toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Gryse, O.; Clauws, P.; Vanhellemont, J.; Lebedev, O.I.; van Landuyt, J.; Simoen, E.; Claeys, C. pdf  doi
openurl 
  Title Characterization of oxide precipitates in heavily B-doped silicon by infrared spectroscopy Type A1 Journal article
  Year 2004 Publication Journal of the electrochemical society Abbreviated Journal J Electrochem Soc  
  Volume 151 Issue 9 Pages G598-G605  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Infrared absorption spectra of oxygen precipitates in boron-doped silicon with a boron concentration between 10(17) and 10(19) cm(-3) are analyzed, applying the spectral function representation of composite materials. The aspect ratio of the platelet precipitates is determined by transmission electron microscopy measurements. The analysis shows that in samples with moderate doping levels (<10(18) B cm(-3)) SiOγ precipitates are formed with the same composition as in the lightly doped case. In the heavily boron-doped (>10(18) cm(-3)) samples, however, the measured spectra of the precipitates are consistent with a mixture of SiO2 and B2O3, with a volume fraction of B2O3 as high as 0.41 in the most heavily doped case. (C) 2004 The Electrochemical Society.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000223622000072 Publication Date 2004-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4651; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.259 Times cited 13 Open Access  
  Notes Fwo; Iuap P5/01 Approved Most recent IF: 3.259; 2004 IF: 2.356  
  Call Number UA @ lucian @ c:irua:103760 Serial 330  
Permanent link to this record
 

 
Author Faraji, M.; Bafekry, A.; Fadlallah, M.M.; Molaei, F.; Hieu, N.N.; Qian, P.; Ghergherehchi, M.; Gogova, D. url  doi
openurl 
  Title Surface modification of titanium carbide MXene monolayers (Ti₂C and Ti₃C₂) via chalcogenide and halogenide atoms Type A1 Journal article
  Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 23 Issue 28 Pages 15319-15328  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Inspired by the recent successful growth of Ti2C and Ti3C2 monolayers, here, we investigate the structural, electronic, and mechanical properties of functionalized Ti2C and Ti3C2 monolayers by means of density functional theory calculations. The results reveal that monolayers of Ti2C and Ti3C2 are dynamically stable metals. Phonon band dispersion calculations demonstrate that two-surface functionalization of Ti2C and Ti(3)C(2)via chalcogenides (S, Se, and Te), halides (F, Cl, Br, and I), and oxygen atoms results in dynamically stable novel functionalized monolayer materials. Electronic band dispersions and density of states calculations reveal that all functionalized monolayer structures preserve the metallic nature of both Ti2C and Ti3C2 except Ti2C-O-2, which possesses the behavior of an indirect semiconductor via full-surface oxygen passivation. In addition, it is shown that although halide passivated Ti3C2 structures are still metallic, there exist multiple Dirac-like cones around the Fermi energy level, which indicates that semi-metallic behavior can be obtained upon external effects by tuning the energy of the Dirac cones. In addition, the computed linear-elastic parameters prove that functionalization is a powerful tool in tuning the mechanical properties of stiff monolayers of bare Ti2C and Ti3C2. Our study discloses that the electronic and structural properties of Ti2C and Ti3C2 MXene monolayers are suitable for surface modification, which is highly desirable for material property engineering and device integration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000672406800001 Publication Date 2021-06-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.123  
  Call Number UA @ admin @ c:irua:179809 Serial 7027  
Permanent link to this record
 

 
Author Pop, N.; Pralong, V.; Caignaert, V.; Colin, J.F.; Malo, S.; Van Tendeloo, G.; Raveau, B. pdf  doi
openurl 
  Title Topotactic transformation of the cationic conductor Li4Mo5O17 into a rock salt type oxide Li12Mo5O17 Type A1 Journal article
  Year 2009 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 21 Issue 14 Pages 3242-3250  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Intercalation of lithium in the ribbon structure Li4Mo5O17 has been achieved, using both electrochemistry and soft chemistry. The ab initio structure determination of the ¡°Mo−O¡± framework of Li12Mo5O17 shows that the [Mo5O17]¡Þ ribbons keep the same arrangement of edge sharing MoO6 octahedra and the same orientation as in the parent structure but that a topotactic antidistortion of the ribbons appears, as a result of the larger size of Mo4+ in ¡°Li12¡± compared to Mo6+ in ¡°Li4¡±. On the basis of bond valence calculations, it is observed that 12 octahedral sites are available for Li+ in the new structure so that an ordered hypothetical rock salt type structure can be proposed for Li12Mo5O17. After the first Li insertion, a stable reversible capacity of 100 mA¡¤h/g is maintained after 20 cycles. A complete structural reversibility leading back to the ribbon type Li4Mo5O17 structure is obtained using a very low rate of C/100. The exploration of the Li mobility in those oxides shows that Li4Mo5O17 is a cationic conductor with ¦Ò = 10−3.5 S/cm at 500 ¡ãC and Ea = 0.35 eV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000268174400032 Publication Date 2009-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 18 Open Access  
  Notes Approved Most recent IF: 9.466; 2009 IF: 5.368  
  Call Number UA @ lucian @ c:irua:78285 Serial 3682  
Permanent link to this record
 

 
Author Oliveira, M.C.; Cordeiro, R.M.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of lipid oxidation on the channel properties of Cx26 hemichannels : a molecular dynamics study Type A1 Journal article
  Year 2023 Publication Archives of biochemistry and biophysics Abbreviated Journal  
  Volume 746 Issue Pages 109741-12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Intercellular communication plays a crucial role in cancer, as well as other diseases, such as inflammation, tissue degeneration, and neurological disorders. One of the proteins responsible for this, are connexins (Cxs), which come together to form a hemichannel. When two hemichannels of opposite cells interact with each other, they form a gap junction (GJ) channel, connecting the intracellular space of these cells. They allow the passage of ions, reactive oxygen and nitrogen species (RONS), and signaling molecules from the interior of one cell to another cell, thus playing an essential role in cell growth, differentiation, and homeostasis. The importance of GJs for disease induction and therapy development is becoming more appreciated, especially in the context of oncology. Studies have shown that one of the mechanisms to control the formation and disruption of GJs is mediated by lipid oxidation pathways, but the underlying mechanisms are not well understood. In this study, we performed atomistic molecular dynamics simulations to evaluate how lipid oxidation influences the channel properties of Cx26 hemichannels, such as channel gating and permeability. Our results demonstrate that the Cx26 hemichannel is more compact in the presence of oxidized lipids, decreasing its pore diameter at the extracellular side and increasing it at the amino terminus domains, respectively. The permeability of the Cx26 hemichannel for water and RONS molecules is higher in the presence of oxidized lipids. The latter may facilitate the intracellular accumulation of RONS, possibly increasing oxidative stress in cells. A better understanding of this process will help to enhance the efficacy of oxidative stress-based cancer treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001079100300001 Publication Date 2023-09-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9861; 1096-0384 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access  
  Notes Approved Most recent IF: 3.9; 2023 IF: 3.165  
  Call Number UA @ admin @ c:irua:200282 Serial 9028  
Permanent link to this record
 

 
Author O'Sullivan, M.; Hadermann, J.; Dyer, M.S.; Turner, S.; Alaria, J.; Manning, T.D.; Abakumov, A.M.; Claridge, J.B.; Rosseinsky, M.J. pdf  doi
openurl 
  Title Interface control by chemical and dimensional matching in an oxide heterostructure Type A1 Journal article
  Year 2016 Publication Nature chemistry Abbreviated Journal Nat Chem  
  Volume 8 Issue 8 Pages 347-353  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Interfaces between different materials underpin both new scientific phenomena, such as the emergent behaviour at oxide interfaces, and key technologies, such as that of the transistor. Control of the interfaces between materials with the same crystal structures but different chemical compositions is possible in many materials classes, but less progress has been made for oxide materials with different crystal structures. We show that dynamical self-organization during growth can create a coherent interface between the perovskite and fluorite oxide structures, which are based on different structural motifs, if an appropriate choice of cations is made to enable this restructuring. The integration of calculation with experimental observation reveals that the interface differs from both the bulk components and identifies the chemical bonding requirements to connect distinct oxide structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372505500013 Publication Date 2016-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-4330; 1755-4349 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 25.87 Times cited 28 Open Access  
  Notes Approved Most recent IF: 25.87  
  Call Number UA @ lucian @ c:irua:133189 Serial 4199  
Permanent link to this record
 

 
Author Spreitzer, M.; Egoavil, R.; Verbeeck, J.; Blank, D.H.A.; Rijnders, G. pdf  doi
openurl 
  Title Pulsed laser deposition of SrTiO3 on a H-terminated Si substrate Type A1 Journal article
  Year 2013 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 1 Issue 34 Pages 5216-5222  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Interfacing oxides with silicon is a long-standing problem related to the integration of multifunctional oxides with semiconductor devices and the replacement of SiO2 with high-k gate oxides. In our study, pulsed laser deposition was used to prepare a SrTiO3 (STO) thin film on a H-terminated Si substrate. The main purpose of our work was to verify the ability of H-termination against the oxidation of Si during the PLD process and to analyze the resulting interfaces. In the first part of the study, the STO was deposited directly on the Si, leading to the formation of a preferentially textured STO film with a (100) orientation. In the second part, SrO was used as a buffer layer, which enabled the partial epitaxial growth of STO with STO(110)parallel to Si(100) and STO[001]parallel to Si[001]. The change in the growth direction induced by the application of a SrO buffer was governed by the formation of a SrO(111) intermediate layer and subsequently by the minimization of the lattice misfit between the STO and the SrO. Under the investigated conditions, approximately 10 nm thick interfacial layers formed between the STO and the Si due to reactions between the deposited material and the underlying H-terminated Si. In the case of direct STO deposition, SiOx formed at the interface with the silicon, while in the case when SrO was used as a buffer, strontium silicate grew directly on the silicon, which improves the growth quality of the uppermost STO.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000322911900005 Publication Date 2013-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 23 Open Access  
  Notes Ifox; Esteem2; Vortex; Countatoms; esteem2jra3 ECASJO; Approved Most recent IF: 5.256; 2013 IF: NA  
  Call Number UA @ lucian @ c:irua:110798UA @ admin @ c:irua:110798 Serial 2739  
Permanent link to this record
 

 
Author Raes, A.; Minja, A.C.; Ag, K.R.; Verbruggen, S.W. pdf  doi
openurl 
  Title Recent advances in metal-doped defective TiO₂ for photocatalytic CO₂ conversion Type A1 Journal article
  Year 2024 Publication Current Opinion in Chemical Engineering Abbreviated Journal  
  Volume 44 Issue Pages 101013-11  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract (up) Introducing defects in TiO2-based photocatalytic materials is a promising strategy for improving light-driven CO2 reduction. However, defects such as oxygen vacancies are generally unstable. As a solution and to further enhance the photocatalytic activity, metal doping has been applied. This mini review aims to summarize recent progress in this particular field. Herein, we have classified metal-doped architectures into three different categories: single metal doping, alloy- and co-doping, and doping of morphologically nanoengineered TiO2−x substrates. The direct relationship between specific metals and product selectivity remains complex, as selectivity can vary significantly among seemingly similar materials. However, numerous methods do show promise in fine-tuning selectivity towards either CO or CH4. In terms of photocatalytic turnover, remarkable yields have been reported in isolated reports, but insufficient experimental data and divergent reaction conditions hamper a true comparison. This puts an emphasis on the need for standardized activity testing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-3398 ISBN Additional Links UA library record  
  Impact Factor 6.6 Times cited Open Access  
  Notes Approved Most recent IF: 6.6; 2024 IF: 3.403  
  Call Number UA @ admin @ c:irua:204462 Serial 9221  
Permanent link to this record
 

 
Author Kontozova-Deutsch, V.; Deutsch, F.; Bencs, L.; Krata, A.; Van Grieken, R.; De Wael, K. pdf  doi
openurl 
  Title Optimization of the ion chromatographic quantification of airborne fluoride, acetate and formate in the Metropolitan Museum of Art, New York Type A1 Journal article
  Year 2011 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal Talanta  
  Volume 86 Issue Pages 372-376  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Ion chromatographic (IC) methods have been compared in order to achieve an optimal separation of fluoride, acetate and formate under various elution conditions on two formerly introduced analytical columns (i and ii) and a novel one (iii): (i) an IonPac AS14 (250 mm × 4 mm I.D.), (ii) Allsep A-2 (150 mm × 4.6 mm I.D.), and (iii) an IC SI-50 4E (250 mm (length) × 4 mm (internal diameter – I.D.)). The IC conditions for the separation of the anions concerned were optimized on the IC SI-50 4E column. A near baseline separation of these anions was attained on the IonPac AS14, whereas the peaks of fluoride and acetate could not be resolved on the Allsep A-2. A baseline separation for the three anions was achieved on the IC SI-50 4E column, when applying an eluent mixture of 3.2 mmol/L Na2CO3 and 1.0 mmol/L NaHCO3 with a flow rate of 1.0 mL/min. The highest precision of 1.7, 3.0 and 2.8% and the best limits of detection (LODs) of 0.014, 0.22 and 0.17 mg/L for fluoride, acetate and formate, respectively, were obtained with the IC SI-50 4E column. Hence, this column was applied for the determination of the acetic and formic acid contents of air samples taken by means of passive gaseous sampling at the Metropolitan Museum of Art in New York, USA. Atmospheric concentrations of acetic and formic acid up to 1050 and 450 μg/m3, respectively, were found in non-aerated showcases of the museum. In galleries and outdoors, rather low levels of acetic and formic acid were detected with average concentrations of 50 and 10 μg/m3, respectively. The LOD data of acetate and formate on the IC SI-50 4E column correspond to around 0.5 μg/m3 for both acetic and formic acid in air samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298126300048 Publication Date 2011-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.162 Times cited 19 Open Access  
  Notes ; The authors gratefully acknowledge the support of Marco Leona and the staff of the Metropolitan Museum of Art in New York during the sampling campaigns. The technical assistance and advice by Dr. Takashi Kotsuka and Shodex Benelux are acknowledged as well. ; Approved Most recent IF: 4.162; 2011 IF: 3.794  
  Call Number UA @ admin @ c:irua:92066 Serial 5762  
Permanent link to this record
 

 
Author Mees, M.J.; Pourtois, G.; Rosciano, F.; Put, B.; Vereecken, P.M.; Stesmans, A. doi  openurl
  Title First-principles material modeling of solid-state electrolytes with the spinel structure Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Ionic diffusion through the novel (AlxMg1-2xLix)Al2O4 spinel electrolyte is investigated using first-principles calculations, combined with the Kinetic Monte Carlo algorithm. We observe that the ionic diffusion increases with the lithium content x. Furthermore, the structural parameters, formation enthalpies and electronic structures of (AlxMg1-2xLix)Al2O4 are calculated for various stoichiometries. The overall results indicate the (AlxMg1-2xLix)Al2O4 stoichiometries x = 0.2...0.3 as most promising. The (AlxMg1-2xLix)Al2O4 electrolyte is a potential candidate for the all-spinel solid-state battery stack, with the material epitaxially grown between well-known spinel electrodes, such as LiyMn2O4 and Li4+3yTi5O12 (y = 0...1). Due to their identical crystal structure, a good electrolyte-electrode interface is expected.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000332395700048 Publication Date 2014-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 8 Open Access  
  Notes Approved Most recent IF: 4.123; 2014 IF: 4.493  
  Call Number UA @ lucian @ c:irua:128893 Serial 4520  
Permanent link to this record
 

 
Author Mirbagheri, N.; Campos, R.; Ferapontova, E.E. pdf  url
doi  openurl
  Title Electrocatalytic oxidation of water by OH- – and H₂O-capped IrOx nanoparticles electrophoretically deposited on graphite and basal plane HOPG : effect of the substrate electrode Type A1 Journal article
  Year 2021 Publication Chemelectrochem Abbreviated Journal Chemelectrochem  
  Volume 8 Issue 9 Pages 1632-1641  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Iridium oxide (IrOx) is one of the most efficient electrocatalysts for water oxidation reaction (WOR). Here, WOR electrocatalysis by 1.6 nm IrOx nanoparticles (NPs) electrophoretically deposited onto spectroscopic graphite (Gr) and basal plane highly ordered pyrolytic graphite (HOPG) was studied as a function of NPs' capping ligands and electrodeposition substrate. On Gr, OH-- and H2O-capped NPs exhibited close sub-monolayer surface coverages and specific electrocatalytic activity of 18.9-23.5 mA nmol(-1) of Ir-IV/V sites, at 1 V and pH 7. On HOPG, OH--capped NPs produced films with a diminished WOR activity of 5.17 +/- 2.40 mA nmol(-1). Electro-wettability-induced changes impeded electrophoretic deposition of H2O-capped NPs on HOPG, WOR currents being 25-fold lower than observed for OH--capped ones. The electrocatalysis efficiency correlated with hydrophilic properties of the substrate electrodes, affecting morphological and as a result catalytic properties of the formed IrOx films. These results, important both for studied and related carbon nanomaterials systems, allow fine-tuning of electrocatalysis by a proper choice of the substrate electrode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000664219100012 Publication Date 2021-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.136 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.136  
  Call Number UA @ admin @ c:irua:179719 Serial 7859  
Permanent link to this record
 

 
Author Terzano, R.; Alfeld, M.; Janssens, K.; Vekemans, B.; Schoonjans, T.; Vincze, L.; Tomasi, N.; Pinton, R.; Cesco, S. pdf  doi
openurl 
  Title Spatially resolved (semi)quantitative determination of iron (Fe) in plants by means of synchrotron micro X-ray fluorescence Type A1 Journal article
  Year 2013 Publication Analytical and bioanalytical chemistry Abbreviated Journal Anal Bioanal Chem  
  Volume 405 Issue 10 Pages 3341-3350  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Iron (Fe) is an essential element for plant growth and development; hence determining Fe distribution and concentration inside plant organs at the microscopic level is of great relevance to better understand its metabolism and bioavailability through the food chain. Among the available microanalytical techniques, synchrotron mu-XRF methods can provide a powerful and versatile array of analytical tools to study Fe distribution within plant samples. In the last years, the implementation of new algorithms and detection technologies has opened the way to more accurate (semi)quantitative analyses of complex matrices like plant materials. In this paper, for the first time the distribution of Fe within tomato roots has been imaged and quantified by means of confocal mu-XRF and exploiting a recently developed fundamental parameter-based algorithm. With this approach, Fe concentrations ranging from few hundreds of ppb to several hundreds of ppm can be determined at the microscopic level without cutting sections. Furthermore, Fe (semi)quantitative distribution maps were obtained for the first time by using two opposing detectors to collect simultaneously the XRF radiation emerging from both sides of an intact cucumber leaf.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000316338700033 Publication Date 2013-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-2642 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.431 Times cited 27 Open Access  
  Notes ; Research was supported by grants from Italian MIUR (FIRB-Programma “Futuro in Ricerca”) and Free University of Bolzano (TN5046 and TN5056). Synchrotron experiments at HASY-LAB were financially supported by the European Community Research Infrastructure Action under the FP6 “Structuring the European Research Area” Program I (Integrating Activity on Synchrotron and Free Electron Laser Science; project: contract RII3-CT-2004-506008). Matthias Alfeld receives a Ph.D. fellowship of the Research Foundation-Flanders (FWO). We thank Karen Rickers-Appel for her scientific and technical support in obtaining the experimental data at Beamline L (HASYLAB, DESY, Hamburg, Germany). ; Approved Most recent IF: 3.431; 2013 IF: 3.578  
  Call Number UA @ admin @ c:irua:108261 Serial 5838  
Permanent link to this record
 

 
Author He, Z.; Maurice, J.-L.; Gohier, A.; Lee, C.S.; Pribat, D.; Cojocaru, C.S. doi  openurl
  Title Iron catalysts for the growth of carbon nanofibers : Fe, Fe3C or both? Type A1 Journal article
  Year 2011 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 23 Issue 24 Pages 5379-5387  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Iron is a widely used catalyst for the growth of carbon nanotubes (CNTs) or carbon nanofibers (CNFs) by catalytic chemical vapor deposition. However, both Fe and FeC compounds (generally, Fe3C) have been found to catalyze the growth of CNTs/CNFs, and a comparison study of their respective catalytic activities is still missing. Furthermore, the control of the crystal structure of iron-based catalysts, that is α-Fe or Fe3C, is still a challenge, which not only obscures our understanding of the growth mechanisms of CNTs/CNFs, but also complicates subsequent procedures, such as the removal of catalysts for better industrial applications. Here, we show a partial control of the phase of iron catalysts (α-Fe or Fe3C), obtained by varying the growth temperatures during the synthesis of carbon-based nanofibers/nanotubes in a plasma-enhanced chemical vapor deposition reactor. We also show that the structure of CNFs originating from Fe3C is bamboo-type, while that of CNFs originating from Fe is not. Moreover, we directly compare the growth rates of carbon-based nanofibers/nanotubes during the same experiments and find that CNFs/CNTs grown by α-Fe nanoparticles are longer than CNFs grown from Fe3C nanoparticles. The influence of the type of catalyst on the growth of CNFs is analyzed and the corresponding possible growth mechanisms, based on the different phases of the catalysts, are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000298197300014 Publication Date 2011-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 91 Open Access  
  Notes Approved Most recent IF: 9.466; 2011 IF: 7.286  
  Call Number UA @ lucian @ c:irua:94297 Serial 1748  
Permanent link to this record
 

 
Author Filippousi, M.; Angelakeris, M.; Katsikini, M.; Paloura, E.; Efthimiopoulos, I.; Wang, Y.; Zamboulis, D.; Van Tendeloo, G. pdf  doi
openurl 
  Title Surfactant effects on the structural and magnetic properties of iron oxide nanoparticles Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C  
  Volume 118 Issue 29 Pages 16209-16217  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Iron oxide nanoparticles were prepared using the simplest and most efficient chemical route, the coprecipitation, in the absence and the presence of three different and widely used surfactants. The purpose of this study is to investigate the possible influence of the different surfactants on the structure and therefore on the magnetic properties of the iron oxide nanoparticles. Thus, different techniques were employed in order to elucidate the composition and structure of the magnetic iron oxide nanoparticles. By combining transmission electron microscopy with X-ray powder diffraction and X-ray absorption fine structure measurements, we were able to determine and confirm the crystal structure of the constituent iron oxides. The magnetic properties were investigated by measuring the hysteresis loops where the surfactant influence on their collective magnetic behavior and subsequent AC magnetic hyperthermia response is apparent. The results indicate that the produced iron oxide nanoparticles may be considered as good candidates for biomedical applications in hyperthermia treatments because of their high heating capacity exhibited under an alternating magnetic field, which is sufficient to provoke damage to the cancer cells.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000339540700073 Publication Date 2014-07-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited 47 Open Access  
  Notes European Research Council under the seventh Framework Program (FP7); ERC Grant No. 246791 – COUNTATOMS; IAP-AIP functional Supramolecular structure IUAP P7/05 Approved Most recent IF: 4.536; 2014 IF: 4.772  
  Call Number UA @ lucian @ c:irua:118129 Serial 3398  
Permanent link to this record
 

 
Author Peeters, H.; Raes, A.; Verbruggen, S.W. pdf  doi
openurl 
  Title Plasmonic photocatalytic coatings with self-cleaning, antibacterial, air and water purifying properties tested according to ISO standards Type A1 Journal article
  Year 2024 Publication Journal of photochemistry and photobiology: A: chemistry Abbreviated Journal  
  Volume 451 Issue Pages 115529-10  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract (up) ISO 10678:2010, ISO 22197–1 and 2, ISO 27447:2019 and ISO 27448:2009 for the photocatalytic degradation of organic dyes (methylene blue), air pollution (NOx and acetaldehyde), bacteria (E. coli and S. aureus) and solid organic fouling (oleic acid) are performed on plasmon-embedded TiO2 thin films on Borofloat® glass, as well as the commercially available titania-based self-cleaning glass PilkingtonActivTM. These standardised protocols measure the performance for the four main applications of photocatalytic materials: water purification, air purification, antibacterial and self-cleaning activity, respectively. The standards are performed exactly as prescribed to measure the activity under UV irradiation, and also in a slightly adapted manner to measure the performance under simulated solar light or visible light. Performing experiments according to ISO standards, enables an objective comparison amongst samples tested here, as well as with results from literature. This is a major asset compared to the myriad of customised setups used in laboratories worldwide that hinder a fair comparison. We point at the importance of meticulously following the ISO instructions, as we have noticed that multiple published studies adopting the ISO standards too often deviate from these protocols, thereby nullifying the added value of standardized testing. Following the ISO tests to the letter, we have demonstrated the superior performance of a previously developed plasmonic titania coating with fully embedded gold-silver nanoparticles towards all four application areas. Furthermore, our empirical data strongly support the need for a nuanced understanding of standardized testing, to ensure accurate assessment of photocatalytic materials. An examination of the ISO standards used in this work reveals notable drawbacks, including concerns about the reliability of the methylene blue degradation protocol, the issues of HNO3 accumulation in the NOx removal test, and limitations in assessing antibacterial activity and water contact angles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001188107100001 Publication Date 2024-02-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1010-6030 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.3 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.3; 2024 IF: 2.625  
  Call Number UA @ admin @ c:irua:203203 Serial 9075  
Permanent link to this record
 

 
Author Borah, R.; Verbruggen, S.W. pdf  url
doi  openurl
  Title Effect of size distribution, skewness and roughness on the optical properties of colloidal plasmonic nanoparticles Type A1 Journal article
  Year 2022 Publication Colloids and surfaces: A: physicochemical and engineering aspects Abbreviated Journal Colloid Surface A  
  Volume 640 Issue Pages 128521  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (up) It is a generally accepted idea that the particle size distribution strongly affects the optical spectra of colloidal plasmonic nanoparticles. It is often quoted as one of the main reasons while explaining the mismatch between the theoretical and experimental optical spectra of such nanoparticles. In this work, these aspects are critically analyzed by means of a bottom up statistical approach that considers variables such as mean, standard deviation and skewness of the nanoparticle size distribution independently from one another. By assuming normal and log-normal distributions of the particle size, the effect of the statistical parameters on the Mie analytical optical spectra of colloidal nanoparticles was studied. The effect of morphology was also studied numerically in order to understand to what extent it can play a role. It is our finding that the particle polydispersity, skewness and surface morphology in fact only weakly impact the optical spectra. While, the selection of suitable optical constants with regard to the crystallinity of the nanoparticles is a far more influential factor for correctly predicting both the plasmon band position and the plasmon bandwidth in theoretical simulations of the optical spectra. It is shown that the mean particle size can be correctly estimated directly from the plasmon band position, as it is the mean that determines the resonance wavelength. The standard deviation can on the other hand be estimated from the intensity distribution data obtained from dynamic light scattering experiments. The results reported herein clear the ambiguity around particle size distribution and optical response of colloidal plasmonic nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Elservier Place of Publication Editor  
  Language Wos 000765946900002 Publication Date 2022-02-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-7757 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.2  
  Call Number DuEL @ duel @c:irua:185704 Serial 6908  
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M. pdf  url
doi  openurl
  Title Distribution of lipid aldehydes in phase-separated membranes: A molecular dynamics study Type A1 Journal article
  Year 2022 Publication Archives Of Biochemistry And Biophysics Abbreviated Journal Arch Biochem Biophys  
  Volume 717 Issue Pages 109136  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) It is well established that lipid aldehydes (LAs) are able to increase the permeability of cell membranes and induce their rupture. However, it is not yet clear how LAs are distributed in phase-separated membranes (PSMs), which are responsible for the transport of selected molecules and intracellular signaling. Thus, we investigate here the distribution of LAs in a PSM by coarse-grained molecular dynamics simulations. Our results reveal that LAs derived from mono-unsaturated lipids tend to accumulate at the interface between the liquid-ordered/liquiddisordered domains, whereas those derived from poly-unsaturated lipids remain in the liquid-disordered domain. These results are important for understanding the effects caused by oxidized lipids in membrane structure, properties and organization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000767632000001 Publication Date 2022-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access OpenAccess  
  Notes We thank the University of Antwerp and the Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.9  
  Call Number PLASMANT @ plasmant @c:irua:185874 Serial 6905  
Permanent link to this record
 

 
Author Yang, S.; An, H.; Anastasiadou, D.; Xu, W.; Wu, L.; Wang, H.; de Ruiter, J.; Arnouts, S.; Figueiredo, M.C.; Bals, S.; Altantzis, T.; van der Stam, W.; Weckhuysen, B.M. url  doi
openurl 
  Title Waste-derived copper-lead electrocatalysts for CO₂ reduction Type A1 Journal article
  Year 2022 Publication ChemCatChem Abbreviated Journal Chemcatchem  
  Volume 14 Issue 18 Pages e202200754-11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract (up) It remains a real challenge to control the selectivity of the electrocatalytic CO2 reduction (eCO(2)R) reaction to valuable chemicals and fuels. Most of the electrocatalysts are made of non-renewable metal resources, which hampers their large-scale implementation. Here, we report the preparation of bimetallic copper-lead (CuPb) electrocatalysts from industrial metallurgical waste. The metal ions were extracted from the metallurgical waste through simple chemical treatment with ammonium chloride, and CuxPby electrocatalysts with tunable compositions were fabricated through electrodeposition at varying cathodic potentials. X-ray spectroscopy techniques showed that the pristine electrocatalysts consist of Cu-0, Cu1+ and Pb2+ domains, and no evidence for alloy formation was found. We found a volcano-shape relationship between eCO(2)R selectivity toward two electron products, such as CO, and the elemental ratio of Cu and Pb. A maximum Faradaic efficiency towards CO was found for Cu9.00Pb1.00, which was four times higher than that of pure Cu, under the same electrocatalytic conditions. In situ Raman spectroscopy revealed that the optimal amount of Pb effectively improved the reducibility of the pristine Cu1+ and Pb2+ domains to metallic Cu and Pb, which boosted the selectivity towards CO by synergistic effects. This work provides a framework of thinking to design and tune the selectivity of bimetallic electrocatalysts for CO2 reduction through valorization of metallurgical waste.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000853941300001 Publication Date 2022-06-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1867-3880; 1867-3899 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.5 Times cited 7 Open Access OpenAccess  
  Notes S.Y and B.M.W. acknowledge support from the EU Framework Programme for Research and Innovation Horizon 2020 (SOCRATES-721385; project website: http://etn-socrates.eu/). W.v.d.S., M.C.F. and B.M.W. acknowledge support from the Strategic UU-TU/e Alliance project 'Joint Centre for Chemergy Research'. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant #815128 REALNANO). S.A. and T.A. acknowledge funding from the University of Antwerp Research fund (BOF). The Beijing Synchrotron Radiation Facility (1W1B, BSRF) is acknowledged for the beamtime. We are grateful to Annelies van der Bok and Bas Salzmann (Condensed Matter and Interfaces, Utrecht University, UU) for the support with the ICP-OES measurements. The authors thank dr. Robin Geitenbeek, Nikos Nikolopoulos, Ioannis Nikolopoulos, Jochem Wijten and Joris Janssens (Inorganic Chemistry and Catalysis, UU) for helpful discussions and technical support. The authors also thank Yuang Piao (Materials Chemistry and Catalysis, UU) for the help in the preparation of the figures of the article. Approved Most recent IF: 4.5  
  Call Number UA @ admin @ c:irua:190703 Serial 7226  
Permanent link to this record
 

 
Author Yuan, R.; Claes, N.; Verheyen, E.; Tuel, A.; Bals, S.; Breynaert, E.; Martens, J.; Kirschhock, C.E.A. pdf  url
doi  openurl
  Title Synthesis of IWW-type germanosilicate zeolite using 5-azonia-spiro[4, 4]nonane as structure directing agent Type A1 Journal article
  Year 2016 Publication New journal of chemistry Abbreviated Journal New J Chem  
  Volume 40 Issue 40 Pages 4319-4324  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) IWW-type zeolite with Si/Ge of 4.9 is obtained using 5-azonia-spiro[4,4]nonane as template in fluoride-free medium under hydrothermal conditions at 175 °C. In an otherwise identical synthesis, using the related 5-azonia-spiro[4,5]decane as structure directing agent, a mixture of IWW and NON zeolite types was formed. In absence of GeO2 from the reactant mixture, pure NON formed. The IWW zeolite was characterized by XRD, SEM, and HRTEM. IWW zeolite displayed a unique morphology and could be calcined at 600 °C without loss of crystallinity. The Si/Ge ratio of the IWW zeolite was increased by postsynthesis modification. Part of the germanium could be eliminated from the as-synthesized IWW zeolite by acid leaching using 6 M HCl solution. Also the calcined material could be degermanated. Here the presence of a silicon source in the acidic leaching solution minimized structural damage. This way the Si/Ge ratio of the IWW zeolite was increased from 4.9 up to 10.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000375586400038 Publication Date 2016-02-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1144-0546 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.269 Times cited 8 Open Access OpenAccess  
  Notes The authors acknowledge FWO/NWO and ESRF for providing beam time at the DUBBLE and SNBL beamlines (ESRF, Grenoble) and P. Abdala for her assistance during the use of the beamline. The authors are grateful to L. Van Tendeloo for taking SEM images. I. Cuppens and K. Houthoofd are thanked for the ICP and AAS measurements. R.Y. acknowledges Chinese Scholarship Council for a CSC doctoral fellowship. JAM and CEAK acknowledge the Flemish government for long-term structural funding (Methusalem). N.C. and S.B. acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS).; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 3.269  
  Call Number c:irua:133671 Serial 4027  
Permanent link to this record
 

 
Author Percebom, A.M.M.; Giner-casares, J.J.; Claes, N.; Bals, S.; Loh, W.; Liz-Marzan, L.M. pdf  url
doi  openurl
  Title Janus Gold Nanoparticles Obtained via Spontaneous Binary Polymer Shell Segregation Type A1 Journal article
  Year 2016 Publication Chemical communications Abbreviated Journal Chem Commun  
  Volume 52 Issue 52 Pages 4278-4281  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Janus gold nanoparticles are of high interest because they allow directed self-assembly and display plasmonic properties. We succeeded in coating gold nanoparticles with two different polymers that form a Janus shell. The spontaneous segregation of two immiscible polymers at the surface of the nanoparticles was verified by NOESY NMR and most importantly by electron microscopy analysis in two and three dimensions. The Janus structure is additionally shown to affect the aggregation behavior of the nanoparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372176500003 Publication Date 2016-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-7345 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.319 Times cited 44 Open Access OpenAccess  
  Notes Funding is acknowledged from the European Research Council (ERC Advanced Grant #267867 Plasmaquo, and ERC Starting Grant #335078 Colouratom). A.M.P. thanks the Brazilian FAPESP for financial support (FAPESP 2012/21930-3 and 2014/01807-8) and J.J. G.-C. acknowledges the Spanish MINECO for a Juan de la Cierva fellowship (#JCI-2012-12517). We thank Ada Herrero Ruiz and Daniel Padró for help with NMR measurements, Malou Henriksen for cell experiments and the Brazilian Synchrotron Laboratory (LNLS) for allocation of SAXS beamtime.; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 6.319  
  Call Number c:irua:133168 Serial 4009  
Permanent link to this record
 

 
Author Mallick, S.; Zhang, W.; Batuk, M.; Gibbs, A.S.; Hadermann, J.; Halasyamani, P.S.; Hayward, M.A. url  doi
openurl 
  Title The crystal and defect structures of polar KBiNb2O7 Type A1 Journal article
  Year 2022 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T  
  Volume 51 Issue 5 Pages 1866-1873  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) KBiNb2O7 was prepared from RbBiNb2O7 by a sequence of cation exchange reactions which first convert RbBiNb2O7 to LiBiNb2O7, before KBiNb2O7 is formed by a further K-for-Li cation exchange. A combination of neutron, synchrotron X-ray and electron diffraction data reveal that KBiNb2O7 adopts a polar, layered, perovskite structure (space group A11m) in which the BiNb2O7 layers are stacked in a (0, ½, z) arrangement, with the K+ cations located in half of the available 10-coordinate interlayer cation sites. The inversion symmetry of the phase is broken by a large displacement of the Bi3+ cations parallel to the y-axis. HAADF-STEM images reveal that KBiNb2O7 exhibits frequent stacking faults which convert the (0. ½, z) layer stacking to (½, 0, z) stacking and vice versa, essentially switching the x- and y-axes of the material. By fitting the complex diffraction peak shape of the SXRD data collected from KBiNb2O7 it is estimated that each layer has approximately an ~11% chance of being defective – a high level which is attributed to the lack of cooperative NbO6 tilting in the material, which limits the lattice strain associated with each fault.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000741540300001 Publication Date 2022-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access OpenAccess  
  Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford/Warwick Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE18786). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC (RB 2000148). SM thanks Somerville College for an Oxford Ryniker Lloyd scholarship. PSH and WZ thank the National Science Foundation (DMR-2002319) for support. Approved Most recent IF: 4  
  Call Number EMAT @ emat @c:irua:185504 Serial 6951  
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Abakumov, A.M.; Tsirlin, A.A.; Schnelle, W.; Egoavil, R.; Verbeeck, J.; Van Tendeloo, G.; Glazyrin, K.V.; Hanfland, M.; Dubrovinsky, L. pdf  doi
openurl 
  Title Perovskite-like Mn2O3 : a path to new manganites Type A1 Journal article
  Year 2013 Publication Angewandte Chemie Abbreviated Journal Angew Chem Int Edit  
  Volume 52 Issue 5 Pages 1494-1498  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Korund-artiges ε-Mn2O3 und Perowskit-artiges ζ-Mn2O3, zwei neue Phasen von Mn2O3, wurden unter hohen Drücken bei hohen Temperaturen synthetisiert. Die Manganatome können vollständig die A- und B-Positionen der Perowskitstruktur besetzen. ζ-Mn2O3 (siehe Bild, A-Positionsordnung) enthält Mn in den drei Oxidationsstufen +II, +III und +IV.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000313913300027 Publication Date 2012-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 84 Open Access  
  Notes This work was supported by the DFG (project OV-110/1-1), Alexander von Humboldt foundation, European Union Council (FP7)-Grant no. 246102 IFOX, European Research Council (FP7)-ERC Starting Grant no. 278510 VORTEX and ERC Grant no. 246791-COUNTATOMS, and Hercules fund from the Flemish Government. ECASJO_; Approved Most recent IF: 11.994; 2013 IF: 11.336  
  Call Number UA @ lucian @ c:irua:108765UA @ admin @ c:irua:108765 Serial 2573  
Permanent link to this record
 

 
Author Istomin, S.Y.; Morozov, A.V.; Abdullayev, M.M.; Batuk, M.; Hadermann, J.; Kazakov, S.M.; Sobolev, A.V.; Presniakov, I.A.; Antipov, E.V. pdf  doi
openurl 
  Title High-temperature properties of (La,Ca)(Fe,Mg,Mo)O3-\delta perovskites as prospective electrode materials for symmetrical SOFC Type A1 Journal article
  Year 2018 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 258 Issue 258 Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) La1-yCayFe0.5+x(Mg,Mo)(0.5-x)O3-delta oxides with the orthorhombic GdFeO3-type perovskite structure have been synthesized at 1573 K. Transmission electron microscopy study for selected samples shows the coexistence of domains of perovskite phases with ordered and disordered B-cations. Mossbauer spectroscopy studies performed at 300 K and 573 K show that while compositions with low Ca-content (La0.55Ca0.45Fe0.5Mg0.2625Mo0.2375O3-delta and La0.5Ca0.5Fe0.6Mg0.175Mo0.225O3-delta) are nearly oxygen stoichiometric, La0.2Ca0.8Fe0.5Mg0.2625Mo0.2375O3-delta is oxygen deficient with delta approximate to 0.15. Oxides are stable in reducing atmosphere (Ar/H-2, 8%) at 1173 K for 12 h. No additional phases have been observed at XRPD patterns of all studied perovskites and Ce1-xGdxO2-x/2 electrolyte mixtures treated at 1173-1373K, while Fe-rich compositions (x >= 0.1) react with Zr1-xYxO2-x/2 electrolyte above 1273 K. Dilatometry studies reveal that all samples show rather low thermal expansion coefficients (TECs) in air of 11.4-12.7 ppm K-1. In reducing atmosphere their TECs were found to increase up to 12.1-15.4 ppm K-1 due to chemical expansion effect. High-temperature electrical conductivity measurements in air and Ar/H-2 atmosphere show that the highest conductivity is observed for Fe- and Ca-rich compositions. Moderate values of electrical conductivity and TEC together with stability towards chemical interaction with typical SOFC electrolytes make novel Fe-containing perovskites promising electrode materials for symmetrical solid oxide fuel cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000423650400001 Publication Date 2017-10-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 5 Open Access Not_Open_Access  
  Notes ; This work was financially supported by Russian Science Foundation (project number 16-13-10327). ; Approved Most recent IF: 2.299  
  Call Number UA @ lucian @ c:irua:149283 Serial 4936  
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Tsirlin, A.A.; Rozova, M.G.; Sarakinou, E.; Antipov, E.V. doi  openurl
  Title Expanding the Ruddlesden-Popper manganite family : the n=3 La3.2Ba0.8Mn3O10 Member Type A1 Journal article
  Year 2012 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 51 Issue 21 Pages 11487-11492  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) La3.2Ba0.8Mn3O10, a representative of the rare n = 3 members of the Ruddlesden-Popper manganites A(n+1)Mn(n)O(3n+1), was synthesized in an evacuated sealed silica tube. Its crystal structure was refined from a combination of powder X-ray diffraction (PXD) and precession electron diffraction (PED) data, with the rotations of the MnO6 octahedra described within the symmetry-adapted mode approach (space group Cccm, a = 29.068(1) angstrom, b = 5.5504(5) angstrom, c = 5.5412(5) angstrom; PXD RF = 0.053, RP = 0.026; PED RF = 0.248). The perovskite block in La3.2Ba0.8Mn3O10 features an octahedral tilting distortion with out-of-phase rotations of the Mn06 octahedra according to the (Phi,Phi,0)(Phi,Phi,0) mode, observed for the first time in the n = 3 Ruddlesden-Popper structures. The Mn06 octahedra demonstrate a noticeable deformation with the elongation of two apical Mn-O bonds due to the Jahn-Teller effect in the Mn3+ cations. The relationships between the octahedral tilting distortion, the ionic radii of the cations at the A- and B-positions, and the mismatch between the perovslcite and rock-salt blocks of the Ruddlesden-Popper structure are discussed. At low temperatures, La3.2Ba0.8Mn3O10 reveals a sizable remnant magnetization of about 1.3 mu(B)/Mn at 2K, and shows signatures of spin freezing below 150 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Easton, Pa Editor  
  Language Wos 000313220200036 Publication Date 2012-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 2 Open Access  
  Notes Approved Most recent IF: 4.857; 2012 IF: 4.593  
  Call Number UA @ lucian @ c:irua:110121 Serial 1133  
Permanent link to this record
 

 
Author Chin, C.-M.; Battle, P.D.; Hunter, E.C.; Avdeev, M.; Hendrickx, M.; Hadermann, J. url  doi
openurl 
  Title Stabilisation of magnetic ordering in La3Ni2-xCuxB'O9(B'=Sb,Ta,Nb) by the introduction of Cu2+ Type A1 Journal article
  Year 2019 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 276 Issue 276 Pages 164-172  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) La3Ni2-xCuxB'O-9 (x = 0.25; B' = Sb, Ta, Nb: x = 0.5; B' = Nb) have been synthesized and characterised by transmission electron microscopy, neutron diffraction and magnetometry. Each adopts a perovskite-like structure (space group P2(1)/n) with two crystallographically-distinct six-coordinate sites, one occupied by a disordered arrangement of Ni2+ and Cu2+ and the other by a disordered similar to 1:2 distribution of Ni2+ and B'(5+), although some Cu2+ is found on the latter site when x = 0.5. Each composition undergoes a magnetic transition in the range 90 <= T/K <= 130 and shows a spontaneous magnetisation at 5 K; the transition temperature always exceeds that of the x = 0 composition by >= 30 K. A long-range ordered G-type ferrimagnetic structure is present in each composition, but small relaxor domains are also present. This contrasts with the pure relaxor and spin-glass behaviour of x = 0, B' = Ta, Nb, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000473372400023 Publication Date 2019-05-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 2 Open Access  
  Notes ; We thank EPSRC for funding through grant EP/M0189541. CMC thanks the Croucher Foundation and the University of Oxford for the award of a graduate scholarship. ; Approved Most recent IF: 2.299  
  Call Number UA @ admin @ c:irua:161199 Serial 5396  
Permanent link to this record
 

 
Author Battle, P.D.; Avdeev, M.; Hadermann, J. doi  openurl
  Title The interplay of microstructure and magnetism in La3Ni2SbO9 Type A1 Journal article
  Year 2014 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 220 Issue Pages 163-166  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) La3Ni2SbO9 adopts a perovskite-related structure in which the six-coordinate cation sites are occupied alternately by Ni2+ and a disordered arrangement of Ni2+/Sb5+. A polycrystalline sample has been studied by neutron diffraction in applied magnetic fields of 0 <= H/kOe <= 50 at 5 K. In 0 kOe, weak magnetic Bragg scattering consistent with the adoption of a G-type ferrimagnetic structure is observed; the ordered component of the magnetic moment was found to be 0.89(7) mu(B) per Ni2+ cation. This increased to 1.60(3) mu(B) in a field of 50 kOe. Transmission electron microscopy revealed variations in the Ni:Sb ratio across crystallites of the sample. It is proposed that these composition variations disrupt the magnetic superexchange interactions within the compound, leading to domain formation and a reduced average moment. The application of a magnetic field aligns the magnetisation vectors across the crystal and the average moment measured by neutron diffraction increases accordingly. The role played by variations in the local chemical composition in determining the magnetic properties invites comparison with the behaviour of relaxor ferroelectrics. (C) 2014 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000343346100024 Publication Date 2014-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.299; 2014 IF: 2.133  
  Call Number UA @ lucian @ c:irua:121134 Serial 3588  
Permanent link to this record
 

 
Author Yang, T.; Perkisas, T.; Hadermann, J.; Croft, M.; Ignatov, A.; Van Tendeloo, G.; Greenblatt, M. doi  openurl
  Title Synthesis and structure determination of ferromagnetic semiconductors LaAMnSnO6(A = Sr, Ba) Type A1 Journal article
  Year 2011 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 21 Issue 1 Pages 199-205  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) LaAMnSnO(6) (A = Sr, Ba) have been synthesized by high temperature solid-state reactions under dynamic 1% H(2)/Ar flow. Rietveld refinements on room temperature powder X-ray diffraction data indicate that LaSrMnSnO(6) crystallizes in the GdFeO(3)-structure, with space group Pnma and, combined with transmission electron microscopy, LaBaMnSnO(6) in Imma. Both space groups are common in disordered double-perovskites. The Mn(3+) and Sn(4+) ions whose valence states were confirmed by X-ray absorption spectroscopy, are completely disordered over the B-sites and the BO(6) octahedra are slightly distorted. LaAMnSnO(6) are ferromagnetic semiconductors with a T(C) = 83 K for the Sr- and 66 K for the Ba-compound. The title compounds, together with the previously reported LaCaMnSnO(6) provide an interesting example of progression from Pnma to Imma as the tolerance factor increases. An analysis of the relationship between space group and tolerance factor for the series LaAMnMO(6) (A = Ca, Sr, Ba; M = Sn, Ru) provides a better understanding of the symmetry determination for double perovskites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000285067300025 Publication Date 2010-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:95527 Serial 3440  
Permanent link to this record
 

 
Author Mulder, J.T.T.; Jenkinson, K.; Toso, S.; Prato, M.; Evers, W.H.H.; Bals, S.; Manna, L.; Houtepen, A.J.J. url  doi
openurl 
  Title Nucleation and growth of bipyramidal Yb:LiYF₄ nanocrystals : growing up in a hot environment Type A1 Journal article
  Year 2023 Publication Chemistry of materials Abbreviated Journal  
  Volume 35 Issue 14 Pages 5311-5321  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Lanthanide-doped LiYF4 (Ln:YLF) is commonlyused fora broad variety of optical applications, such as lasing, photon upconversionand optical refrigeration. When synthesized as nanocrystals (NCs),this material is also of interest for biological applications andfundamental physical studies. Until now, it was unclear how Ln:YLFNCs grow from their ionic precursors into tetragonal NCs with a well-defined,bipyramidal shape and uniform dopant distribution. Here, we studythe nucleation and growth of ytterbium-doped LiYF4 (Yb:YLF),as a template for general Ln:YLF NC syntheses. We show that the formationof bipyramidal Yb:YLF NCs is a multistep process starting with theformation of amorphous Yb:YLF spheres. Over time, these spheres growvia Ostwald ripening and crystallize, resulting in bipyramidal Yb:YLFNCs. We further show that prolonged heating of the NCs results inthe degradation of the NCs, observed by the presence of large LiFcubes and small, irregular Yb:YLF NCs. Due to the similarity in chemicalnature of all lanthanide ions our work sheds light on the formationstages of Ln:YLF NCs in general.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001021474500001 Publication Date 2023-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.6 Times cited Open Access OpenAccess  
  Notes This project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement No. 766900 (Testing the large-scale limit of quantum mechanics). The authors thank Niranjan Saikumar for proof reading the manuscript. Approved Most recent IF: 8.6; 2023 IF: 9.466  
  Call Number UA @ admin @ c:irua:197787 Serial 8907  
Permanent link to this record
 

 
Author Queralto, A.; Graf, D.; Frohnhoven, R.; Fischer, T.; Vanrompay, H.; Bals, S.; Bartasyte, A.; Mathur, S. url  doi
openurl 
  Title LaFeO3 nanofibers for high detection of sulfur-containing gases Type A1 Journal article
  Year 2019 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal Acs Sustain Chem Eng  
  Volume 7 Issue 7 Pages 6023-6032  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Lanthanum ferrite nanofibers were electrospun from a chemical sol and calcined at 600 degrees C to obtain singlephase LaFeO3 (LFO) perovskite. High-resolution transmission electron microscopy in conjunction with 3D tomographic analysis confirmed an interwoven network of hollow and porous (surface) LFO nanofibers. Owing to their high surface area and p-type behavior, the nanofiber meshes showed high chemoselectivity toward reducing toxic gases (SO2, H2S) that could be reproducibly detected at very low concentrations (<1 ppm), well below the threshold values for occupational safety and health. An increased sensitivity was observed in the temperature range of 150-300 degrees C with maximum sensor response at 250 degrees C. The surface reaction at the heterogeneous solid (LFO)/gas (SO2) interface that confirmed the formation of La-2(SO4)(3) was investigated by X-ray photoelectron spectroscopy. Moreover, the LFO fibers showed a high selectivity in the detection of oxidizing and reducing gases. Whereas superior detection of NH3 and H2S was measured, little response was observed for CO and NO2. Finally, the integration of nanowire meshes in commercial sensor platforms was successfully demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461978200047 Publication Date 2019-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.951 Times cited 41 Open Access OpenAccess  
  Notes ; The authors kindly acknowledge the ERA.Net RUS Plus project FONSENS funded by the German Federal Ministry of Education and Research (BMBF) under the grant no. 01DJ16017. A.Q. highly appreciates the support of the Alexander von Humboldt Foundation (grant no. AVH 1184642) and the BMBF for his postdoctoral fellowship. A.Q., D.G., R.F., T.F., and S.M. also kindly acknowledge the financial support of the University of Cologne. H.V. acknowledges financial support by the Research Foundation Flanders (FWO grant 1S32617N). S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). We also express our gratitude to Prof. Dr. J. Hadermann from the Electron Microscopy for Materials Science group at the University of Antwerp for her assistance. A.B. is grateful for the EUR EIPHI program (grant no. ANR-17-EURE-0002). ; Approved Most recent IF: 5.951  
  Call Number UA @ admin @ c:irua:158535 Serial 5263  
Permanent link to this record
 

 
Author Narayanan, V.; Lommens, P.; De Buysser, K.; Vanpoucke, D.E.P.; Huehne, R.; Molina, L.; Van Tendeloo, G.; van der Voort, P.; Van Driessche, I. pdf  doi
openurl 
  Title Aqueous CSD approach for the growth of novel, lattice-tuned LaxCe1-xO\delta epitaxial layers Type A1 Journal article
  Year 2012 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 22 Issue 17 Pages 8476-8483  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Lanthanumcerium oxide (LCO) films were deposited on Ni-5%W substrates by chemical solution deposition (CSD) from water-based precursors. LCO films containing different ratios of lanthanum and cerium ions (from CeO2 to La2Ce2O7) were prepared. The composition of the layers was optimized towards the formation of LCO buffer layers, lattice-matched with the superconducting YBa2Cu3Oy layer, useful for the development of coated conductors. Single, crack-free LCO layers with a thickness of up to 140 nm could be obtained in a single deposition step. The crystallinity and microstructure of these lattice-matched LCO layers were studied by X-ray diffraction techniques, RHEED and SEM. We find that only layers with thickness below 100 nm show a crystalline top surface although both thick and thin layers show good biaxial texture in XRD. On the most promising layers, AFM and (S)TEM were performed to further evaluate their morphology. The overall surface roughness varies between 3.9 and 7.5 nm, while the layers appear much more dense than the frequently used La2Zr2O7 (LZO) systems, showing much smaller nanovoids (12 nm) than the latter system. Their effective buffer layer action was studied using XPS. The thin LCO layers supported the growth of superconducting YBCO deposited using PLD methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000302367500044 Publication Date 2012-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 24 Open Access  
  Notes Iap Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:96960 Serial 148  
Permanent link to this record
 

 
Author Wouters, L.; Bernard, P.; Van Grieken, R. doi  openurl
  Title Characterization of individual estuarine and marine particles by LAMMA and EPXMA Type A1 Journal article
  Year 1988 Publication International journal of environmental analytical chemistry Abbreviated Journal  
  Volume 34 Issue 1 Pages 17-29  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Laser microprobe mass analysis (LAMMA) was applied to particulate matter from the Atlantic Ocean. Inferring information about the surface layer by LAMMA was not probe X-ray microanalysis (EPXMA). Geochemically relevant groups of particles had been identified by EPXMA and cluster analysis. For both locations, the most abundant ones appeared to be those rich in silicon and the alumino-silicates. Afterwards LAMMA was applied to obtain more information about the trace element composition and surface characteristics. The iron-rich phase appeared to contain significant amounts of heavy metals and of phosphate. Lead appeared to be associated in detectable amounts with alumino-silicates in the Scheldt but not with those in the Atlantic Ocean. Inferring information about the surface layer by LAMMA was not always unambiguous.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1988Q274200002 Publication Date 2007-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-7319 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116577 Serial 7624  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: