excessive levels of PM are measured and it is here that PM mitigation should be investigated. For this, the implementation of urban green infrastructure, including trees, shrubs, green roofs and green walls, is being looked at. Plants hinder airflow and remove PM from the air by deposition on their leaves and branches. This process is known as dry deposition. Plants can capture PM very efficiently, due to their complex structure of leaves and branches. Green walls offer significant advantages over other types of urban green infrastructure because they can grow on the huge available wall area and, because they do not hinder air circulation, as we sometimes see with trees. Green walls are believed to have a much greater, untapped potential to reduce PM pollution. However, a literature review showed that we do not know the quantitative impact of green walls and lack the tools and/or general methodology to do so. The objective of this thesis is therefore to develop a method for assessing PM removal by green walls, based on predictive models and based on relevant parameters that are experimentally determined. Computational fluid dynamics (CFD) is a numerical method to simulate airflow in complex environments such as cities. These models can also simulate the vegetation-wind interaction in detail and are interesting tools to assess the effect of green walls on PM concentrations in real environments. It is important to first study the aerodynamic effect of green walls and parameterise it correctly in CFD models. Plants decrease the wind speed and create turbulence through a combination of viscous and form drag, which are determined by the permeability (K) and drag coefficient (Cd), respectively. Wind tunnel experiments were conducted with three commonly found climbers (Hedera helix, Parthenocissus tricuspidata and Parthenocissus quinquefolia) and the variation of leaf area density was investigated for two of them. It was observed that the air resistance depended on plant species, leaf area density and wind speed. The difference between the plant species was assigned to the functional leaf size (FLS), the ratio of the largest circle within the boundaries of the leaf to the total leaf area. FLS is likely associated with other morphological characteristics of plants that, when considered collectively, provide a more comprehensive representation of leaf complexity. The pressure and velocity measurements obtained were used to optimise the permeability and drag coefficient in a CFD model. At wind speeds below 0.6 m s-1, the resistance was mainly determined by viscous drag and a larger leaf size resulted in a higher viscous drag. At wind speeds above 1.5 m s-1, form drag was dominant and the parameterised Cd decreased with increasing wind speed due to the sheltering effect of successive plant elements. The leaf area density had a significant effect on K and Cd and, is therefore an important plant parameters in CFD models. The main conclusion here is that the common practice of using a constant Cd to model the influence of plants on the air flow leads to deviations from reality. Wind tunnels are highly suitable to study the impact of green walls on PM concentration under controlled environmental conditions. For this purpose, a new wind tunnel setup was built and great attention was paid to obtaining a uniform air flow. Thus, based on CFD models, appropriate flow controllers were chosen, consisting of honeycombs and screens with different mesh sizes. New PM generation devices and measuring equipment were installed and set up appropriately. Devices were available for generating and measuring ultrafine dust (<0.1 µm, i.e. PM0.1) and fine dust (<0.3 µm, i.e. PM0.3) consisting of soot particles, and, on the other hand, fine dust with particle sizes smaller than 2.5 (PM2.5) and 10 µm (PM10) consisting of 'Arizona fine test dust'. With the new wind tunnel setup, it was possible to measure the influence of Hedera helix (common ivy), grown in a planter against a climbing aid, on the PM concentration and this was expressed by a collection efficiency, i.e. the difference in concentration in front and behind the plants normalised for the incoming concentration. The collection efficiency of H. helix depended on the particle size of the PM and wind speed. The collection efficiency decreased when the particle size increased from 0.02 to 0.2 µm and increased again for particle sizes above 0.3 µm. The collection efficiency also increased with increasing wind speed, especially for particle sizes > 0.03 µm. On the other hand, relative humidity and the type of PM (soot or dust) did not significantly affect the collection efficiency. The main objective of this study was to obtain an optimised size-resolved deposition model. Dry deposition occurs through several mechanisms, in particular gravity, diffusion, impaction and interception, and the subsequent resuspension of deposited PM back to the environment. The modelling of these mechanisms was described by \citet{Zhang2001} and \citet{Petroff2010}. The data obtained from the wind tunnel experiments allowed validating these deposition models. It was for the first time that deposition of real PM on green walls was studied. The different PM deposition mechanisms were found to be strongly dependent on particle size and wind speed. The models of \citet{Zhang2001} and \citet{Petroff2010} each matched PM concentration measurements for only certain particle sizes. Therefore, a combination of the two models was investigated and the root mean square error was lower by on average 3.5% (PM < 0.03 µm) and 46% (PM > 0.03 µm) compared to the original models at wind speeds greater than 1.5 m s-1. For wind speeds less than 1.5 m s-1, the optimised model did not differ from the original models. The optimised model was able to meet the imposed criteria for air quality models, where a correct model exhibits low deviation from measurements ('normalised mean square error' < 1.5), low bias ('fractional bias' between -0.3 and 0.3) and high R2. In comparison, the R$2$ of the optimised model was 0.57, while that of Zhang et al. (2001) and Petroff et al. (2010) was 0.23 and 0.31, respectively. The optimised model was however characterised by a high scatter, with the fraction of modeled results located within a factor of two of the measurements being lower than 50. A model study with a green façade oriented parallel to the incoming airflow showed that deposition by interception and impaction reduced remarkably, but that the orientation had no effect on deposition by Brownian diffusion. A promising green wall form for PM mitigation is the living wall system (LWS). LWS consist of supporting structures with substrate to grow plants in and can be planted with a variety of plant species. This allows to select plant species with optimal characteristics to achieve PM deposition. These characteristics refer to the macro- and microstructure of the leaves, and research has been conducted mainly on these. On the other hand, the influence of the supporting structure and substrate on PM concentrations has rarely been studied. With the new wind tunnel setup, LWS from different manufacturers were tested for their ability to capture PM. The setups were subjected for three hours to an air flow with a low PM concentration (resuspension phase) and then for three hours to an air flow to which additional PM was added (deposition phase). Some setups were able to decrease the PM concentration during both phases, while others just caused the concentration to increase. Some systems were able to reduce particulate matter concentration during both phases, namely LWS consisting of planters (-2% and -4% for PM0.1 and PM2.5, respectively) and textile cloths (-23% and -5% for PM0.1 and PM2.5, respectively). While other systems actually resulted in an increase in concentration especially LWS existing textile fabrics consisting of geotextiles (+11% for both PM fractions) and with moss as substrate (+2% and +5% for PM0.1 and PM2.5, respectively). This highlights the importance of careful selection of suspension systems to reduce particulate matter concentrations. Further research is therefore needed on the materials used in these systems in relation to their particulate content, as well as on plant development in these systems. In addition to air measurements, measurements were taken of the amount of PM deposited on the leaves and suspension system of LWS. This allowed the difference in PM resuspension and deposition between plant species to be investigated. The amount of deposited particulate matter was determined based on 'saturation isothermal remanent magnetisation' (SIRM), a measure of magnetisable particulate matter. This was possible because the added 'Arizona fine test dust' contained iron oxide. However, no significant difference was observed between the SIRM values measured before the wind tunnel experiment, after resuspension and after deposition. This suggested that the iron oxide content in the Arizona fine test dust was too low to measure a significant difference in the SIRM values on leaves after three hours. The plant species did give rise to different SIRM values ranging between 5 and 260 µ A. In particular, SIRM values above 26 µ A were observed for the plant species that were grouped due to their significantly higher accumulation of PM. 'Specific leaf area' (SLA), specifically the ratio of the one-sided 'fresh' leaf area to its dry mass, was the significant leaf characteristic. SLA correlated with leaf complexity. In particular, plant species with elongated leaves were characterized by low SLA, high FLS and high complexity and showed significantly higher SIRM values. Finally, the optimised size-resolved deposition model was also tested in an urban model to get an idea of the impact of a green wall on PM concentrations in a so-called 'street canyon'. These are narrow streets with high buildings on both sides, making air pollution more persistent. To this end, an ideal scenario was tested in which a green wall was introduced along both sides of the street over a length of about 270 m. The model result showed a decrease in PM2.5 and PM10 of 46 ± 12% and 52 ± 14%. This result is of course for a very optimal scenario where the green wall covers the entire building façades. Since this is not feasible in reality, other ways of promoting contact between green walls and polluted air can be explored. The insights obtained illustrate that the use of climbing plants can be a cost-effective and environmentally friendly solution to reduce PM concentrations. Moreover, the findings showed that models can be used to investigate the impact of green walls on PM levels. These findings fit within the broader context of designing healthy and sustainable urban environments and developing innovative solutions based on solid scientific knowledge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:199439 Serial 8900  
Permanent link to this record
 

