|   | 
Details
   web
Records
Author Van der Donck, M.; Zarenia, M.; Peeters, F.M.
Title Excitons and trions in monolayer transition metal dichalcogenides : a comparative study between the multiband model and the quadratic single-band model Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 3 Pages 035131
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic and structural properties of excitons and trions in monolayer transition metal dichalcogenides are investigated using both a multiband and a single- band model. In the multiband model we construct the excitonic Hamiltonian in the product base of the single-particle states at the conduction and valence band edges. We decouple the corresponding energy eigenvalue equation and solve the resulting differential equation self-consistently, using the finite element method (FEM), to determine the energy eigenvalues and the wave functions. As a comparison, we also consider the simple single-band model which is often used in numerical studies. We solve the energy eigenvalue equation using the FEM as well as with the stochastic variational method (SVM) in which a variational wave function is expanded in a basis of a large number of correlated Gaussians. We find good agreement between the results of both methods, as well as with other theoretical works for excitons, and we also compare with available experimental data. For trions the agreement between both methods is not as good due to our neglect of angular correlations when using the FEM. Finally, when comparing the two models, we see that the presence of the valence bands in the mutiband model leads to differences with the single- band model when (interband) interactions are strong.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000405706600005 Publication Date 2017-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access
Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145209 Serial 4716
Permanent link to this record
 

 
Author Yuan, H.F.; Xu, W.; Zhao, X.N.; Song, D.; Zhang, G.R.; Xiao, Y.M.; Ding, L.; Peeters, F.M.
Title Quantum and transport mobilities of a Na3Bi-based three-dimensional Dirac system Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 23 Pages 235303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic and transport properties of a three-dimensional (3D) Dirac system are investigated theoretically, which is motivated by recent experimental measurements on quantum and transport mobilities in the 3D Dirac semimetal Na3Bi by J. Xiong et al. [Science 350, 413 (2015); Europhys. Lett. 114, 27002 (2016)]. The electron Hamiltonian is taken from a simplified k center dot p approach. From the obtained electronic band structure and the Fermi energy, we explain why the anomalous effect induced by the chiral anomaly and the Berry curvature in the energy band can be observed experimentally in magnetotransport coefficients in both low-and high-density samples. Moreover, the quantum and transport mobilities are calculated on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation with the electron-impurity interaction. The quantum and transport mobilities obtained from this study agree both qualitatively and quantitatively with those measured experimentally. We also examine the electron mobilities along different crystal directions in Na3Bi and find them largely anisotropic. The theoretical findings from this work can be helpful in gaining an in-depth understanding of the experimental results and of the basic electronic and transport properties of newly developed 3D Dirac systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000471983500006 Publication Date 2019-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:161329 Serial 5425
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title First-principles study of strained 2D MoS2 Type A1 Journal article
Year 2014 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E
Volume 56 Issue Pages 416-421
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The electronic and vibrational properties of 2D honeycomb structures of molybdenum disulfide (MoS2) subjected to strain have been investigated using first-principles calculations based on density functional theory. We have studied the evolution of the electronic properties of bulk and layered MoS2, going down from a few layers up to a mono-layer, and next investigated the effect of bi-axial strain on their electronic structure and vibrational frequencies. Both for tensile and compressive biaxial strains, the shrinking of the energy band-gap of MoS2 with increasing level of applied strain is observed and a transition limit of the system from semiconducting to metallic is predicted to occur for strains in the range of 8-10%. We also found a progressive downshift (upshift) of both the E-2g(1) and A(1g) Raman active modes with increasing level of applied tensile (compressive) strain. Interestingly, significant changes in the curvature of the conduction and valence band near their extrema upon the application of strain are also predicted, with correlated variations of the electron and hole effective masses. These changes present interesting possibilities for engineering the electronic properties of 2D structures of MoS2. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000330815800070 Publication Date 2012-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 72 Open Access
Notes Approved Most recent IF: 2.221; 2014 IF: 2.000
Call Number UA @ lucian @ c:irua:115761 Serial 1220
Permanent link to this record
 

 
Author Rivera-Julio, J.; Gonzalez-Garcia, A.; Gonzalez-Hernandez, R.; Lopez-Perez, W.; Peeters, F.M.; Hernandez-Nieves, A.D.
Title Vibrational properties of germanane and fluorinated germanene in the chair, boat, and zigzag-line configurations Type A1 Journal article
Year 2019 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 31 Issue 7 Pages 075301
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic and vibrational properties of germanane and fluorinated germanene are studied within density functional theory (DFT) and density functional perturbation theory frameworks. Different structural configurations of germanane and fluorinated germanene are investigated. The energy difference between the different configurations are consistently smaller than the energy of thermal fluctuations for all the analyzed DFT functionals LDA, GGA, and hybrid functionals, which implies that, in principle, it is possible to find these different configurations in different regions of the sample as minority phases or local defects. We calculate the Raman and infrared spectra for these configurations by using ab initio calculations and compare it with available experimental spectra for germanane. Our results show the presence of minority phases compatible with the configurations analyzed in this work. As these low energy configurations are metastable the present work shows that the synthesis of these energy competing phases is feasible by selectively changing the synthesis conditions, which is an opportunity to expand in this way the availability of new two-dimensional compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000454925400001 Publication Date 2018-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 9 Open Access
Notes ; We acknowledge financial support from PICT-2016-1087 from ANPCyT, PIP 2014-2016 00402 from CONICET and the Argentina-Belgium colaboration program SECYT-FWO FW/ 14/04. This work was also supported by Universidad del Norte and Colciencias (Administrative Department of Science, Technology and Research of Colombia) under Convocatoria 712-Convocatoria para proyectos de investigacion en ciencias basicas ano 2015, Cod: 121571250192, Contrato 110-216. ; Approved Most recent IF: 2.649
Call Number UA @ admin @ c:irua:156708 Serial 5238
Permanent link to this record
 

 
Author Scalise, E.; Cinquanta, E.; Houssa, M.; van den Broek, B.; Chiappe, D.; Grazianetti, C.; Pourtois, G.; Ealet, B.; Molle, A.; Fanciulli, M.; Afanas’ev, V.V.; Stesmans, A.;
Title Vibrational properties of epitaxial silicene layers on (111) Ag Type A1 Journal article
Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 291 Issue Pages 113-117
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The electronic and vibrational properties of three different reconstructions of silicene on Ag(1 1 1) are calculated and compared to experimental results. The 2D epitaxial silicon layers, namely the (4 x 4), (root 13 x root 13) and (2 root 3 x 2 root 3) phases, exhibit different electronic and vibrational properties. Few peaks in the experimental Raman spectrum are identified and attributed to the vibrational modes of the silicene layers. The position and behavior of the Raman peaks with respect to the excitation energy are shown to be a fundamental tool to investigate and discern different phases of silicene on Ag( 1 1 1). (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000329327700025 Publication Date 2013-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 36 Open Access
Notes Approved Most recent IF: 3.387; 2014 IF: 2.711
Call Number UA @ lucian @ c:irua:113767 Serial 3843
Permanent link to this record
 

 
Author Leenaerts, O.; Vercauteren, S.; Schoeters, B.; Partoens, B.
Title System-size dependent band alignment in lateral two-dimensional heterostructures Type A1 Journal article
Year 2016 Publication 2D materials Abbreviated Journal 2D Mater
Volume 3 Issue 3 Pages 025012
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic band alignment in semiconductor heterostructures is a key factor for their use in electronic applications. The alignment problem has been intensively studied for bulk systems but is less well understood for low-dimensional heterostructures. In this work we investigate the alignment in two-dimensional lateral heterostructures. First-principles calculations are used to show that the electronic band offset depends crucially on the width and thickness of the heterostructure slab. The particular heterostructures under study consist of thin hydrogenated and fluorinated diamond slabs which are laterally joined together. Two different limits for the band offset are observed. For infinitely wide heterostructures the vacuum potential above the two materials is aligned leading to a large step potential within the heterostructure. For infinitely thick heterostructure slabs, on the other hand, there is no potential step in the heterostructure bulk, but a large potential step in the vacuum region above the heterojunction is observed. The band alignment in finite systems depends on the particular dimensions of the system. These observations are shown to result from an interface dipole at the heterojunction that tends to align the band structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000378571400032 Publication Date 2016-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 19 Open Access
Notes This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government— department EWI. Approved Most recent IF: 6.937
Call Number c:irua:132792 c:irua:132792 Serial 4055
Permanent link to this record
 

 
Author Macke, S.; Radi, A.; Hamann-Borrero, J.E.; Verna, A.; Bluschke, M.; Brück, S.; Goering, E.; Sutarto, R.; He, F.; Cristiani, G.; Wu, M.; Benckiser, E.; Habermeier, H.-U.; Logvenov, G.; Gauquelin, N.; Botton, G.A; Kajdos, A.P.; Stemmer, S.; Sawatzky,G.A.; Haverkort, M.W.; Keimer, B.; Hinkov, V.
Title Element Specific Monolayer Depth Profiling Type A1 Journal Article
Year 2014 Publication Advanced Materials Abbreviated Journal Adv Mater
Volume 26 Issue 38 Pages 6554-6559
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)
Abstract (up) The electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000343763200004 Publication Date 2014-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1521-4095 ISBN Additional Links
Impact Factor 19.791 Times cited 34 Open Access
Notes Approved Most recent IF: 19.791; 2014 IF: NA
Call Number EMAT @ emat @ Serial 4541
Permanent link to this record
 

 
Author Sankaran, K.; Pourtois, G.; Degraeve, R.; Zahid, M.B.; Rignanese, G.-M.; Van Houdt, J.
Title First-principles modeling of intrinsic and extrinsic defects in \gamma-Al2O3 Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 97 Issue 21 Pages 212906
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The electronic properties of a set of intrinsic and extrinsic point defects in gamma-Al2O3 are investigated using quasiparticle calculations within the G(0)W(0) approximation. We find that the electronic signature of atomic vacancies lie deep in the band gap, close to the top of the valence band edge. The introduction of C, Si, and N impurities induces defective levels that are located close to the conduction band edge and near the middle of the band gap of the oxide. The comparison with electrical measurements reveals that the energy levels of some of these defects match with the electronic fingerprint of the defects reported in gamma-Al2O3 based nonvolatile memories. (C) 2010 American Institute of Physics. [doi:10.1063/1.3507385]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000284618300039 Publication Date 2010-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 12 Open Access
Notes Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:105617 Serial 1213
Permanent link to this record
 

 
Author Neek-Amal, M.; Covaci, L.; Shakouri, K.; Peeters, F.M.
Title Electronic structure of a hexagonal graphene flake subjected to triaxial stress Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 11 Pages 115428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic properties of a triaxially strained hexagonal graphene flake with either armchair or zigzag edges are investigated using molecular dynamics simulations and tight-binding calculations. We found that (i) the pseudomagnetic field in strained graphene flakes is not uniform neither in the center nor at the edge of zigzag terminated flakes, (ii) the pseudomagnetic field is almost zero in the center of armchair terminated flakes but increases dramatically near the edges, (iii) the pseudomagnetic field increases linearly with strain, for strains lower than 15% but increases nonlinearly beyond it, (iv) the local density of states in the center of the zigzag hexagon exhibits pseudo-Landau levels with broken sublattice symmetry in the zeroth pseudo-Landau level, and in addition there is a shift in the Dirac cone due to strain induced scalar potentials, and (v) there is size effect in pseudomagnetic field. This study provides a realistic model of the electronic properties of inhomogeneously strained graphene where the relaxation of the atomic positions is correctly included together with strain induced modifications of the hopping terms up to next-nearest neighbors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000324690400008 Publication Date 2013-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M.N.-A.), the ESF EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111168 Serial 1011
Permanent link to this record
 

 
Author Beheshtian, J.; Sadeghi, A.; Neek-Amal, M.; Michel, K.H.; Peeters, F.M.
Title Induced polarization and electronic properties of carbon-doped boron nitride nanoribbons Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 19 Pages 195433-195438
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic properties of boron nitride nanoribbons (BNNRs) doped with a line of carbon atoms are investigated using density functional calculations. By replacing a line of alternating B and N atoms with carbons, three different configurations are possible depending on the type of the atoms which bond to the carbons. We found very different electronic properties for these configurations: (i) the NCB arrangement is strongly polarized with a large dipole moment having an unexpected direction, (ii) the BCB and NCN arrangements are nonpolar with zero dipole moment, (iii) the doping by a carbon line reduces the band gap regardless of the local arrangement of the borons and the nitrogens around the carbon line, and (iv) the polarization and energy gap of the carbon-doped BNNRs can be tuned by an electric field applied parallel to the carbon line. Similar effects were found when either an armchair or zigzag line of carbon was introduced.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000311694200006 Publication Date 2012-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes ; We would like to thank J. M. Pereira and S. Goedecker for helpful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl), the ESF-EuroGRAPHENE project CONGRAN. M. N.-A is supported by EU-Marie Curie IIF postdoc Fellowship/299522. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:105136 Serial 1603
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Peeters, F.M.
Title Electronic properties of graphene nano-flakes : energy gap, permanent dipole, termination effect, and Raman spectroscopy Type A1 Journal article
Year 2014 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 140 Issue 7 Pages 074304-74309
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C-Nc X-Nx (X = F or H). We studied GNFs with 10 < N-c < 56 and limit ourselves to the lowest energy configurations. We found that: (i) the energy difference Delta between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases with N-c, (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interaction of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000332039900020 Publication Date 2014-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606;1089-7690; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 30 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 2.965; 2014 IF: 2.952
Call Number UA @ lucian @ c:irua:115857 Serial 1002
Permanent link to this record
 

 
Author Houssa, M.; Scalise, E.; Sankaran, K.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title Electronic properties of hydrogenated silicene and germanene Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 98 Issue 22 Pages 223107
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The electronic properties of hydrogenated silicene and germanene, so called silicane and germanane, respectively, are investigated using first-principles calculations based on density functional theory. Two different atomic configurations are found to be stable and energetically degenerate. Upon the adsorption of hydrogen, an energy gap opens in silicene and germanene. Their energy gaps are next computed using the HSE hybrid functional as well as the G(0)W(0) many-body perturbation method. These materials are found to be wide band-gap semiconductors, the type of gap in silicane (direct or indirect) depending on its atomic configuration. Germanane is predicted to be a direct-gap material, independent of its atomic configuration, with an average energy gap of about 3.2 eV, this material thus being potentially interesting for optoelectronic applications in the blue/violet spectral range. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3595682]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000291405700057 Publication Date 2011-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 63 Open Access
Notes Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:105586 Serial 1003
Permanent link to this record
 

 
Author Smolin, S.Y.; Choquette, A.K.; Wilks, R.G.; Gauquelin, N.; Félix, R.; Gerlach, D.; Ueda, S.; Krick, A.L.; Verbeeck, J.; Bär, M.; Baxter, J.B.; May, S.J.
Title Energy Level Alignment and Cation Charge States at the LaFeO3/LaMnO3(001) Heterointerface Type A1 Journal article
Year 2017 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 4 Issue 4 Pages 1700183
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) The electronic properties of LaFeO 3 /LaMnO 3 epitaxial heterojunctions are investigated to determine the valence and conduction band offsets and the nominal Mn and Fe valence states at the interface. Studying a systematic series of (LaFeO 3 ) n /(LaMnO 3 ) m bilayers (m ≈ 50) epitaxially grown in the (001) orientation using molecular beam epitaxy, layer-resolved electron energy loss spectroscopy reveals a lack of significant interfacial charge transfer, with a nominal 3+ valence state observed for both Mn and Fe across the interface. Through a combination of variable angle spectroscopic ellipsometry and hard X-ray photoelectron spectroscopy, type I energy level alignments are obtained at the LaFeO 3 /LaMnO 3 interface with positive valence and conduction band offsets of (1.20 ± 0.07) eV and (0.5–0.7 ± 0.3) eV, respectively, with minimal band bending. Variable temperature resistivity measurements reveal that the bilayers remain insulating and that the presence of the heterojunction does not result in a conducting interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000406068400011 Publication Date 2017-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 14 Open Access Not_Open_Access
Notes The authors thank Dmytro Nykypanchuk for assistance with the near- infrared ellipsometry measurement of the LaMnO 3 film. S.Y.S., A.K.C., J.B.B, and S.J.M. acknowledge funding from the National Science Foundation under grant number ECCS-1201957. S.Y.S. acknowledges additional funding from the German Academic Exchange Service (DAAD) through the Research Internships in Science and Engineering (RISE) professional program 2015 ID 5708457. A.L.K. was funded by the National Science Foundation under grant number DMR-1151649. J.V. and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp and from the FWO project G.0044.13N (Charge ordering). The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Ellipsometry measurements of the LaMnO 3 film were carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-ACO2-98CH10886. S.U. would like to thank the staff of HiSOR, Hiroshima University, and JAEA/Spring-8 for the development of HAXPES at BL15XU of SPring-8. The HAXPES measurements were performed with approval of NIMS Synchrotron X-ray Station (Proposal No. 2015B4601), and were partly supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The authors also thank HZB for the allocation of synchrotron radiation beamtime for HAXPES/XANES measurements. R.G.W., R.F, and M.B. are grateful to the Impuls- und Vernetzungsfonds of the Helmholtz Association (VH-NG-423).; National Science Foundation, ECCS-1201957 DMR-1151649 ; Deutscher Akademischer Austauschdienst, 2015 ID 5708457 ; GOA project; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; Flemish Government; U.S. Department of Energy, DE-ACO2-98CH10886 ; Vernetzungsfonds of the Helmholtz Association, VH-NG-423 ; Approved Most recent IF: 4.279
Call Number EMAT @ emat @ c:irua:142346UA @ admin @ c:irua:142346 Serial 4553
Permanent link to this record
 

 
Author Tahir, M.; Vasilopoulos, P.; Peeters, F.M.
Title Magneto-optical transport properties of monolayer phosphorene Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 045420
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic properties of monolayer phosphorene are exotic due to its puckered structure and large intrinsic direct band gap. We derive and discuss its band structure in the presence of a perpendicular magnetic field. Further, we evaluate the magneto-optical Hall and longitudinal optical conductivities as functions of temperature, magnetic field, and Fermi energy, and show that they are strongly influenced by the magnetic field. The imaginary part of the former and the real part of the latter exhibit regular interband oscillations as functions of the frequency omega in the range (h) over bar omega similar to 1.5-2 eV. Strong intraband responses in the latter and weak ones in the former occur at much lower frequencies. The magneto-optical response can be tuned in the microwave-to-terahertz and visible frequency ranges in contrast with a conventional two-dimensional electron gas or graphene in which the response is limited to the terahertz regime. This ability to isolate carriers in an anisotropic structure may make phosphorene a promising candidate for new optical devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000358373600003 Publication Date 2015-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 68 Open Access
Notes ; This work was supported by the the Canadian NSERC Grant No. OGP0121756 (M.T., P.V.) and by the Flemish Science Foundation (FWO-Vl) (F.M.P.). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:127192 Serial 1903
Permanent link to this record
 

 
Author Krause, F.F.; Ahl, J.P.; Tytko, D.; Choi, P.P.; Egoavil, R.; Schowalter, M.; Mehrtens, T.; Müller-Caspary, K.; Verbeeck, J.; Raabe, D.; Hertkorn, J.; Engl, K.; Rosenauer, A.
Title Homogeneity and composition of AlInGaN : a multiprobe nanostructure study Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 156 Issue 156 Pages 29-36
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) The electronic properties of quaternary AlInGaN devices significantly depend on the homogeneity of the alloy. The identification of compositional fluctuations or verification of random-alloy distribution is hence of grave importance. Here, a comprehensive multiprobe study of composition and compositional homogeneity is presented, investigating AlInGaN layers with indium concentrations ranging from 0 to 17 at% and aluminium concentrations between 0 and 39 at% employing high-angle annular dark field scanning electron microscopy (HAADF STEM), energy dispersive X-ray spectroscopy (EDX) and atom probe tomography (APT). EDX mappings reveal distributions of local concentrations which are in good agreement with random alloy atomic distributions. This was hence investigated with HAADF STEM by comparison with theoretical random alloy expectations using statistical tests. To validate the performance of these tests, HAADF STEM image simulations were carried out for the case of a random-alloy distribution of atoms and for the case of In-rich clusters with nanometer dimensions. The investigated samples, which were grown by metal-organic vapor phase epitaxy (MOVPE), were thereby found to be homogeneous on this nanometer scale. Analysis of reconstructions obtained from APT measurements yielded matching results. Though HAADF STEM only allows for the reduction of possible combinations of indium and aluminium concentrations to the proximity of isolines in the two-dimensional composition space. The observed ranges of composition are in good agreement with the EDX and APT results within the respective precisions.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000361001800006 Publication Date 2015-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 11 Open Access
Notes 312483 Esteem2; esteem2_ta Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:126965 c:irua:126965UA @ admin @ c:irua:126965 Serial 1485
Permanent link to this record
 

 
Author Van Duppen, B.; Vasilopoulos, P.; Peeters, F.M.
Title Spin and valley polarization of plasmons in silicene due to external fields Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 3 Pages 035142
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic properties of the two-dimensional material silicene are strongly influenced by the application of a perpendicular electric field E-z and of an exchange field M due to adatoms positioned on the surface or a ferromagnetic substrate. Within the random phase approximation, we investigate how electron-electron interactions are affected by these fields and present analytical and numerical results for the dispersion of plasmons, their lifetime, and their oscillator strength. We find that the combination of the fields E-z and M brings a spin and valley texture to the particle-hole excitation spectrum and allows the formation of spin-and valley-polarized plasmons. When the Fermi level lies in the gap of one spin in one valley, the intraband region of the corresponding spectrum disappears. For zero E-z and finite M the spin symmetry is broken and spin polarization is possible. The lifetime and oscillator strength of the plasmons are shown to depend strongly on the number of spin and valley type electrons that form the electron-hole pairs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000339974700001 Publication Date 2014-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 49 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant grant to B.V.D., the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:118776 Serial 3080
Permanent link to this record
 

 
Author Houssa, M.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
Title Electronic properties of two-dimensional hexagonal germanium Type A1 Journal article
Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 96 Issue 8 Pages 082111,1-082111,3
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The electronic properties of two-dimensional hexagonal germanium, so called germanene, are investigated using first-principles simulations. Consistent with previous reports, the surface is predicted to have a poor metallic behavior, i.e., being metallic with a low density of states at the Fermi level. It is found that biaxial compressively strained germanene is a gapless semiconductor with linear energy dispersions near the K pointslike graphene. The calculated Fermi velocity of germanene is almost independent of the strain and is about 1.7×10<sup>6</sup> m/s, quite comparable to the value in graphene.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000275027200044 Publication Date 2010-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 86 Open Access
Notes Approved Most recent IF: 3.411; 2010 IF: 3.841
Call Number UA @ lucian @ c:irua:91716 Serial 1004
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Pourtois, G.; Afanas'ev, V.; Stesmans, A.
Title Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2 Type A1 Journal article
Year 2012 Publication Nano Research Abbreviated Journal Nano Res
Volume 5 Issue 1 Pages 43-48
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The electronic properties of two-dimensional honeycomb structures of molybdenum disulfide (MoS(2)) subjected to biaxial strain have been investigated using first-principles calculations based on density functional theory. On applying compressive or tensile bi-axial strain on bi-layer and mono-layer MoS(2), the electronic properties are predicted to change from semiconducting to metallic. These changes present very interesting possibilities for engineering the electronic properties of two-dimensional structures of MoS(2).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000299085200006 Publication Date 2011-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1998-0124;1998-0000; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.354 Times cited 407 Open Access
Notes Approved Most recent IF: 7.354; 2012 IF: 7.392
Call Number UA @ lucian @ c:irua:96262 Serial 3169
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Ozaydin, H.D.; Senger, R.T.; Peeters, F.M.
Title TiS3 nanoribbons : width-independent band gap and strain-tunable electronic properties Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 075413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic properties, carrier mobility, and strain response of TiS3 nanoribbons (TiS3 NRs) are investigated by first-principles calculations. We found that the electronic properties of TiS3 NRs strongly depend on the edge type (a or b). All a-TiS3 NRs are metallic with a magnetic ground state, while b-TiS3 NRs are direct band gap semiconductors. Interestingly, the size of the band gap and the band edge position are almost independent of the ribbon width. This feature promises a constant band gap in a b-TiS3 NR with rough edges, where the ribbon width differs in different regions. The maximum carrier mobility of b-TiS3 NRs is calculated by using the deformation potential theory combined with the effective mass approximation and is found to be of the order 10(3) cm(2) V-1 s(-1). The hole mobility of the b-TiS3 NRs is one order of magnitude lower, but it is enhanced compared to the monolayer case due to the reduction in hole effective mass. The band gap and the band edge position of b-TiS3 NRs are quite sensitive to applied strain. In addition we investigate the termination of ribbon edges by hydrogen atoms. Upon edge passivation, the metallic and magnetic features of a-TiS3 NRs remain unchanged, while the band gap of b-TiS3 NRs is increased significantly. The robust metallic and ferromagnetic nature of a-TiS3 NRs is an essential feature for spintronic device applications. The direct, width-independent, and strain-tunable band gap, as well as the high carrier mobility, of b-TiS3 NRs is of potential importance in many fields of nanoelectronics, such as field-effect devices, optoelectronic applications, and strain sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000359344100014 Publication Date 2015-08-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 55 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, the High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. is supported by a FWO Pegasus-Short Marie Curie Fellowship. H.S. and R.T.S. acknowledge support from TUBITAK through Project No. 114F397. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:127760 Serial 4259
Permanent link to this record
 

 
Author Sena, S.H.R.; Pereira, J.M.; Peeters, F.M.; Farias, G.A.
Title Landau levels in asymmetric graphene trilayer Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 20 Pages 205448-205448,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic spectrum of three coupled graphene layers (graphene trilayers) is investigated in the presence of an external magnetic field. We obtain analytical expressions for the Landau level spectrum for both the ABA and ABC type of stacking, which exhibit very different dependence on the magnetic field. We show that layer asymmetry and an external gate voltage can strongly influence the properties of the system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297295400018 Publication Date 2011-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 30 Open Access
Notes ; This work was supported by the Brazilian Council for Research (CNPq), the National Council for the Improvement of Higher Education (CAPES), the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the bilateral projects between Flanders and Brazil and the CNPq and FWO-Vl. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94026 Serial 1773
Permanent link to this record
 

 
Author Heshmati-Moulai, A.; Simchi, H.; Esmaeilzadeh, M.; Peeters, F.M.
Title Phase transition and spin-resolved transport in MoS2 nanoribbons Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 94 Pages 235424
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic structure and transport properties of monolayer MoS2 are studied using a tight-binding approach coupled with the nonequilibrium Green's function method. A zigzag nanoribbon of MoS2 is conducting due to the intersection of the edge states with the Fermi level that is located within the bulk gap. We show that applying a transverse electric field results in the disappearance of this intersection and turns the material into a semiconductor. By increasing the electric field the band gap undergoes a two stage linear increase after which it decreases and ultimately closes. It is shown that in the presence of a uniform exchange field, this electric field tuning of the gap can be exploited to open low energy domains where only one of the spin states contributes to the electronic conductance. This introduces possibilities in designing spin filters for spintronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000394546100005 Publication Date 2016-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:141978 Serial 4557
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M.; Janssens, K.L.
Title Effect of isotropic versus anisotropic elasticity on the electronic structure of cylindrical InP/In0.49Ga0.51P self-assembled quantum dots Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 65 Issue 16 Pages 165333-13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic structure of disk-shaped InP/InGaP self-assembled quantum dots is calculated within the effective-mass theory. The strain-dependent 6x6 multiband Hamiltonian for the valence band is simplified into an axially symmetric form. Both the continuum mechanical model, discretized by finite elements, and the isotropic model are used to calculate the strain distribution and their results are critically compared. The dependence of the electron and the hole energy levels on the dimensions of the quantum dot is investigated. We found that both the electron and hole energies are underestimated if the strain distribution is calculated by the isotropic elasticity theory. The agreement between the electron energies for the two approaches is better for thinner quantum dots. The heavy holes are confined inside the quantum dot, while the light holes are located outside the disk, but confined by the strain field near the edge of the disk periphery. We found that the (h) over bar /2 hole ground state crosses the 3 (h) over bar /2 ground state when the height of the quantum dot increases and becomes the ground state for sufficiently thick quantum disks. The higher hole levels exhibit both crossings between the states of the different parity and anticrossings between the states of the same parity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000175325000097 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 72 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:103361 Serial 819
Permanent link to this record
 

 
Author Kishore, V.V.R.; Čukarić, N.; Partoens, B.; Tadić, M.; Peeters, F.M.
Title Hole subbands in freestanding nanowires : six-band versus eight-band k.p modelling Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 13 Pages 135302-135302,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic structure of GaAs, InAs and InSb nanowires is studied using the six-band and the eight-band k.p models. The effect of the different Luttinger-like parameters (in the eight-band model) on the hole band structure is investigated. Although GaAs nanostructures are often treated within a six-band model because of the large bandgap, it is shown that an eight-band model is necessary for a correct description of its hole spectrum. The camel-back structure usually found in the six-band model is not always present in the eight-band model. This camel-back structure depends on the interaction between light and heavy holes, especially the ones with opposite spin. The latter effect is less pronounced in an eight-band model, but could be very sensitive to the Kane inter-band energy (E-P) value.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000302120100007 Publication Date 2012-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 13 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), Belgian Science Policy (IAP) and the Ministry of Education and Science of Serbia. ; Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:97763 Serial 1479
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M.
Title Electronic structure and optical absorption of GaAs/AlxGa1-xAs and AlxGa1-xAs/GaAs core-shell nanowires Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 23 Pages 235425-235425,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic structure of GaAs/AlxGa1−xAs and AlxGa1−xAs/GaAs core-shell nanowires grown in the [001] direction is studied. The k⋅p method with the 6×6 Kohn-Lüttinger Hamiltonian, taking into account the split-off band is used. The variation in the energy level dispersion, the spinor contribution to the ground state and the optical interband absorption are studied. For some range of parameters the top of the valence band exhibits a camelback structure which results in an extra peak in the optical absorption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286769100008 Publication Date 2010-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 23 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:86911 Serial 1010
Permanent link to this record
 

 
Author Čukarić, N.; Tadić, M.; Peeters, F.M.
Title Electron and hole states in a quantum ring grown by droplet epitaxy. Influence of the layer inside the ring opening Type A1 Journal article
Year 2010 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst
Volume 48 Issue 5 Pages 491-501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic structure of the conduction and valence bands of a quantum ring containing a layer inside the ring opening is modeled This structure (nanocup) consists of a GaAs nanodisk (the cup s bottom) and a GaAs nanoring (the cup s rim) which encircles the disk The whole system is embedded in an (Al Ga)As matrix and its shape resembles realistic ring structures grown by the droplet epitaxy technique The conduction-band states in the structure are modeled by the single-band effective-mass theory while the 4-band Luttinger-Kohn model is adopted to compute the valence-band states We analyze how the electronic structure of the nanocup evolves from the one of a quantum ring when the size of either the nanodisk or the nanoring is changed For that purpose (1) the width of the ring (2) the disk radius and (3) the disk height are separately varied For dimensions typical for experimentally realized structures we find that the electron wavefunctions are mainly localized inside the ring even when the thickness of the Inner layer is 90% of the ring thickness These calculations indicate that topological phenomena like the excitonic Aharonov-Bohm effect are negligibly affected by the presence of the layer inside the ring (C) 2010 Elsevier Ltd All rights reserved
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000284521400005 Publication Date 2010-09-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.123 Times cited 9 Open Access
Notes ; The authors would like to thank Prof B Partoens for useful discussions This work was supported by the EU NoE SANDiE the Ministry of Science of Serbia the Flemish Science Foundation (FWO-VI) and the Belgian Science Policy (IAP) ; Approved Most recent IF: 2.123; 2010 IF: 1.096
Call Number UA @ lucian @ c:irua:95551 Serial 906
Permanent link to this record
 

 
Author Van Duppen, B.; Sena, S.H.R.; Peeters, F.M.
Title Multiband tunneling in trilayer graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 19 Pages 195439-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) The electronic tunneling properties of the two stable forms of trilayer graphene (TLG), rhombohedral ABC and Bernal ABA, are examined for p-n and p-n-p junctions as realized by using a single gate (SG) or a double gate (DG). For the rhombohedral form, due to the chirality of the electrons, the Klein paradox is found at normal incidence for SG devices, while at high-energy interband scattering between additional propagation modes can occur. The electrons in Bernal ABA TLG can have a monolayer- or bilayer-like character when incident on a SG device. Using a DG, however, both propagation modes will couple by breaking the mirror symmetry of the system, which induces intermode scattering and resonances that depend on the width of the DG p-n-p junction. For ABC TLG the DG opens up a band gap which suppresses Klein tunneling. The DG induces also an unexpected asymmetry in the tunneling angle for single-valley electrons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319281700004 Publication Date 2013-05-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-VI) by an aspirant research grant to B. Van Duppen and the Methusalem Programme of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108998 Serial 2216
Permanent link to this record
 

 
Author Van den Hoek, J.; Daems, N.; Arnouts, S.; Hoekx, S.; Bals, S.; Breugelmans, T.
Title Improving stability of CO₂ electroreduction by incorporating Ag NPs in N-doped ordered mesoporous carbon structures Type A1 Journal article
Year 2024 Publication ACS applied materials and interfaces Abbreviated Journal
Volume 16 Issue 6 Pages 6931-6947
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)
Abstract (up) The electroreduction of carbon dioxide (eCO2RR) to CO using Ag nanoparticles as an electrocatalyst is promising as an industrial carbon capture and utilization (CCU) technique to mitigate CO2 emissions. Nevertheless, the long-term stability of these Ag nanoparticles has been insufficient despite initial high Faradaic efficiencies and/or partial current densities. To improve the stability, we evaluated an up-scalable and easily tunable synthesis route to deposit low-weight percentages of Ag nanoparticles (NPs) on and into the framework of a nitrogen-doped ordered mesoporous carbon (NOMC) structure. By exploiting this so-called nanoparticle confinement strategy, the nanoparticle mobility under operation is strongly reduced. As a result, particle detachment and agglomeration, two of the most pronounced electrocatalytic degradation mechanisms, are (partially) blocked and catalyst durability is improved. Several synthesis parameters, such as the anchoring agent, the weight percentage of Ag NPs, and the type of carbonaceous support material, were modified in a controlled manner to evaluate their respective impact on the overall electrochemical performance, with a strong emphasis on operational stability. The resulting powders were evaluated through electrochemical and physicochemical characterization methods, including X-ray diffraction (XRD), N2-physisorption, Inductively coupled plasma mass spectrometry (ICP-MS), scanning electron microscopy (SEM), SEM-energy-dispersive X-ray spectroscopy (SEM-EDS), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM-EDS, electron tomography, and X-ray photoelectron spectroscopy (XPS). The optimized Ag/soft-NOMC catalysts showed both a promising selectivity (∼80%) and stability compared with commercial Ag NPs while decreasing the loading of the transition metal by more than 50%. The stability of both the 5 and 10 wt % Ag/soft-NOMC catalysts showed considerable improvements by anchoring the Ag NPs on and into a NOMC framework, resulting in a 267% improvement in CO selectivity after 72 h (despite initial losses) compared to commercial Ag NPs. These results demonstrate the promising strategy of anchoring Ag NPs to improve the CO selectivity during prolonged experiments due to the reduced mobility of the Ag NPs and thus enhanced stability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001158812100001 Publication Date 2023-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.5 Times cited Open Access Not_Open_Access: Available from 21.06.2024
Notes Approved Most recent IF: 9.5; 2024 IF: 7.504
Call Number UA @ admin @ c:irua:202309 Serial 9045
Permanent link to this record
 

 
Author Wardenier, N.; Vanraes, P.; Nikiforov, A.; Van Hulle, S.W.H.; Leys, C.
Title Removal of micropollutants from water in a continuous-flow electrical discharge reactor Type A1 Journal article
Year 2019 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater
Volume 362 Issue 362 Pages 238-245
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (up) The emergence of micropollutants into our aquatic resources is regarded as an issue of increasing environmental concern. To protect the aquatic environment against further contamination with micropollutants, treatment with advanced oxidation processes (AOPs) is put forward as a promising technique. In this work, an innovative AOP based on electrical discharges in a continuous-flow pulsed dielectric barrier discharge (DBD) reactor with falling water film over activated carbon textile is examined for its potential application in water treatment. The effect of various operational parameters including feed gas type, gas flow rate, water flow rate and power on removal and energy efficiency has been studied. To this end, a synthetic micropollutant mixture containing five pesticides (atrazine, alachlor, diuron, dichlorvos and pentachlorophenol), two pharmaceuticals (carbamazepine and 1,7-alpha-ethinylestradiol), and 1 plasticizer (bisphenol A) is used. While working under optimal conditions, energy consumption was situated in the range 2.42-4.25 kW h/m(3), which is about two times lower than the economically viable energy cost of AOPs (5 kW h/m(3)). Hence, the application of non-thermal plasma could be regarded as a promising alternative AOP for (industrial) wastewater remediation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000449127500027 Publication Date 2018-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.065 Times cited 13 Open Access OpenAccess
Notes Approved Most recent IF: 6.065
Call Number UA @ admin @ c:irua:155358 Serial 5279
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van den Berg, J.; van Nuijs, A.L.N.; De Wael, K.
Title Electrochemical profiling and liquid chromatography–mass spectrometry characterization of synthetic cathinones : from methodology to detection in forensic samples Type A1 Journal article
Year 2021 Publication Drug Testing And Analysis Abbreviated Journal Drug Test Anal
Volume 13 Issue 7 Pages 1282-1294
Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre
Abstract (up) The emergence of new psychoactive drugs in the market demands rapid and accurate tools for the on‐site classification of illegal and legal compounds with similar structures. Herein, a novel method for the classification of synthetic cathinones (SC) is presented based on their electrochemical profile. First, the electrochemical profile of five common SC (i.e., mephedrone, ethcathinone, methylone, butylone and 4‐chloro‐alpha‐pyrrolidinovalerophenone) is collected to build calibration curves using square wave voltammetry on graphite screen‐printed electrodes (SPE). Second, the elucidation of the oxidation pathways, obtained by liquid chromatography‐high resolution mass spectrometry, allows the pairing of the oxidation products to the SC electrochemical profile, providing a selective and robust classification. Additionally, the effect of common adulterants and illicit drugs on the electrochemical profile of the SC is explored. Interestingly, a cathodic pretreatment of the SPE allows the selective detection of each SC in presence of electroactive adulterants. Finally, the electrochemical approach is validated with gas‐chromatography‐mass spectrometry by analyzing 26 confiscated samples from seizures and illegal webshops. Overall, the electrochemical method exhibits a successful classification of SC including structural derivatives, a crucial attribute in an ever‐diversifying drug market.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000624902500001 Publication Date 2021-02-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.469 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.469
Call Number UA @ admin @ c:irua:175583 Serial 7863
Permanent link to this record
 

 
Author Tschulkow, M.; Pizzol, M.; Compernolle, T.; Van den Bosch, S.; Sels, B.; Van Passel, S.
Title The environmental impacts of the lignin-first biorefineries : a consequential life cycle assessment approach Type A1 Journal article
Year 2024 Publication Resources, conservation and recycling Abbreviated Journal
Volume 204 Issue Pages 107466-107469
Keywords A1 Journal article; Engineering Management (ENM)
Abstract (up) The emerging reductive catalytic fractionation biorefinery which is currently under development aims to convert woody biomass efficiently into high-value products. Despite its potential, the environmental consequences of its implementation are not well known. Therefore, a forward-looking consequential life cycle assessment examines greenhouse gas emissions associated with its products (pulp, phenolic monomers, and oligomers) compared to alternative market options. Findings indicate that current greenhouse gas emissions exceed those of the existing alternatives, with by-products and the gaseous waste stream as major contributors. Process adaption to (i) produce higher-valued products (bleached pulps, phenols, and propylene) and (ii) incinerate gaseous waste stream for energy are proposed, potentially reducing emissions by up to 50 %, outperforming alternative options. Compared to land-based transportation, waterways can increase feedstock availability by up to 1000 km without an increase in emissions. In conclusion, the consequential approach provides valuable insights for enhancing and optimizing the environmental performance of the process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001186282000001 Publication Date 2024-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-3449 ISBN Additional Links UA library record; WoS full record
Impact Factor 13.2 Times cited Open Access
Notes Approved Most recent IF: 13.2; 2024 IF: 3.313
Call Number UA @ admin @ c:irua:205493 Serial 9234
Permanent link to this record