|   | 
Details
   web
Records
Author Luyten, W.; Volkov, V.V.; van Landuyt, J.; Amelinckx, S.; Férauge, C.; Gijbels, R.; Vasilev, M.G.; Shelyakin, A.A.; Lazarev, V.B.
Title Electron microscopy and mass-spectrometry study of In0.72Ga0.28As0.62P0.38 lasers grown by liquid phase epitaxy Type A1 Journal article
Year 1993 Publication Physica status solidi: A: applied research Abbreviated Journal
Volume 140 Issue 2 Pages 453-462
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) Broad area as well as buried heterostructure lasers based on In0.72Ga0.28As0.62P0.38/InP and emitting at 1.3 mum are grown by liquid phase epitaxy and are studied in detail by means of transmission electron microscopy, X-ray diffraction, secondary ion mass-spectrometry, and electroluminescence. The InGaAsP epilayer is found to be well lattice-matched and of good structural quality. A tentative explanation is presented for the spinodal decomposition observed in the InGaAsP alloy. We also report on the high performance characteristics of the infrared lasers.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos A1993MP79700015 Publication Date 2007-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8965;1521-396X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:6156 Serial 946
Permanent link to this record
 

 
Author Van Echelpoel, R.; de Jong, M.; Daems, D.; van Espen, P.; De Wael, K.
Title Unlocking the full potential of voltammetric data analysis : a novel peak recognition approach for (bio)analytical applications Type A1 Journal article
Year 2021 Publication Talanta Abbreviated Journal Talanta
Volume 233 Issue Pages 122605
Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Bridging the gap between complex signal data output and clear interpretation by non-expert end-users is a major challenge many scientists face when converting their scientific technology into a real-life application. Currently, pattern recognition algorithms are the most frequently encountered signal data interpretation algorithms to close this gap, not in the least because of their straight-forward implementation via convenient software packages. Paradoxically, just because their implementation is so straight-forward, it becomes cumbersome to integrate the expert's domain-specific knowledge. In this work, a novel signal data interpretation approach is presented that uses this domain-specific knowledge as its fundament, thereby fully exploiting the unique expertise of the scientist. The new approach applies data preprocessing in an innovative way that transcends its usual purpose and is easy to translate into a software application. Multiple case studies illustrate the straight-forward application of the novel approach. Ultimately, the approach is highly suited for integration in various (bio)analytical applications that require interpretation of signal data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000668000500108 Publication Date 2021-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.162 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.162
Call Number UA @ admin @ c:irua:179417 Serial 8712
Permanent link to this record
 

 
Author Marchetti, A.; Beltran, V.; Storme, P.; Nuyts, G.; Van Der Meeren, L.; Skirtach, A.; Otten, E.; Debulpaep, M.; Watteeuw, L.; De Wael, K.
Title All that glitters is not gold : unraveling the material secrets behind the preservation of historical brass Type A1 Journal article
Year 2023 Publication Journal of cultural heritage Abbreviated Journal
Volume 63 Issue Pages 179-186
Keywords A1 Journal article; Engineering sciences. Technology; Art; History; Antwerp Cultural Heritage Sciences (ARCHES); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract (down) Brass is a relatively stable alloy but it tends to tarnish over time due to the interaction with the atmosphere. Thus, it is rare to observe centuries-old brass objects untouched by the passing of time. For this reason, the pristine appearance of hundreds of brass sequins in the Enclosed Gardens of Mechelen (reliquary altarpieces produced between 1530 and 1550) is remarkable. In this study, the chemical and metallographic characterization of such unexpectedly well-preserved objects is presented. The results revealed the reason for their stability to be a combination of high-quality materials (i.e. medium Zn content, low impurities) and optimal surface properties (i.e. high homogeneity, low roughness), indicating the high level of expertise of the craftsmen who produced them. Novel fundamental insights on the historical manufacturing method of metallic sequins were also obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001058894000001 Publication Date 2023-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1296-2074 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.1 Times cited Open Access Not_Open_Access: Available from 15.08.2024
Notes Approved Most recent IF: 3.1; 2023 IF: 1.838
Call Number UA @ admin @ c:irua:198113 Serial 8830
Permanent link to this record
 

 
Author Smith, J.D.; Bladt, E.; Burkhart, J.A.C.; Winckelmans, N.; Koczkur, K.M.; Ashberry, H.M.; Bals, S.; Skrabalak, S.E.
Title Defect‐Directed Growth of Symmetrically Branched Metal Nanocrystals Type A1 Journal article
Year 2020 Publication Angewandte Chemie (International ed. Print) Abbreviated Journal Angew. Chem.
Volume 132 Issue 132 Pages 953-960
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Branched plasmonic nanocrystals (NCs) have attracted much attention due to electric field enhancements at their tips. Seeded growth provides routes to NCs with defined branching patterns and, in turn, near‐field distributions with defined symmetries. Here, a systematic analysis was undertaken in which seeds containing different distributions of planar defects were used to grow branched NCs in order to understand how their distributions direct the branching. Characterization of the products by multimode electron tomography and analysis of the NC morphologies at different overgrowth stages indicate that the branching patterns are directed by the seed defects, with the emergence of branches from the seed faces consistent with minimizing volumetric strain energy at the expense of surface energy. These results contrast with growth of branched NCs from single‐crystalline seeds and provide a new platform for the synthesis of symmetrically branched plasmonic NCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000505279500063 Publication Date 2020-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0044-8249 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes The authors thank Samantha Harvey for her initial observations of branched structures, Alexander Chen for his help with SAED, the staff of the Nanoscale Characterization Facility (Dr. Yi Yi),Electron Microscopy Center (Dr. David Morgan and Dr. Barry Stein), and Molecular Strucre Center at Indiana University. J.S. recognizes a fellowship provided by the Indiana Space Grant Consortium. E. B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). This project has received funding from the National Science Foundation (award number: 1602476), Research Corporation for Scietific Advancement (2017 Frontiers in Research Excellence and Discovery Award), and the European Union’s Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO).; sygma Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:166581 Serial 6336
Permanent link to this record
 

 
Author Smith, J.D.; Bladt, E.; Burkhart, J.A.C.; Winckelmans, N.; Koczkur, K.M.; Ashberry, H.M.; Bals, S.; Skrabalak, S.E.
Title Defect-directed growth of symmetrically branched metal nanocrystals Type A1 Journal article
Year 2020 Publication Angewandte Chemie-International Edition Abbreviated Journal Angew Chem Int Edit
Volume 59 Issue 59 Pages 943-950
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Branched plasmonic nanocrystals (NCs) have attracted much attention due to electric field enhancements at their tips. Seeded growth provides routes to NCs with defined branching patterns and, in turn, near-field distributions with defined symmetries. Here, a systematic analysis was undertaken in which seeds containing different distributions of planar defects were used to grow branched NCs in order to understand how their distributions direct the branching. Characterization of the products by multimode electron tomography and analysis of the NC morphologies at different overgrowth stages indicate that the branching patterns are directed by the seed defects, with the emergence of branches from the seed faces consistent with minimizing volumetric strain energy at the expense of surface energy. These results contrast with growth of branched NCs from single-crystalline seeds and provide a new platform for the synthesis of symmetrically branched plasmonic NCs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000498760200001 Publication Date 2019-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited 23 Open Access OpenAccess
Notes ; The authors thank Samantha Harvey for her initial observations of branched structures, Alexander Chen for his help with SAED, the staff of the Nanoscale Characterization Facility (Dr. Yi Yi), Electron Microscopy Center (Dr. David Morgan and Dr. Barry Stein), and Molecular Structure Center at Indiana University. J.S. recognizes a fellowship provided by the Indiana Space Grant Consortium. E.B. acknowledges a post-doctoral grant from the Research Foundation Flanders (FWO, Belgium). This project has received funding to S.E.S. from the U.S. National Science Foundation (award numbers: 1602476 and 1904499) and Research Corporation for Scientific Advancement (2017 Frontiers in Research Excellence and Discovery Award) as well as to S.B. from the European Union's Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO). ; sygma Approved Most recent IF: 16.6; 2020 IF: 11.994
Call Number UA @ admin @ c:irua:165124 Serial 6293
Permanent link to this record
 

 
Author Goris, B.; van Huis, M.A.; Bals, S.; Zandbergen, H.W.; Manna, L.; Van Tendeloo, G.
Title Thermally induced structural and morphological changes of CdSe/CdS octapods Type A1 Journal article
Year 2012 Publication Small Abbreviated Journal Small
Volume 8 Issue 6 Pages 937-942
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Branched nanostructures are of great interest because of their promising optical and electronic properties. For successful and reliable integration in applications such as photovoltaic devices, the thermal stability of the nanostructures is of major importance. Here the different domains (CdSe cores, CdS pods) of the heterogeneous octapods are shown to have different thermal stabilities, and heating is shown to induce specific shape changes. The octapods are heated from room temperature to 700 °C, and investigated using (analytical and tomographic) transmission electron microscopy (TEM). At low annealing temperatures, pure Cd segregates in droplets at the outside of the octapods, indicating non-stochiometric composition of the octapods. Furthermore, the tips of the pods lose their faceting and become rounded. Further heating to temperatures just below the sublimation temperature induces growth of the zinc blende core at the expense of the wurtzite pods. At higher temperatures, (500700 °C), sublimation of the octapods is observed in real time in the TEM. Three-dimensional tomographic reconstructions reveal that the four pods pointing into the vacuum have a lower thermal stability than the four pods that are in contact with the support.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000301718800021 Publication Date 2012-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 20 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 8.643; 2012 IF: 7.823
Call Number UA @ lucian @ c:irua:95040 Serial 3633
Permanent link to this record
 

 
Author Hoogmartens, R.; Eyckmans, J.; Van Passel, S.
Title Landfill taxes and enhanced waste management : combining valuable practices with respect to future waste streams Type A1 Journal article
Year 2016 Publication Waste Management Abbreviated Journal Waste Manage
Volume 55 Issue Pages 345-354
Keywords A1 Journal article; Engineering Management (ENM)
Abstract (down) Both landfill taxes and Enhanced Waste Management (EWM) practices can mitigate the scarcity issue of landfill capacity by respectively reducing landfilled waste volumes and valorising future waste streams. However, high landfill taxes might erode incentives for EWM, even though EWM creates value by valorising waste. Concentrating on Flanders (Belgium), the paper applies dynamic optimisation modelling techniques to analyse how landfill taxation and EWM can reinforce each other and how taxation schemes can be adjusted in order to foster sustainable and welfare maximising ways of processing future waste streams. Based on the Flemish simulation results, insights are offered that are generally applicable in international waste and resource management policy. As shown, the optimal Flemish landfill tax that optimises welfare in the no EWM scenario is higher than the one in the EWM scenario (93 against (sic)50/ton). This difference should create incentives for applying EWM and is driven by the positive external effects that are generated by EWM practices. In Flanders, as the current landfill tax is slightly lower than these optimal levels, the choice that can be made is to further increase taxation levels or show complete commitment to EWM. A first generally applicable insight that was found points to the fact that it is not necessarily the case that the higher the landfill tax, the more effective waste management improvements can be realised. Other insights are about providing sufficient incentives for applying EMW practices and formulating appropriate pleas in support of technological development. By these insights, this paper should provide relevant information that can assist in triggering the transition towards a resource efficient, circular economy in Europe. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000381535200036 Publication Date 2016-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-053x ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 4.03 Times cited 5 Open Access
Notes ; ; Approved Most recent IF: 4.03
Call Number UA @ admin @ c:irua:137150 Serial 6222
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Zhao, S.-X.; Jiang, W.; Wang, Y.-N.
Title Separate control between geometrical and electrical asymmetry effects in capacitively coupled plasmas Type A1 Journal article
Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 45 Issue 30 Pages 305203
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) Both geometrical and electrical asymmetry effects in capacitive argon discharges are investigated using a two-dimensional particle-in-cell coupled with Monte Carlo collision model. When changing the ratio of the top and bottom electrode surface areas and the phase shift between the two applied harmonics, the induced self-bias was found to develop separately. By adjusting the ratio between the high and low harmonic amplitudes, the electrical asymmetry effect at a fixed phase shift can be substantially optimized. However, the self-bias caused by the geometrical asymmetry hardly changed. Moreover, the separate control of these two asymmetry effects can also be demonstrated from their power absorption profiles. Both the axial and radial plasma density distributions can be modulated by the electrical asymmetry effect.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000306475200007 Publication Date 2012-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 20 Open Access
Notes Approved Most recent IF: 2.588; 2012 IF: 2.528
Call Number UA @ lucian @ c:irua:100751 Serial 2984
Permanent link to this record
 

 
Author Kosimov, D.P.; Dzhurakhalov, A.A.; Peeters, F.M.
Title Theoretical study of the stable states of small carbon clusters Cn (n=210) Type A1 Journal article
Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue 23 Pages 235433,1-235433,8
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) Both even- and odd-numbered neutral carbon clusters Cn (n=210) are systematically studied using the energy minimization method and the modified Brenner potential for the carbon-carbon interactions. Many stable configurations were found, and several new isomers are predicted. For the lowest energy stable configurations we obtained their binding energies and bond lengths. We found that for n5 the linear isomer is the most stable one while for n>5 the monocyclic isomer becomes the most stable. The latter was found to be regular for all studied clusters. The dependence of the binding energy for linear and cyclic clusters versus the cluster size n (n=210) is found to be in good agreement with several previous calculations, in particular with ab initio calculations as well as with experimental data for n=25.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000262245400119 Publication Date 2008-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 35 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:76006 Serial 3613
Permanent link to this record
 

 
Author Trincavelli, J.; Montoro, S.; van Espen, P.; Van Grieken, R.
Title M\alpha/L\alpha intensity ratios for Ta, W, Pt, Au, Pb and Bi for electron energies in the 11-40 keV range Type A1 Journal article
Year 1993 Publication X-ray spectrometry Abbreviated Journal
Volume 22 Issue Pages 372-376
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Chemometrics (Mitac 3)
Abstract (down) Both energy- and wavelength-dispersive systems were used to obtain Malpha/Lalpha intensity ratios for Ta, W, Pt, Au, Pb and Bi at various overvoltages. A table of these ratios corrected for matrix absorption and detector efficiency is presented, in addition to an interpolatory function of Malpha/Lalpha generated ratios vs. overvoltage, for each element. In addition, three different ZAF correction models were used to predict both detected and generated ratios. Finally, experimental Mbeta/Malpha ratios measured at different overvoltages are presented for the six elements considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1993MB01200008 Publication Date 2005-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0049-8246 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:6221 Serial 8649
Permanent link to this record
 

 
Author Bliokh, K.Y.; Ivanov, I.P.; Guzzinati, G.; Clark, L.; Van Boxem, R.; Béché, A.; Juchtmans, R.; Alonso, M.A.; Schattschneider, P.; Nori, F.; Verbeeck, J.
Title Theory and applications of free-electron vortex states Type A1 Journal article
Year 2017 Publication Physics reports Abbreviated Journal Phys Rep
Volume 690 Issue 690 Pages 1-70
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Both classical and quantum waves can form vortices: with helical phase fronts and azimuthal current densities. These features determine the intrinsic orbital angular momentum carried by localized vortex states. In the past 25 years, optical vortex beams have become an inherent part of modern optics, with many remarkable achievements and applications. In the past decade, it has been realized and demonstrated that such vortex beams or wavepackets can also appear in free electron waves, in particular, in electron microscopy. Interest in free-electron vortex states quickly spread over different areas of physics: from basic aspects of quantum mechanics, via applications for fine probing of matter (including individual atoms), to high-energy particle collision and radiation processes. Here we provide a comprehensive review of theoretical and experimental studies in this emerging field of research. We describe the main properties of electron vortex states, experimental achievements and possible applications within transmission electron microscopy, as well as the possible role of vortex electrons in relativistic and high-energy processes. We aim to provide a balanced description including a pedagogical introduction, solid theoretical basis, and a wide range of practical details. Special attention is paid to translate theoretical insights into suggestions for future experiments, in electron microscopy and beyond, in any situation where free electrons occur.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000406169900001 Publication Date 2017-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.425 Times cited 210 Open Access OpenAccess
Notes AFOSR, FA9550-14-1-0040 ; CREST, JPMJCR1676 ; Portuguese Fundação para a Ciência e a Tecnologia (FCT), IF/00989/2014/CP1214/CT0004 ; Austrian Science Fund, I543-N20 ; ERC, 278510 VORTEX ; We acknowledge discussions with Mark R. Dennis and Andrei Afanasev. This work was supported by the RIKEN Interdisciplinary Theoretical Science Research Group (iTHES) Project, the Multi-University Research Initiative (MURI) Center for Dynamic Magneto-Optics via the Air Force Office of Scientific Research (AFOSR) (Grant No. FA9550-14-1-0040), Grant-in-Aid for Scientific Research (A), Core Research for Evolutionary Science and Technology (CREST), the John Templeton Foundation, the Australian Research Council, the Portuguese Funda¸c˜ao para a Ciˆencia e a Tecnologia (FCT) (contract IF/00989/2014/CP1214/CT0004 under the IF2014 Program), contracts UID/FIS/00777/2013 and CERN/FIS-NUC/0010/2015 (partially funded through POCTI, COMPETE, QREN, and the European Union), Austrian Science Fund Grant No. I543-N20, the European Research Council under the 7th Framework Program (FP7) (ERC Starting Grant No. 278510 VORTEX), and FWO PhD Fellowship grants (Aspirant Fonds Wetenschappelijk OnderzoekVlaanderen). Approved Most recent IF: 17.425
Call Number EMAT @ emat @ c:irua:143262 Serial 4574
Permanent link to this record
 

 
Author Monticelli, O.; Musina, Z.; Russo, S.; Bals, S.
Title On the use of TEM in the characterization of nanocomposites Type A1 Journal article
Year 2007 Publication Materials letters Abbreviated Journal Mater Lett
Volume 61 Issue 16 Pages 3446-3450
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Both an organically modified commercial clay of montmorillonite type (MMT) and its nanocomposites, based either on polyamide 6 (PA6) or an epoxy resin, as matrix polymer, have been characterized by transmission electron microscopy (TEM). Sample micrographs, taken at increasing exposure times (t(e)), have shown the gradual disappearance of clay layers, because of an amorphisation of the MMT crystalline structures caused by prolonged sample exposure to electron beam. Indeed, the above phenomenon, which is mostly evident in the case of intercalated nanocomposites, makes the detection of the layered silicate dispersion in the polymer matrix rather difficult and compels to perform TEM measurements using very short exposure times. Moreover, the microscopy accelerating voltage has turned out to affect sample stability; namely, when decreasing the above parameter, the disappearance of clay structure occurs at lower exposure times. (C) 2006 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000247146100034 Publication Date 2006-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-577X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.572 Times cited 28 Open Access
Notes Approved Most recent IF: 2.572; 2007 IF: 1.625
Call Number UA @ lucian @ c:irua:64757 Serial 2460
Permanent link to this record
 

 
Author Verlinden, B.; Van Hoecke, K.; Aerts, A.; Daems, N.; Dobney, A.; Janssens, K.; Cardinaels, T.
Title Quantification of boron in cells for evaluation of drug agents used in boron neutron capture therapy Type A1 Journal article
Year 2021 Publication Journal Of Analytical Atomic Spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 36 Issue 3 Pages 598-606
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Boron neutron capture therapy (BNCT) is an extensively studied radiotherapeutic strategy for cancer treatment. BNCT is based on irradiation of malignant tumour cells with neutrons after uptake of a B-10 containing molecule. Alpha particles, locally produced by neutron irradiation kill the cancer cells. Important for ongoing research regarding cellular uptake and cytotoxicity of a large variety of B-10 containing molecules is the accurate determination of boron concentrations in cell cultures. In this work, the sample preparation for quantitative inductively coupled plasma mass spectrometry (ICP-MS) analysis on cell cultures was optimized. By making use of acid digestion combined with UV digestion, low detection limits (0.4 mu g L-1) and full recoveries of boron could be achieved while measurements were free of spectral and non-spectral interferences. Finally, cell-associated boron in the form of 4-borono-l-phenylalanine (l-BPA) in vascular endothelial cell cultures could be determined with ICP-MS as (1.26 +/- 0.10) x 10(9) boron atoms per cell. The developed method can prove its importance for further BNCT research and elemental analysis of cell cultures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000629283400009 Publication Date 2021-01-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.379
Call Number UA @ admin @ c:irua:177656 Serial 8435
Permanent link to this record
 

 
Author Michel, K.H.; Verberck, B.
Title Theory of the elastic constants of graphite and graphene Type A1 Journal article
Year 2008 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 245 Issue 10 Pages 2177-2180
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) Born's long wave method is used to study the elastic properties of graphite and graphene. Starting from an empirical force constant model derived from full inplane phonon dispersions of graphite [Mohr et al., Phys. Rev. B 76, 035439 (2007)] we calculate the tension coefficients of graphene. Extending the model by interplanar interactions, we calculate the elastic constants of graphite. The agreement of our theoretical values with inelastic x-ray scattering results on elastic constants of graphite [Bosak et al., Phys. Rev. B 75, 153408 (2007)] is very satisfactory.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000260581800066 Publication Date 2008-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 47 Open Access
Notes Approved Most recent IF: 1.674; 2008 IF: 1.166
Call Number UA @ lucian @ c:irua:75660 Serial 3621
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M.
Title Vortex states in nanoscale superconducting squares : the influence of quantum confinement Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 14 Pages 144501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) Bogoliubov-de Gennes theory is used to investigate the effect of the size of a superconducting square on the vortex states in the quantum confinement regime. When the superconducting coherence length is comparable to the Fermi wavelength, the shape resonances of the superconducting order parameter have strong influence on the vortex configuration. Several unconventional vortex states, including asymmetric ones, giant-multivortex combinations, and states comprising giant antivortices, were found as ground states and their stability was found to be very sensitive on the value of k(F)xi(0), the size of the sample W, and the magnetic flux Phi. By increasing the temperature and/or enlarging the size of the sample, quantum confinement is suppressed and the conventional mesoscopic vortex states as predicted by the Ginzburg-Laudau (GL) theory are recovered. However, contrary to the GL results we found that the states containing symmetry-induced vortex-antivortex pairs are stable over the whole temperature range. It turns out that the inhomogeneous order parameter induced by quantum confinement favors vortex-antivortex molecules, as well as giant vortices with a rich structure in the vortex core-unattainable in the GL domain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000325498300004 Publication Date 2013-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 19 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111145 Serial 3891
Permanent link to this record
 

 
Author Weber, D.; Huber, M.; Gorelik, T.E.; Abakumov, A.M.; Becker, N.; Niehaus, O.; Schwickert, C.; Culver, S.P.; Boysen, H.; Senyshyn, A.; Poettgen, R.; Dronskowski, R.; Ressler, T.; Kolb, U.; Lerch, M.
Title Molybdenum oxide nitrides of the Mo2(O,N,\square)5 type : on the way to Mo2O5 Type A1 Journal article
Year 2017 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
Volume 56 Issue 15 Pages 8782-8792
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Blue-colored molybdenum oxide nitrides of the Mo-2(O,N,square)(5) type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting (MoO6)-O-v units. The new materials are stable up to similar to 773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb9O24.9-type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo2O5. On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo2O5, backed by electronic-structure and phonon calculations from first principles, is given.
Address
Corporate Author Thesis
Publisher Place of Publication Easton, Pa Editor
Language Wos 000407405500026 Publication Date 2017-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.857 Times cited 3 Open Access Not_Open_Access
Notes ; Financial support from the Deutsche Forschungsgemeinschaft (SPP 1415, LE 781/ 11-1, DR 342/22-2) is gratefully acknowledged. The authors are grateful to J. Barthel, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons Julich, Germany, for STEM image simulations. This work was further supported by Diamond Light Source (beamtime awards EE13560) within beamtime proposal SP13560. The Hamburg Synchrotron Radiation Laboratory, HASYLAB, and the FRM II, Garching, are acknowledged for providing beamtime. ; Approved Most recent IF: 4.857
Call Number UA @ lucian @ c:irua:145727 Serial 4744
Permanent link to this record
 

 
Author Wang, H.; Su, L.; Yagmurcukardes, M.; Chen, J.; Jiang, Y.; Li, Z.; Quan, A.; Peeters, F.M.; Wang, C.; Geim, A.K.; Hu, S.
Title Blue energy conversion from holey-graphene-like membranes with a high density of subnanometer pores Type A1 Journal article
Year 2020 Publication Nano Letters Abbreviated Journal Nano Lett
Volume 20 Issue 12 Pages 8634-8639
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (down) Blue energy converts the chemical potential difference from salinity gradients into electricity via reverse electrodialysis and provides a renewable source of clean energy. To achieve high energy conversion efficiency and power density, nanoporous membrane materials with both high ionic conductivity and ion selectivity are required. Here, we report ion transport through a network of holey-graphene-like sheets made by bottom-up polymerization. The resulting ultrathin membranes provide controlled pores of <10 angstrom in diameter with an estimated density of about 10(12) cm(-2). The pores' interior contains NH2 groups that become electrically charged with varying pH and allow tunable ion selectivity. Using the holey-graphene-like membranes, we demonstrate power outputs reaching hundreds of watts per square meter. The work shows a viable route toward creating membranes with high-density angstrom-scale pores, which can be used for energy generation, ion separation, and related technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000599507100032 Publication Date 2020-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited 43 Open Access
Notes ; The authors acknowledge supported from National Key Research and Development Program of China (2019YFA0705400, 2018YFA0209500), and National Natural Science Foundation of China (21972121, 21671162). M. Y. acknowledges the Flemish Science Foundation (FWO-Vl) postdoctoral fellowship. ; Approved Most recent IF: 10.8; 2020 IF: 12.712
Call Number UA @ admin @ c:irua:175048 Serial 6685
Permanent link to this record
 

 
Author Hu, L.; Amini, M.N.; Wu, Y.; Jin, Z.; Yuan, J.; Lin, R.; Wu, J.; Dai, Y.; He, H.; Lu, Y.; Lu, J.; Ye, Z.; Han, S.-T.; Ye, J.; Partoens, B.; Zeng, Y.-J.; Ruan, S.
Title Charge transfer doping modulated raman scattering and enhanced stability of black phosphorus quantum dots on a ZnO nanorod Type A1 Journal article
Year 2018 Publication Advanced Optical Materials Abbreviated Journal Adv Opt Mater
Volume 6 Issue 15 Pages 1800440
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) Black phosphorus (BP) has recently triggered an unprecedented interest in the 2D community. However, many of its unique properties are not exploited and the well-known environmental vulnerability is not conquered. Herein, a type-I mixed-dimensional (0D-1D) van der Waals heterojunction is developed, where three-atomic-layer BP quantum dots (QDs) are assembled on a single ZnO nanorod (NR). By adjusting the indium (In) content in ZnO NRs, the degree and even the direction of surface charge transfer doping within the heterojunction can be tuned, which result in selective Raman scattering enhancements between ZnO and BP. The maximal enhancement factor is determined as 4340 for BP QDs with sub-ppm level. Furthermore, an unexpected long-term ambient stability (more than six months) of BP QDs is revealed, which is ascribed to the electron doping from ZnO:In NRs. The first demonstration of selective Raman enhancements between two inorganic semiconductors as well as the improved stability of BP shed light on this emerging 2D material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440815200023 Publication Date 2018-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2195-1071 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.875 Times cited 37 Open Access Not_Open_Access
Notes ; L. Hu and M. N. Amini contributed equally to this work. This work was supported by the National Natural Science Foundation of China under Grant Nos. 51502178, 81571763 and 81622026, the Shenzhen Science and Technology Project under Grant Nos. JCYJ20150324141711644, JCYJ20170412105400428, KQJSCX20170727101208249 and JCYJ20170302153853962. Parts of the computational calculations were carried out using the HPC infrastructure at University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, supported financially by the FWO-Vlaanderen and the Flemish Government (EWI Department). L. H. acknowledges the PhD Start-up Fund of Natural Science Foundation of Guangdong Province under Grand No. 2017A030310072. J. Y. acknowledges the funding of Shanghai Jiao Tong University (Nos. YG2016MS51 and YG2017MS54). ; Approved Most recent IF: 6.875
Call Number UA @ lucian @ c:irua:153112UA @ admin @ c:irua:153112 Serial 5082
Permanent link to this record
 

 
Author Nowak, D.; Florek, M.; Nowak, J.; Kwiatek, W.; Lekki, J.; Chevallier, P.; Hacura, A.; Wrzalik, R.; Ben-Nissan, B.; Van Grieken, R.; Kuczumow, A.
Title Morphology and the chemical make-up of the inorganic components of black corals Type A1 Journal article
Year 2009 Publication Materials science and engineering: part C: biomimetic materials Abbreviated Journal
Volume 29 Issue 3 Pages 1029-1038
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Black corals (Cnidaria, Antipatharia) from three different sources were investigated with the aim of detecting inorganic components and their morphology. In general, the skeleton of black corals was composed of the chitin fibrils admixed with peptides and the chitin presence was confirmed by the X-ray diffraction (XRD), Fourier Transformed Infrared Spectrometry (FTIR) and microRaman Microscopy, the latter giving the opportunity of tracing single fibrils and their location. The composition and concentrations of the inorganic components of the black corals were measured, using a scanning electron microprobe and micro-Particle Induced X-ray Emission (µ-PIXE). The application of such instruments enabled the estimation of the constituent distributions in a microscale. The mapping option was the most useful technique of making analyses in these studies, just to reveal the composition of chamber-like cells. Analysis of the morphology and microstructure showed that there were three distinct regions within the coral: a core and the cells encircled with adjacent interface gluing strips. The majority of the elements analyzed were selectively distributed and segregated in a striking way in mentioned distinctive zones of the skeleton and it was detected for the first time. The core area was characterized by the relatively elevated concentrations of Ca. The measurements gave extremely clear images of the distribution of particular elements in the skeletal tissue, with I, Ca, K and Fe much more concentrated in the gluing zones, while C, N, Na and Mg present in the interiors of particular skeletal cells. The distribution of some elements (Mg, Fe) and some compounds (chitin) and functional groups (SS, CI) allows differentiating the biological and mechanical functions of particular fragments of the rods. The kinds of elements and their concentrations measured were essentially in compliance with rare data available in the literature. The Raman technique gave the additional qualitative information about the structure of gluing zone and the chitin fibrils and surrounding matrix inside the cell interior.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000266520400065 Publication Date 2008-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0928-4931 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:76024 Serial 8284
Permanent link to this record
 

 
Author de Clippel, F.; Harkiolakis, A.; Ke, X.; Vosch, T.; Van Tendeloo, G.; Baron, G.V.; Jacobs, P.A.; Denayer, J.F.M.; Sels, B.F.
Title Molecular sieve properties of mesoporous silica with intraporous nanocarbon Type A1 Journal article
Year 2010 Publication Chemical communications Abbreviated Journal Chem Commun
Volume 46 Issue 6 Pages 928-930
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Biporous carbonsilica materials (CSM) with molecular sieve properties and high sorption capacity were developed by synthesizing nano-sized carbon crystallites in the mesopores of Al-MCM-41.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000274070800024 Publication Date 2009-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 21 Open Access
Notes Fwo; Iap Approved Most recent IF: 6.319; 2010 IF: 5.787
Call Number UA @ lucian @ c:irua:80994 Serial 2182
Permanent link to this record
 

 
Author Daems, E.; Moro, G.; Berghmans, H.; Moretto, L.M.; Dewilde, S.; Angelini, A.; Sobott, F.; De Wael, K.
Title Native mass spectrometry for the design and selection of protein bioreceptors for perfluorinated compounds Type A1 Journal article
Year 2021 Publication Analyst Abbreviated Journal Analyst
Volume 146 Issue 6 Pages 2065-2073
Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract (down) Biosensing platforms are answering the increasing demand for analytical tools for environmental monitoring of small molecules, such as per- and polyfluoroalkyl substances (PFAS). By transferring toxicological findings in bioreceptor design we can develop innovative pathways for biosensor design. Indeed, toxicological studies provide fundamental information about PFAS-biomolecule complexes that can help evaluate the applicability of the latter as bioreceptors. The toolbox of native mass spectrometry (MS) can support this evaluation, as shown by the two case studies reported in this work. The analysis of model proteins’ (i.e. albumin, haemoglobin, cytochrome c and neuroglobin) interactions with well-known PFAS, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), demonstrated the potential of this native MS screening approach. In the first case study, untreated albumin and delipidated albumin were compared in the presence and absence of PFOA confirming that the delipidation step increases albumin affinity for PFOA without affecting protein stability. In the second case study, the applicability of our methodology to identify potential bioreceptors for PFOS/PFOA was extended to other proteins. Structurally related haemoglobin and neuroglobin revealed a 1 : 1 complex, whereas no binding was observed for cytochrome c. These studies have value as a proof-of-concept for a general application of native MS to identify bioreceptors for toxic compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000631575100031 Publication Date 2021-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2654; 1364-5528 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.885 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.885
Call Number UA @ admin @ c:irua:177074 Serial 8294
Permanent link to this record
 

 
Author Compernolle, T.; Van Passel, S.; Lebbe, L.
Title Bioremediation : how to deal with removal efficiency uncertainty? An economic application Type A1 Journal article
Year 2013 Publication Journal Of Environmental Management Abbreviated Journal J Environ Manage
Volume 127 Issue Pages 77-85
Keywords A1 Journal article; Economics
Abstract (down) Bioremediation is a remediation strategy, which has considerable strength but also certain limitations. Complex and uncertain relationships among biomass, contaminants, and nutrients lead to an uncertain level of removal efficiency. The uncertainty inherent to a bioremediation strategy should be addressed in the remediation selection process. In order to evaluate the bioremediation strategy economically, this study takes into account the reversibility of a decision. A decision tree structures the different remediation strategies, thus giving the possible courses of action open to the decision maker. The option value indicates the importance of having the possibility to reverse a previously made decision. Compared with conventional economic evaluation tools, more information to ground the selection made is revealed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322940100010 Publication Date 2013-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.01 Times cited 1 Open Access
Notes ; ; Approved Most recent IF: 4.01; 2013 IF: 3.188
Call Number UA @ admin @ c:irua:129868 Serial 6162
Permanent link to this record
 

 
Author Ren, X.-N.; Wu, L.; Jin, J.; Liu, J.; Hu, Z.-Y.; Li, Y.; Hasan, T.; Yang, X.-Y.; Van Tendeloo, G.; Su, B.-L.
Title 3D interconnected hierarchically macro-mesoporous TiO2networks optimized by biomolecular self-assembly for high performance lithium ion batteries Type A1 Journal article
Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv
Volume 6 Issue 6 Pages 26856-26862
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Biomolecular self-assembly is an effective synthesis strategy for materials fabrication with unique structural complexity and properties. For the first time, we intergrate inner-particle mesoporosity in a three-dimensional (3D) interconnected macroporous TiO2 structure via the mediation of biomolecular self-assembly of the lipids and proteins from rape pollen coats and P123 to optimize the structure for high performance lithium storage. Benefitting from the hierarchically 3D interconnected macro-mesoporous structure with high surface area, small nanocrystallites and good electrolyte permeation, such unique porous structure demonstrates superior electrochemical performance, with high initial coulombic efficiency (94.4% at 1C) and a reversible discharge capacity of 161, 145, 127 and 97 mA h g-1 at 2, 5, 10 and 20C for 1000 cycles, with 79.3%, 89.9%, 90.1% and 87.4% capacity retention, respectively. Using SEM, TEM and HRTEM observations on the TiO2 materials before and after cycling, we verify that the inner-particle mesoporosity and the Li2Ti2O4 nanocrystallites formed during the cycling process in interconnected macroporous structure largely enhance the cycle life and rate performance. Our demonstration here offers opportunities towards developing and optimizing hierarchically porous structures for energy storage applications via biomolecular self-assembly.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372253700043 Publication Date 2016-03-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.108 Times cited 16 Open Access
Notes G. Van Tendeloo and Z. Y. Hu acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483).; esteem2_jra4 Approved Most recent IF: 3.108
Call Number c:irua:131915 c:irua:131915 c:irua:131915 Serial 4022
Permanent link to this record
 

 
Author Beckwee, E.J.; Watson, G.; Houlleberghs, M.; Arenas Esteban, D.; Bals, S.; Van Der Voort, P.; Breynaert, E.; Martens, J.; Baron, G.V.; Denayer, J.F.M.
Title Enabling hydrate-based methane storage under mild operating conditions by periodic mesoporous organosilica nanotubes Type A1 Journal article
Year 2023 Publication Heliyon Abbreviated Journal
Volume 9 Issue 7 Pages e17662-14
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) Biomethane is a renewable natural gas substitute produced from biogas. Storage of this sustainable energy vector in confined clathrate hydrates, encapsulated in the pores of a host material, is a highly promising avenue to improve storage capacity and energy efficiency. Herein, a new type of periodic mesoporous organosilica (PMO) nanotubes, referred to as hollow ring PMO (HR-PMO), capable of promoting methane clathrate hydrate formation under mild working conditions (273 K, 3.5 MPa) and at high water loading (5.1 g water/g HR-PMO) is reported. Gravimetric uptake measurements reveal a steep single-stepped isotherm and a noticeably high methane storage capacity (0.55 g methane/g HR-PMO; 0.11 g methane/g water at 3.5 MPa). The large working capacity throughout consecutive pressure-induced clathrate hydrate formationdissociation cycles demonstrates the material's excellent recyclability (97% preservation of capacity). Supported by ex situ cryo-electron tomography and x-ray diffraction, HR-PMO nanotubes are hypothesized to promote clathrate hydrate nucleation and growth by distribution and confinement of water in the mesopores of their outer wall, along the central channels of the nanotubes and on the external nanotube surface. These findings showcase the potential for application of organosilica materials with hierarchical and interconnected pore systems for pressure-based storage of biomethane in confined clathrate hydrates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001056264100001 Publication Date 2023-06-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2405-8440 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access OpenAccess
Notes E.J.B., G.W. and M.H. contributed equally to this work. M.H. acknowledges FWO for an FWO-SB fellowship. All authors acknowledge VLAIO for Moonshot funding (ARCLATH, n ? HBC.2019.0110, ARCLATH2, n ? HBC.2021.0254) . J.A.M. acknowledges the Flemish Government for long-term structural funding (Methusalem) and department EWI for infrastructure investment via the Hermes Fund (AH.2016.134) . NMRCoRe acknowledges the Flemish government, department EWI for financial support as International Research Infrastructure (I001321N: Nuclear Magnetic Resonance Spectroscopy Platform for Molecular Water Research) . J.A.M. acknowledges the European Research Council (ERC) for an Advanced Research Grant under the European Union's Horizon 2020 research and innovation program under grant agreement No. 834134 (WATUSO) . S.B acknowledges financial support by the Research Foundation Flanders (FWO grant G.0381.16N) . This project also received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 731019 (EUSMI) and No 815128 (REALNANO) . Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:199249 Serial 8862
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M.
Title Molecular dynamics simulations of mechanical stress on oxidized membranes Type A1 Journal article
Year 2019 Publication Biophysical chemistry Abbreviated Journal Biophys Chem
Volume 254 Issue Pages 106266
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) Biomembranes are under constant attack of free radicals that may lead to lipid oxidation in conditions of oxidative stress. The products generated during lipid oxidation are responsible for structural and dynamical changes which may jeopardize the membrane function. For instance, the local rearrangements of oxidized lipid molecules may induce membrane rupture. In this study, we investigated the effects of mechanical stress on oxidized phospholipid bilayers (PLBs). Model bilayers were stretched until pore formation (or poration) using nonequilibrium molecular dynamics simulations. We studied single-component homogeneous membranes composed of lipid oxidation products, as well as two-component heterogeneous membranes with coexisting native and oxidized domains. In homogeneous membranes, the oxidation products with —OH and —OOH groups reduced the areal strain required for pore formation, whereas the oxidation product with ]O group behaved similarly to the native membrane. In heterogeneous membranes composed of oxidized and non-oxidized domains, we tested the hypothesis according to which poration may be facilitated at the domain interface region. However, results were inconclusive due to their large statistical variance and sensitivity to simulation setup parameters. We pointed out important technical issues that need to be considered in future simulations of mechanically-induced poration of heterogeneous membranes. This research is of interest for photodynamic therapy and plasma medicine, because ruptured and intact plasma membranes are experimentally considered hallmarks of necrotic and apoptotic cell death.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000502890900015 Publication Date 2019-09-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4622 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.402 Times cited Open Access
Notes São Paulo Research Foundation, 2012/50680-5 ; National Counsel of Technological and Scientific Development, 459270/2014-1 ; We are thankful for the financial support received from the São Paulo Research Foundation (FAPESP) (grant no. 2012/50680-5) and from the National Counsel of Technological and Scientific Development (CNPq) (grant no. 459270/2014-1). MCO acknowledges UFABC for the Master's scholarship granted. Approved Most recent IF: 2.402
Call Number PLASMANT @ plasmant @c:irua:163477 Serial 5374
Permanent link to this record
 

 
Author Angelakeris, M.; Li, Z.A.; Hilgendorff, M.; Simeonidis, K.; Sakellari, D.; Filippousi, M.; Tian, H.; Van Tendeloo, G.; Spasova, M.; Acet, M.; Farle, M.
Title Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles Type A1 Journal article
Year 2015 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater
Volume 381 Issue 381 Pages 179-187
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) Biomedical nanomagnetic carriers are getting a higher impact in therapy and diagnosis schemes while their constraints and prerequisites are more and more successfully confronted. Such particles should possess a well-defined size with minimum agglomeration and they should be synthesized in a facile and reproducible high-yield way together with a controllable response to an applied static or dynamic field tailored for the specific application. Here, we attempt to enhance the heating efficiency in magnetic particle hyperthermia treatment through the proper adjustment of the core-shell morphology in ferrite particles, by controlling exchange and dipolar magnetic interactions at the nanoscale. Thus, core-shell nanoparticles with mutual coupling of magnetically hard (CoFe2O4) and soft (MnFe2O4) components are synthesized with facile synthetic controls resulting in uniform size and shell thickness as evidenced by high resolution transmission electron microscopy imaging, excellent crystallinity and size monodispersity. Such a magnetic coupling enables the fine tuning of magnetic anisotropy and magnetic interactions without sparing the good structural, chemical and colloidal stability. Consequently, the magnetic heating efficiency of CoFe2O4. and MnFe2O4 core-shell nanoparticles is distinctively different horn that of their counterparts, even though all these nanocrystals were synthesized under similar conditions. For better understanding of the AC magnetic hyperthermia response and its correlation with magnetic-origin features we study the effect of the volume ratio of magnetic hard and soft phases in the bimagnetic core-shell nanocrystals. Eventually, such particles may be considered as novel heating carriers that under further biomedical functionalization may become adaptable multifunctional heat-triggered nanoplatforms. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000349361100027 Publication Date 2014-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.63 Times cited 20 Open Access
Notes 312483 Esteem2; Esteem2_ta Approved Most recent IF: 2.63; 2015 IF: 1.970
Call Number c:irua:125284 c:irua:125284 Serial 1049
Permanent link to this record
 

 
Author Buytaert, V.; Muys, B.; Devriendt, N.; Pelkmans, L.; Kretzschmar, J.G.; Samson, R.
Title Towards integrated sustainability assessment for energetic use of biomass : a state of the art evaluation of assessment tools Type A1 Journal article
Year 2011 Publication Renewable and sustainable energy reviews Abbreviated Journal
Volume 15 Issue 8 Pages 3918-3933
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Biomass is expected to play an increasingly significant role in the greening of energy supply. Nevertheless, concerns are rising about the sustainability of large-scale energy crop production. Impacts must be assessed carefully before deciding whether and how this industry should be developed, and what technologies, policies and investment strategies should be pursued. There is need for a comprehensive and reliable sustainability assessment tool to evaluate the environmental, social and economic performance of biomass energy production. This paper paves the way for such a tool by analysing and comparing the performance and applicability of a selection of existing tools that are potentially useful for sustainability assessment of bioenergy systems. The selected tools are: Criteria And Indicators (C&I), Life Cycle Assessment (LCA), Environmental Impact Assessment (EIA), Cost Benefit Analysis (CBA), Exergy Analysis (EA) and System Perturbation Analysis (SPA). To evaluate the tools, a framework was constructed that consists of four evaluation levels: sustainability issues, tool attributes, model structure, area of application. The tools were then evaluated using literature data and with the help of a Delphi panel of experts. Finally, a statistical analysis was performed on the resulting data matrix to detect significant differences between tools. It becomes clear that none of the selected tools is able to perform a comprehensive sustainability assessment of bioenergy systems. Every tool has its particular advantages and disadvantages, which means that trade-offs are inevitable and a balance must be found between scientific accuracy and pragmatic decision making. A good definition of the assessment objective is therefore crucial. It seems an interesting option to create a toolbox that combines procedural parts of C&I and EIA, supplemented with calculation algorithms of LCA and CBA for respectively environmental and economic sustainability indicators. Nevertheless, this would require a more comprehensive interdisciplinary approach to align the different tool characteristics and focuses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000298764100043 Publication Date 2011-08-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-0321; 1879-0690 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:96444 Serial 8682
Permanent link to this record
 

 
Author Nunez Manzano, M.; Gonzalez Quiroga, A.; Perreault, P.; Madanikashani, S.; Vandewalle, L.A.; Marin, G.B.; Heynderickx, G.J.; Van Geem, K.M.
Title Biomass fast pyrolysis in an innovative gas-solid vortex reactor : experimental proof of concept Type A1 Journal article
Year 2021 Publication Journal Of Analytical And Applied Pyrolysis Abbreviated Journal J Anal Appl Pyrol
Volume 156 Issue Pages 105165-12
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) Biomass fast pyrolysis has been considered one of the best alternatives for the thermal conversion of biomass into bio-oil. This work introduces a new reactor technology for biomass fast pyrolysis, the Gas-Solid Vortex Reactor (GSVR), to obtain high bio-oil yields. The GSVR was designed to decrease the residence time of the pyrolysis vapors; thus, the secondary cracking reactions are reduced, to enhance the segregation of the char and the unreacted biomass and to improve the heat transfer rate. Biomass fast pyrolysis experiments have been carried out for the first time in a Gas-Solid Vortex Reactor (GSVR) at 773 K, using softwood (pine) and hardwood (poplar) as feedstock. Char yields as low as 10 wt. % in the GSVR were comparable to those reported for the same feedstocks processed in conventional fluidized bed reactors. The yields of non-condensable gases in the range of 15–17 wt. % were significantly lower than those reported for other commonly used biomass fast pyrolysis reactors. Two-dimensional gas chromatography (GC × GC) revealed noticeable differences at the molecular level between the bio-oils from the GSVR and bio-oils from other reactors. The aromatics in the pine bio-oil consist almost entirely (85 wt. %) of guaiacols. For poplar bio-oils no predominant group of aromatics was found, but phenolics, syringols, and catechols were the most pronounced. The experimental results highlight the advantages of the GSVR for biomass pyrolysis, reaching stable operation in around 60 s, removing the formed char selectively during operation, and enabling fast entrainment of pyrolysis vapors. Results indicate a great potential for increasing yield and selectivity towards guaiacols in softwood (e.g., pine) bio-oil. Likewise, decreasing pyrolysis temperature could increase the yield of guaiacols and syringols in hardwood (e.g., poplar) bio-oil.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000663091200002 Publication Date 2021-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-2370 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.471 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.471
Call Number UA @ admin @ c:irua:178743 Serial 7562
Permanent link to this record
 

 
Author Van Dael, M.; Van Passel, S.; Pelkmans, L.; Guisson, R.; Reumermann, P.; Luzardo, N.M.; Witters, N.; Broeze, J.
Title A techno-economic evaluation of a biomass energy conversion park Type A1 Journal article
Year 2013 Publication Applied Energy Abbreviated Journal Appl Energ
Volume 104 Issue Pages 611-622
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)
Abstract (down) Biomass as a renewable energy source has many advantages and is therefore recognized as one of the main renewable energy sources to be deployed in order to attain the target of 20% renewable energy use of final energy consumption by 2020 in Europe. In this paper the concept of a biomass Energy Conversion Park (ECP) is introduced. A biomass ECP can be defined as a synergetic, multi-dimensional biomass conversion site with a highly integrated set of conversion technologies in which a multitude of regionally available biomass (residue) sources are converted into energy and materials. A techno-economic assessment is performed on a case study in the Netherlands to illustrate the concept and to comparatively assess the highly integrated system with two mono-dimensional models. The three evaluated models consist of (1) digestion of the organic fraction of municipal solid waste, (2) co-digestion of manure and co-substrates, and (3) integration. From a socio-economic point of view it can be concluded that it is economically and energetically more interesting to invest in the integrated model than in two separate models. The integration is economically feasible and environmental benefits can be realized. For example, the integrated model allows the implementation of a co-digester. Unmanaged manure would otherwise represent a constant pollution risk. However, from an investor's standpoint one should firstly invest in the municipal solid waste digester since the net present value (NPV) of this mono-dimensional model is higher than that of the multi-dimensional model. A sensitivity analysis is performed to identify the most influencing parameters. Our results are of interest for companies involved in the conversion of biomass. The conclusions are useful for policy makers when deciding on policy instruments concerning manure processing or biogas production. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000316152700062 Publication Date 2012-12-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-2619 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.182 Times cited 45 Open Access
Notes ; We would like to thank the editor and the anonymous referees for their helpful suggestions and insightful comments that have significantly improved the paper. Furthermore, the authors gratefully acknowledge the financial support from INTERREG and the province of Limburg (Belgium). Also, we would like to thank all remaining partners of the ECP project (Eloi Schreurs, Dries Maes, Kristian Coppoolse, Han ten Berge, Bert Annevelink, Nathalie Devriendt, Erwin Cornelissen, Hannes Pieper, Pieter Vollaard, Jan Venselaar, and Hessel Abbink Spaink) for their support and contributions. Finally, we would like to express our gratitude towards the organization of the eighth International Conference on Renewable Resources and Biorefineries in Toulouse (France) for giving us the opportunity to present and thereby fine-tune our work. ; Approved Most recent IF: 7.182; 2013 IF: 5.261
Call Number UA @ admin @ c:irua:127552 Serial 6145
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M.
Title How do nitrated lipids affect the properties of phospholipid membranes? Type A1 Journal article
Year 2020 Publication Archives Of Biochemistry And Biophysics Abbreviated Journal Arch Biochem Biophys
Volume 695 Issue Pages 108548
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) Biological membranes are under constant attack of free radicals, which may lead to lipid nitro-oxidation, pro­ ducing a complex mixture of nitro-oxidized lipids that are responsible for structural and dynamic changes on the membrane. Despite the latter, nitro-oxidized lipids are also associated with several inflammatory and neuro­ degenerative diseases, the underlying mechanisms of which remain elusive. We perform atomistic molecular dynamics simulations using several isomers of nitro-oxidized lipids to study their effect on the structure and permeability of the membrane, as well as the interaction between the mixture of these products in the phos­pholipid membrane environment. Our results show that the stereo- and positional isomers have a stronger effect on the properties of the membrane composed of oxidized lipids compared to that containing nitrated lipids. Nevertheless, nitrated lipids lead to three-fold increase in water permeability compared to oxidized lipids. In addition, we show that in a membrane consisting of combined nitro-oxidized lipid products, the presence of oxidized lipids protects the membrane from transient pores. Is well stablished that plasma application and photodynamic therapy produces a number of oxidative species used to kill cancer cells, through membrane damage induced by nitro-oxidative stress. This study is important to elucidate the mechanisms and the molecular level properties involving the reactive species produced during that cancer therapies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000594173400010 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited Open Access
Notes CAPES; Flanders Research Foundation, 1200219N ; We thank Universidade Federal do ABC for providing the computa­tional resources needed for completion of this work and CAPES for scholarship granted. M.Y. acknowledges the Flanders Research Foun­dation (grant 1200219N) for financial support. Approved Most recent IF: 3.9; 2020 IF: 3.165
Call Number PLASMANT @ plasmant @c:irua:173861 Serial 6440
Permanent link to this record