 
Author Pacquets, L. url  openurl
  Title Towards stable Cu-Ag bimetallic nanoparticles to boost the electrocatalytic CO2 reduction Type Doctoral thesis
  Year 2022 Publication Abbreviated Journal  
  Volume Issue Pages xvi, 188 p.  
  Keywords Doctoral thesis; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract (down) Ever since the industrial revolution, the emission of greenhouse gasses dramatically increased, resulting in high CO2 concentration in the atmosphere. The electrochemical conversion of CO2 to value added products, such as carbon monoxide, formic acid, methane, ethylene and ethanol is a very promising strategy to inhibit CO2 emissions. Nevertheless, at the moment, the electrochemical CO2 reduction (eCO2R) is not yet industrially viable, mainly due to the lack of good electrocatalysts. On the other hand, core-shell nanoparticles (NPs) have emerged over the last couple of years as promising candidates. It is believed that bimetallic enhancement effects are behind the improved performance of these core-shell NPs when compared to the individual metals. Although widely investigated, there are still some remaining issues and/or open questions. Indeed, the development of a robust and straightforward synthesis method along with fundamental insight into their resistance towards electrochemical stress remains absent. A good control over morphology, size and composition is key in determining which properties are beneficial for the eCO2R. Since these catalysts are designed to be implemented in electrolyzers, they have to maintain long-term performance. This makes the design of a reproducible method, unveiling structure-performance relationships the effect of electrochemical stress, a crucial aspect. Exploring and modifying existing synthesis methods, have led to the acquisition of a robust and reproducible synthesis method where thermal decomposition of the Cu core is combined with the galvanic replacement of Ag in organic solvents. The implementation of this method has led to the design of a wide variety of Cu-Ag bimetallic NPs and enabled to investigate their composition-selectivity profile. Introducing Ag on Cu suppressed hydrogen and increased the CO formation. CO production was boosted by using Cu@Ag core-shells and was promoted even more by changing the type of electrolyte. As these nanoparticles suffered from degradation, the 3D mapping of the structural changes of Cu@Ag core-shells under operating conditions led to the hypothesis of a two-step degradation mechanism where initially Cu leaching was observed with the subsequent sintering of the Ag shells. One approach to avoid this electrochemical degradation, investigated in this research, was the application of an ultrathin carbon layer to protect the active layer. This ultrathin carbon layer operated as a protective layer, suppressing hydrogen production and increasing the stability of the electrocatalyst. In conclusion, the product selectivity can be tuned by using different Cu-Ag bimetallic nanoparticles synthesized through a robust method. Their unique degradation pathway of Cu@Ag core-shell nanoparticles has led to the proposition of a more accurate stabilization strategy. These findings can contribute significantly in the quest for improved electrocatalysts for the eCO2R.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:190236 Serial 7221  
Permanent link to this record
 

 
Author Seuntjens, D.; Han, M.; Kerckhof, F.-M.; Boon, N.; Al-Omari, A.; Takacs, I.; Meerburg, F.; De Mulder, C.; Wett, B.; Bott, C.; Murthy, S.; Carvajal Arroyo, J.M.; De Clippeleir, H.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants Type A1 Journal article
  Year 2018 Publication Water research Abbreviated Journal  
  Volume 138 Issue Pages 37-46  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Even though nitrification/denitrification is a robust technology to remove nitrogen from sewage, economic incentives drive its future replacement by shortcut nitrogen removal processes. The latter necessitates high potential activity ratios of ammonia oxidizing to nitrite oxidizing bacteria (rAOB/rNOB). The goal of this study was to identify which wastewater and process parameters can govern this in reality. Two sewage treatment plants (STP) were chosen based on their inverse rAOB/rNOB values (at 20 °C): 0.6 for Blue Plains (BP, Washington DC, US) and 1.6 for Nieuwveer (NV, Breda, NL). Disproportional and dissimilar relationships between AOB or NOB relative abundances and respective activities pointed towards differences in community and growth/activity limiting parameters. The AOB communities showed to be particularly different. Temperature had no discriminatory effect on the nitrifiers' activities, with similar Arrhenius temperature dependences (ΘAOB = 1.10, ΘNOB = 1.061.07). To uncouple the temperature effect from potential limitations like inorganic carbon, phosphorus and nitrogen, an add-on mechanistic methodology based on kinetic modelling was developed. Results suggest that BP's AOB activity was limited by the concentration of inorganic carbon (not by residual N and P), while NOB experienced less limitation from this. For NV, the sludge-specific nitrogen loading rate seemed to be the most prevalent factor limiting AOB and NOB activities. Altogether, this study shows that bottom-up mechanistic modelling can identify parameters that influence the nitrification performance. Increasing inorganic carbon in BP could invert its rAOB/rNOB value, facilitating its transition to shortcut nitrogen removal.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000431747300005 Publication Date 2017-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354; 1879-2448 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:149976 Serial 8385  
Permanent link to this record
 

 
Author Cioni, M.; Delle Piane, M.; Polino, D.; Rapetti, D.; Crippa, M.; Arslan Irmak, E.; Pavan, G.M.; Van Aert, S.; Bals, S. doi  openurl
  Title Data for Sampling Real‐Time Atomic Dynamics in Metal Nanoparticles by Combining Experiments, Simulations, and Machine Learning Type Dataset
  Year 2024 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Dataset; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (down) Even at low temperatures, metal nanoparticles (NPs) possess atomic dynamics that are key for their properties but challenging to elucidate. Recent experimental advances allow obtaining atomic‐resolution snapshots of the NPs in realistic regimes, but data acquisition limitations hinder the experimental reconstruction of the atomic dynamics present within them. Molecular simulations have the advantage that these allow directly tracking the motion of atoms over time. However, these typically start from ideal/perfect NP structures and, suffering from sampling limits, provide results that are often dependent on the initial/putative structure and remain purely indicative. Here, by combining state‐of‐the‐art experimental and computational approaches, how it is possible to tackle the limitations of both approaches and resolve the atomistic dynamics present in metal NPs in realistic conditions is demonstrated. Annular dark‐field scanning transmission electron microscopy enables the acquisition of ten high‐resolution images of an Au NP at intervals of 0.6 s. These are used to reconstruct atomistic 3D models of the real NP used to run ten independent molecular dynamics simulations. Machine learning analyses of the simulation trajectories allows resolving the real‐time atomic dynamics present within the NP. This provides a robust combined experimental/computational approach to characterize the structural dynamics of metal NPs in realistic conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205843 Serial 9143  
Permanent link to this record
 

 
Author Nelen, D.; Manshoven, S.; Peeters, J.R.; Vanegas, P.; D'Haese, N.; Vrancken, K. doi  openurl
  Title A multidimensional indicator set to assess the benefits of WEEE material recycling Type A1 Journal article
  Year 2014 Publication Journal of cleaner production Abbreviated Journal  
  Volume 83 Issue Pages 305-316  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) EU strategies for waste management have long recognized the key role of recycling to move towards sustainable consumption and production. This resulted in a range of regulatory measures, among which the Waste Electrical and Electronic Equipment (WEEE) directive, which sets weight-based targets for recovery, preparation for re-use and recycling. The increasing strategic relevance of the supply of raw materials has, however, spurred a more integrated approach towards resource efficiency. In addition to the prevention of disposal, recycling practices are now also meant to contribute to sustainable materials management by pursuing (i) a higher degree of material cycle closure, (ii) an improved recovery of strategically relevant materials, and (iii) the avoidance of environmental burdens associated with the extraction and refining of primary raw materials. In response to this evolution, this paper reports about the development of an indicator set that allows to quantitatively demonstrate these recycling benefits, hence going further than the weight-based objectives employed in the WEEE directive. The indicators can be calculated for WEEE recycling processes for which information is available on both input and output fractions. It offers a comprehensive framework that aims to support decision making processes on product design, to identify opportunities for the optimization of WEEE End-of-Life scenarios, and to assess the achieved (or expected) results of implemented (or planned) recycling optimization strategies. The paper is illustrated by a case study on the recycling of LCD televisions. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000343781500030 Publication Date 2014-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:121160 Serial 7393  
Permanent link to this record
 

 
Author Berihun, D.; Van Passel, S. pdf  url
doi  openurl
  Title Climate variability and macroeconomic output in Ethiopia : the analysis of nexus and impact via asymmetric autoregressive distributive lag cointegration method Type A1 Journal article
  Year 2021 Publication Environment, development and sustainability Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract (down) Ethiopia showed a rapid, yet, a none resilient economic growth much threatened by climate variability. In Ethiopia, the adverse effects of climate variability are stipulated among the significant factors constraining its economic development. There are relatively few studies about the adverse effects of climate variability on the Ethiopian macroeconomy. In this context, little is known about the exact effects of the ongoing climate variability on Ethiopian macroeconomic growth. This study intends to examine whether climate variability factors, for instance rainfall and temperature, have an effect on the macroeconomic output of Ethiopia. An asymmetric autoregressive distributive lag cointegration method is used to investigate time-series data for the years 1950-2014. Diagnostic tests show the relevance of the applied method and robustness of our results. The study finds climate variability affects Ethiopia's economic growth in the long run. Rainfall and temperature fluctuation induce significant negative impacts. A percentage annual temperature variability for instance decreases the Ethiopian annual gross domestic yield (GDP) up to 4.5 percent. In the short run, climate variability particularly rainfall and temperature changes also have a profound effect on Ethiopia's economic output. Within such confirmed climate change impacts, Ethiopia should carry out more on adapting and mitigating the impacts as it is presented on its climate-resilient economic growth policies and strategies. In spite of the policy contribution of the results, the study will motivate further research and will also serve as a benchmark for the coming Ethiopian studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670722100001 Publication Date 2021-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-585x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:179837 Serial 6917  
Permanent link to this record
 

 
Author Berghmans, P.; Bleux, N.; Int Panis, L.; Mishra, V.K.; Torfs, R.; Van Poppel, M. pdf  doi
openurl 
  Title Exposure assessment of a cyclist to PM10 and ultrafine particles Type A1 Journal article
  Year 2009 Publication The science of the total environment Abbreviated Journal  
  Volume 407 Issue 4 Pages 1286-1298  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Estimating personal exposure to air pollution is a crucial component in identifying high-risk populations and situations. It will enable policy makers to determine efficient control strategies. Cycling is again becoming a favorite mode of transport both in developing and in developed countries due to increasing traffic congestion and environmental concerns. in Europe, it is also seen as a healthy sports activity. However, due to high levels of hazardous pollutants in the present day road microenvironment the cyclist might be at a higher health risk due to higher breathing rate and proximity to the vehicular exhaust. In this paper we present estimates of the exposure of a cyclist to particles of various size fractions including ultrafine particles (UFP) in the town of Mol (Flanders, Belgium). The results indicate relatively higher UFP concentration exposure during morning office hours and moderate UFP levels during afternoon. The major sources of UFP and PM(10) were identified, which are vehicular emission and construction activities, respectively. We also present a dust mapping technique which can be a useful tool for town planners and local policy makers. (C) 2008 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000262573200005 Publication Date 2008-12-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:94563 Serial 7953  
Permanent link to this record
 

 
Author Shani, J.; Livshitz, T.; Robberecht, H.; Van Grieken, R.; Rubinstein, N.; Even-Paz, Z. pdf  doi
openurl 
  Title Increased erythrocyte glutathione peroxidase activity in psoriatics consuming high-selenium drinking water at the dead-sea psoriasis treatment center Type A3 Journal article
  Year 1985 Publication Pharmacological research communications Abbreviated Journal  
  Volume 17 Issue 5 Pages 479-488  
  Keywords A3 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Erythrocyte selenium-dependent glutathione peroxidase activity was measured in psoriatic Danes, before and after their four-week balneological therapy at the Ein-Bokek International Psoriasis Treatment Center, on the Dead-Sea shore in Israel. The drinking water in Ein-Bokek was found to be rich in selenium, a trace element with anticarcinogenic properties and of great importance in human nutrition and health. The most reliable biological parameter for increase in selenium bioavailability is the erythrocytes' glutathione-peroxidase activity. As psoriasis is a proliferative skin disease, the activity of this enzyme was assayed in 35 psoriatic Danes and in 25 long-term local hotel workers, as well as in 34 volunteers drinking low-selenium water. The glutathione peroxidase activity in the psoriatic patients increased significantly during their four-week stay in Ein-Bokek. Erythrocyte glutathione peroxidase activity in the hotel workers was 50% higher than that in the healthy volunteers consuming low-selenium water. A possible role of selenium in psoriasis is suggested.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2004-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-6989 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116758 Serial 8076  
Permanent link to this record
 

 
Author Singh, A.; Yuan, B.; Rahman, M.H.; Yang, H.; De, A.; Park, J.Y.; Zhang, S.; Huang, L.; Mannodi-Kanakkithodi, A.; Pennycook, T.J.; Dou, L. pdf  doi
openurl 
  Title Two-dimensional halide Pb-perovskite-double perovskite epitaxial heterostructures Type A1 Journal article
  Year 2023 Publication Journal of the American Chemical Society Abbreviated Journal  
  Volume 145 Issue 36 Pages 19885-19893  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Epitaxial heterostructures of two-dimensional (2D) halide perovskites offer a new platform for studying intriguing structural, optical, and electronic properties. However, difficulties with the stability of Pb- and Sn-based heterostructures have repeatedly slowed the progress. Recently, Pb-free halide double perovskites are gaining a lot of attention due to their superior stability and greater chemical diversity, but they have not been successfully incorporated into epitaxial heterostructures for further investigation. Here, we report epitaxial core-shell heterostructures via growing Pb-free double perovskites (involving combinations of Ag(I)-Bi(III), Ag-Sb, Ag-In, Na-Bi, Na-Sb, and Na-In) around Pb perovskite 2D crystals. Distinct from Pb-Pb and Pb-Sn perovskite heterostructures, growths of the Pb-free shell at 45 degrees on the (100) surface of the lead perovskite core are observed in all Pb-free cases. The in-depth structural analysis carried out with electron diffraction unequivocally demonstrates the growth of the Pb-free shell along the [110] direction of the Pb perovskite, which is likely due to the relatively lower surface energy of the (110) surface. Furthermore, an investigation of anionic interdiffusion across heterostructure interfaces under the influence of heat was carried out. Interestingly, halide anion diffusion in the Pb-free 2D perovskites is found to be significantly suppressed as compared to Pb-based 2D perovskites. The great structural tunability and excellent stability of Pb-free perovskite heterostructures may find uses in electronic and optoelectronic devices in the near future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001060980300001 Publication Date 2023-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited Open Access  
  Notes Approved Most recent IF: 15; 2023 IF: 13.858  
  Call Number UA @ admin @ c:irua:200342 Serial 9111  
Permanent link to this record
 

 
Author Beltran, V.; Marchetti, A.; De Meyer, S.; Nuyts, G.; De Wael, K. pdf  url
doi  openurl
  Title Geranium lake pigments : the role of the synthesis on the structure and composition Type A1 Journal article
  Year 2021 Publication Dyes And Pigments Abbreviated Journal Dyes Pigments  
  Volume 189 Issue Pages 109260  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Eosin Y has an extraordinary capacity to form complexes with metallic elements, that have applications in many different fields, from photovoltaics and photocatalysis to historical artists? pigments. To unravel the complexes reactivity, it is essential to have a precise knowledge of their structure and composition, as well as how these can be affected by the synthesis protocol, an often underestimated factor. This manuscript presents a thorough investigation of the structure and composition of eosin Y complexes based on Al and Pb, by FTIR, XRPD and Raman spectroscopy, with a particular focus on the effect of the synthesis conditions. Results clearly show the change of the coordination mode in Pb complexes depending on the protocol, while the structure of Al complexes remains stable. In both cases, the formation of by-products was observed. Additionally, a detailed band assignment of the FTIR and Raman spectra of eosin Y and Pb and Al complexes is described, providing interesting details such as the interaction between the metallic ion and the xanthene moiety (chromophore). This is extremely important for the analysis of historical paintings where eosin Y is bonded to metallic ions, as well as for other materials in dye-sensitized solar cells, wastewater treatment or photocatalysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634733200001 Publication Date 2021-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0143-7208 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.473 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.473  
  Call Number UA @ admin @ c:irua:177676 Serial 8002  
Permanent link to this record
 

 
Author Schalm, O.; Anaf, W.; Callier, J.; Leyva Pernia, D. url  doi
openurl 
  Title New generation monitoring devices for heritage guardians to detect multiple events and hazards Type P1 Proceeding
  Year 2018 Publication IOP conference series : materials science and engineering Abbreviated Journal  
  Volume 364 Issue Pages Unsp 012056-9  
  Keywords P1 Proceeding; Engineering sciences. Technology; Art; History; Antwerp Systems and software Modelling (AnSyMo); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)  
  Abstract (down) Environmental parameters such as temperature, relative humidity, visible light, UV radiation and pollution influence the deterioration rate of heritage items. To judge on the environmental appropriateness for heritage conservation, it is therefore important to monitor the environment. Often, an incomplete set of environmental parameters is measured, or sporadic or time-averaged measurements are performed. As a result, a wide range of undesirable situations and hazards remain unnoticed. This might lead to an underestimation of environmental dangers (i.e., inaccurate judgement) or to inappropriate mitigation measures (i.e., inaccurate decision making). We present an innovative and user-friendly monitoring device that simultaneously and continuously measures (1) environmental parameters and (2) material behavior. An extended combination of off-the-shelf sensors for temperature, relative humidity, air speed, CO2, NO2, O-3 and particulate matter are connected to a multipurpose datalogger. In-house developed sensors for the shrinkage and expansion behavior of wood, as well as sensors for metal corrosion rates are connected to the same datalogger. Such extended monitoring shows the identification of a wider range of undesirable situations, and it facilitates the search for correlations between such situations and the sources that cause them, i.e., the hazards.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000452025100056 Publication Date 2018-06-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1757-8981; 1757-899x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:151825 Serial 8298  
Permanent link to this record
 

 
Author Moretti, M.; Vanschoenwinkel, J.; Van Passel, S. pdf  doi
openurl 
  Title Accounting for externalities in cross-sectional economic models of climate change impacts Type A1 Journal article
  Year 2021 Publication Ecological Economics Abbreviated Journal Ecol Econ  
  Volume 185 Issue Pages 107058  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract (down) Environmental effects and natural resources depletion associated with agriculture production affect the agriculture response to climate change. Traditional cross-sectional climate response models ignore this requirement. This research estimates the impact of climate on European agriculture using a continental scale Ricardian analysis. We correct farm income by accounting for resources (energy, fertilisers, pesticides, and water) use intensity and calculate the sustainable value for a sample of 9497 specialized field crop farms. Compared with the traditional Ricardian method, the marginal effects of temperature remain positive (but less positive) in Northern countries, while it leads to less damages in Southern countries when net revenue and farms? sustainable values are used as dependent variables. Accounting for the environmental effects and depletion of natural capital improves the ability of the Ricardian method to estimate agriculture climate response functions in the long run.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000647544700012 Publication Date 2021-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8009; 1873-6106 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.965 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.965  
  Call Number UA @ admin @ c:irua:178955 Serial 6911  
Permanent link to this record
 

 
Author Radujković, D.; Vicca, S.; van Rooyen, M.; Wilfahrt, P.; Brown, L.; Jentsch, A.; Reinhart, K.O.; Brown, C.; De Gruyter, J.; Jurasinski, G.; Askarizadeh, D.; Bartha, S.; Beck, R.; Blenkinsopp, T.; Cahill, J.; Campetella, G.; Canullo, R.; Chelli, S.; Enrico, L.; Fraser, L.; Hao, X.; Henry, H.A.L.; Hohn, M.; Jouri, M.H.; Koch, M.; Lawrence Lodge, R.; Li, F.Y.; Lord, J.M.; Milligan, P.; Minggagud, H.; Palmer, T.; Schröder, B.; Szabó, G.; Zhang, T.; Zimmermann, Z.; Verbruggen, E. pdf  url
doi  openurl
  Title Consistent predictors of microbial community composition across spatial scales in grasslands reveal low context‐dependency Type A1 Journal article
  Year 2023 Publication Molecular ecology Abbreviated Journal  
  Volume 32 Issue 24 Pages 6924-6938  
  Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract (down) Environmental circumstances shaping soil microbial communities have been studied extensively. However, due to disparate study designs, it has been difficult to resolve whether a globally consistent set of predictors exists, or context‐dependency prevails. Here, we used a network of 18 grassland sites (11 of those containing regional plant productivity gradients) to examine (i) if similar abiotic or biotic factors predict both large‐scale (across sites) and regional‐scale (within sites) patterns in bacterial and fungal community composition, and (ii) if microbial community composition differs consistently at two levels of regional plant productivity (low vs. high). Our results revealed that bacteria were associated with particular soil properties (such as base saturation) and both bacteria and fungi were associated with plant community composition across sites and within the majority of sites. Moreover, a discernible microbial community signal emerged, clearly distinguishing high and low‐productivity soils across different grasslands independent of their location in the world. Hence, regional productivity differences may be typified by characteristic soil microbial communities across the grassland biome. These results could encourage future research aiming to predict the general effects of global changes on soil microbial community composition in grasslands and to discriminate fertile from infertile systems using generally applicable microbial indicators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001090315100001 Publication Date 2023-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-1083 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.9 Times cited Open Access  
  Notes Approved Most recent IF: 4.9; 2023 IF: 6.086  
  Call Number UA @ admin @ c:irua:200464 Serial 9194  
Permanent link to this record
 

 
Author Dobrota, A.S.; Vlahovic, J.; V. Skorodumova, N.; Pasti, I.A. pdf  doi
openurl 
  Title First-principles analysis of aluminium interaction with nitrogen-doped graphene nanoribbons – from adatom bonding to various Type A1 Journal article
  Year 2022 Publication Materials Today Communications Abbreviated Journal  
  Volume 31 Issue Pages 103388-10  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Enhancing aluminium interaction with graphene-based materials is of crucial importance for the development of Al-storage materials and novel functional materials via atomically precise doping. Here, DFT calculations are employed to investigate Al interactions with non-doped and N-doped graphene nanoribbons (GNRs) and address the impact of the edge sites and N-containing defects on the material's reactivity towards Al. The presence of edges does not influence the energetics of Al adsorption significantly (compared to pristine graphene sheet). On the other hand, N-doping of graphene nanoribbons is found to affect the adsorption energy of Al to an extent that strongly depends on the type of N-containing defect. The introduction of edge-NO group and doping with in -plane pyridinic N result in Al adsorption nearly twice as strong as on pristine graphene. Moreover, double n-type doping via N and Al significantly alters the electronic structure of Al,N-containing GNRs. Our results suggest that selectively doped GNRs with pyridinic N can have enhanced Al-storage capacity and could be potentially used for selective Al electrosorption and removal. On the other hand, Al,N-containing GNRs with pyridinic N could also be used in resistive sensors for mechanical deformation. Namely, strain along the longitudinal axis of these dual doped GNRs does not affect the binding of Al but tunes the bandgap and causes more than 700-fold change in the conductivity. Thus, careful defect engineering and selective doping of GNRs with N (and Al) could lead to novel multifunctional materials with exceptional properties. [GRAPHICS]  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000820987400002 Publication Date 2022-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-4928 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:189563 Serial 7163  
Permanent link to this record
 

 
Author Calogiuri, T.; Hagens, M.; Van Groenigen, J.W.; Corbett, T.; Hartmann, J.; Hendriksen, R.; Janssens, I.; Janssens, I.A.; Ledesma Dominguez, G.; Loescher, G.; Mortier, S.; Neubeck, A.; Niron, H.; Poetra, R.P.; Rieder, L.; Struyf, E.; Van Tendeloo, M.; De Schepper, T.; Verdonck, T.; Vlaeminck, S.E.; Vicca, S.; Vidal, A. url  doi
openurl 
  Title Design and construction of an experimental setup to enhance mineral weathering through the activity of soil organisms Type A1 Journal article
  Year 2023 Publication Journal of visualized experiments Abbreviated Journal  
  Volume Issue 201 Pages e65563-30  
  Keywords A1 Journal article; Engineering sciences. Technology; Internet Data Lab (IDLab); Applied mathematics; Sustainable Energy, Air and Water Technology (DuEL); Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract (down) Enhanced weathering (EW) is an emerging carbon dioxide (CO2) removal technology that can contribute to climate change mitigation. This technology relies on accelerating the natural process of mineral weathering in soils by manipulating the abiotic variables that govern this process, in particular mineral grain size and exposure to acids dissolved in water. EW mainly aims at reducing atmospheric CO2 concentrations by enhancing inorganic carbon sequestration. Until now, knowledge of EW has been mainly gained through experiments that focused on the abiotic variables known for stimulating mineral weathering, thereby neglecting the potential influence of biotic components. While bacteria, fungi, and earthworms are known to increase mineral weathering rates, the use of soil organisms in the context of EW remains underexplored. This protocol describes the design and construction of an experimental setup developed to enhance mineral weathering rates through soil organisms while concurrently controlling abiotic conditions. The setup is designed to maximize weathering rates while maintaining soil organisms' activity. It consists of a large number of columns filled with rock powder and organic material, located in a climate chamber and with water applied via a downflow irrigation system. Columns are placed above a fridge containing jerrycans to collect the leachate. Representative results demonstrate that this setup is suitable to ensure the activity of soil organisms and quantify their effect on inorganic carbon sequestration. Challenges remain in minimizing leachate losses, ensuring homogeneous ventilation through the climate chamber, and avoiding flooding of the columns. With this setup, an innovative and promising approach is proposed to enhance mineral weathering rates through the activity of soil biota and disentangle the effect of biotic and abiotic factors as drivers of EW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001127854400015 Publication Date 2023-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1940-087x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.2 Times cited Open Access  
  Notes Approved Most recent IF: 1.2; 2023 IF: 1.232  
  Call Number UA @ admin @ c:irua:200770 Serial 9019  
Permanent link to this record
 

 
Author Mao, D.; Lookman, R.; van de Weghe, H.; Vanermen, G.; de Brucker, N.; Diels, L. doi  openurl
  Title Detailed analysis of petroleum hydrocarbon attenuation in biopiles by high-performance liquid chromatography followed by comprehensive two-dimensional gas chromatography Type A1 Journal article
  Year 2009 Publication Journal of chromatography : A Abbreviated Journal  
  Volume 1216 Issue 9 Pages 1524-1527  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Enhanced bioremediation of petroleum hydrocarbons in two biopiles was quantified by high-performance liquid chromatography (HPLC) followed by comprehensive two-dimensional gas chromatography (GCXGC). The attenuation of 34 defined hydrocarbon classes was calculated by HPLCGCXGC analysis of representative biopile samples at start-up and after 18 weeks of biopile operation. In general, a-cyclic alkanes were most efficiently removed from the biopiles, followed by monoaromatic hydrocarbons. Cycloalkanes and polycyclic aromatic hydrocarbons (PAHs) were more resistant to degradation. A-cyclic biomarkers farnesane, trimethyl-C13, norpristane, pristane and phytane dropped to only about 10% of their initial concentrations. On the other hand, C29C31 hopane concentrations remained almost unaltered after 18 weeks of biopile operation, confirming their resistance to biodegradation. They are thus reliable indicators to estimate attenuation potential of petroleum hydrocarbons in biopile processed soils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000263610500035 Publication Date 2009-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9673 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:76320 Serial 7769  
Permanent link to this record
 

 
Author Xie, Y.; Van Tendeloo, M.; Zhu, W.; Peng, L.; Vlaeminck, S.E. pdf  doi
openurl 
  Title Autotrophic nitrogen polishing of secondary effluents : Alkaline pH and residual nitrate control S0-driven denitratation for downstream anammox treatment Type A1 Journal article
  Year 2023 Publication Journal of Water Process Engineering Abbreviated Journal  
  Volume 56 Issue Pages 104402-104409  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (down) Energy-lean nitrogen removal technologies, such as partial nitritation/anammox, often encounter effluent issues due to elevated nitrate and ammonium levels. This study proposed a novel autotrophic polishing strategy coupling sulfur-driven denitratation with anammox. To explore the denitratation potential in obtaining stable and sufficient nitrite accumulation, the effects of pH, residual nitrate level, and biomass-specific nitrate loading rate (BSNLR) were investigated in an S0-packed bed reactor at low hydraulic retention time (i.e., 0.2 h). Implementing pH and residual nitrate control strategies would be easier in practice than BSNLR control to polish secondary effluent. Alkaline pH values could realize successful nitrite accumulation without residual nitrate, and further intensify the accumulation under increased residual nitrate levels. The nitrate level was positively correlated with the nitrite accumulation efficiency. At pH 8.5 and nitrate concentration of 1.0 ± 0.8 mg N L−1, sulfur-driven denitratation could successfully maintain nitrite accumulation of 6.4 ± 1.0 mg NO2−-N L−1, ideally for the downstream anammox in case of residual ammonium levels of around 5 mg N L−1. Since Thiobacillus members play a key role in managing nitrite accumulation, their abundance should be guaranteed in the practical application.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001103341400001 Publication Date 2023-10-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-7144 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7 Times cited Open Access Not_Open_Access: Available from 18.04.2024  
  Notes Approved Most recent IF: 7; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:200036 Serial 8835  
Permanent link to this record
 

 
Author Eltayeb, M.A.H.; Van Grieken, R.E. pdf  doi
openurl 
  Title Iron, copper, zinc and lead in hair from Sudanese populations of different age groups Type A1 Journal article
  Year 1990 Publication The science of the total environment Abbreviated Journal  
  Volume 95 Issue Pages 157-165  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Energy-dispersive X-ray fluorescence was used for the analysis of hair samples from three different age groups of the Sudanese population. Hair samples were digested in a mixture of nitric and perchloric acids and the metals were then precipitated with ammonium pyrrolidine dithiocarbamate. The variations of the Fe, Cu, Zn and Pb content of hair with age were investigated. The averages of the elemental concentrations in each age group were compared with the other age groups and with literature values. The correlation of each pair of elements in the hair samples was also investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1990DP94300014 Publication Date 2003-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697; 1879-1026 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116656 Serial 8132  
Permanent link to this record
 

 
Author Van Grieken, R.; Van 't dack, L.; Costa Dantas, C.; Da Silveira Dantas, H. pdf  doi
openurl 
  Title Soil analysis by thin-film energy-dispersive X-ray fluorescence Type A1 Journal article
  Year 1979 Publication Analytica chimica acta Abbreviated Journal  
  Volume 108 Issue Pages 93-101  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Energy-dispersive x-ray fluorescence is advantageous for trace analysis of soils present as thin films. A target thickness of about 2 mg cm-2 provides a compromise between optimal sensitivity and minimal absorption effect or optimal accuracy. Sample preparation involves only suspending the finely ground soil in water and drying this suspension on a thin mylar foil glued on a ring that fits into the x.r.f. spectrometer. The effective sample weight present in the exciting beam area is computed from the scatter peaks, a method that cancels out target heterogeneity problems. High accuracy is demonstrated for many elements in reference soil and rock materials; a precision around 5% and a detection limit around 10 ppm can be achieved. As an illustration, results for 16 trace elements and preliminary interpretation are given for a series of pedologically important soil samples from Brasil.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1979HL44100012 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2670; 1873-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:111402 Serial 8549  
Permanent link to this record
 

 
Author Eltayeb, M.A.H.; Van Grieken, R.E. doi  openurl
  Title Preconcentration and XRF-determination of heavy metals in hair from Sudanese populations Type A1 Journal article
  Year 1989 Publication Journal of radioanalytical and nuclear chemistry Abbreviated Journal  
  Volume 131 Issue 2 Pages 331-342  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (down) Energy-dispersive X-ray fluorescence analysis was applied for the analysis of hair. The hair samples were digested in a mixture of nitric and perchloric acid and the heavy metals were precipitated with ammonium pyrrolidine dithiocarbamate. The accuracy, precision and recovery of the method for the elements Fe, Ni, Cu, Zn and Pb were evaluated through the analysis of a standard hair sample. The procedure was applied to the analysis of hair from an occupationally exposed group of Sudanese workers and a control group. The hair of the exposed group showed a range of 80550 ppm Fe, 612 ppm Cu, 57190 ppm Zn and 703700 ppm Pb, while that of the control group had a range of 60310 ppm Fe, 722 ppm Cu, 89170 ppm Zn and 317 ppm Pb.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1989AL77700009 Publication Date 2005-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0236-5731; 1588-2780 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116816 Serial 8399  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: