toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Nogaret, A.; Lambert, N.J.; Peeters, F.M.
  Title Electrically induced spin resonance fluorescence : 2 : fluorescence spectra Type A1 Journal article
  Year 2007 Publication Physical Review B Abbreviated Journal Phys Rev B
  Volume 76 Issue 7 Pages
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) We model the fluorescence spectra of planar spin oscillators to find conditions that maximize spin resonance fluorescence. Spin oscillators perform Rabi oscillations under the effect of a periodic effective magnetic field caused by the winding motion of an electron in a gradient of magnetic field. We show that, despite the weak coupling of the spin magnetic dipole to the vacuum, spin oscillators excited by a direct current output a few nanowatts of microwave power, which is comparable to the best microwave sources. The large quantum efficiency relies on the combination of two effects. On the one hand, the spontaneous emission rate is enhanced by the synchronization of spin oscillators, which interact through the microwave field that they emit. On the other hand, the huge Rabi frequencies experienced by spin oscillators promote spins into upper levels of Zeeman transitions, from which a radiative cascade is triggered. We demonstrate different regimes of fluorescence which correspond to different values of the Rabi period relative to the spontaneous decay time and to the oscillator dwell time in the gradient of magnetic field. We investigate the device parameters which make these regimes experimentally accessible and find conditions that optimize microwave output. We find that microwave emission is centered around the cutoff frequency of spin oscillators. This has the advantage that the peak emission frequency may be tuned from zero continuously up to a few hundred gigahertz using an electrostatic gate. Quite remarkably for a spintronics effect, electrically induced spin resonance fluorescence does not require the injection of a spin polarized current. In fact, we show that microwave spectra are mostly independent of the incoming spin polarization except for magnetic waveguides which are shorter than a certain critical length, which we will specify.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000249155300092 Publication Date 2007-08-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 8 Open Access
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
  Call Number UA @ lucian @ c:irua:66118 Serial 898
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G.
  Title Carrier transport in a two-dimensional topological insulator nanoribbon in the presence of vacancy defects Type P1 Proceeding
  Year 2018 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 24-26, 2018, Austin, TX Abbreviated Journal
  Volume Issue Pages 92-96
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract (up) We model transport through two-dimensional topological insulator (TI) nanoribbons. To model the quantum transport, we employ the non-equilibrium Green's function approach. With the presented approach, we study the effect of lattice imperfections on the carrier transport. We observe that the topologically protected edge states of TIs are robust against a high percentage (2%) of vacancy defects. We also investigate tunneling of the edge states in two decoupled TI nanoribbons.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000516619300024 Publication Date 2018-12-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 978-1-5386-6790-3; 1946-1577; 978-1-5386-6791-0 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:181281 Serial 7579
Permanent link to this record
 

 
Author Čukarić, N.A.; Tadić, M.Z.; Partoens, B.; Peeters, F.M.
  Title 30-band k\cdot p model of electron and hole states in silicon quantum wells Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 88 Issue 20 Pages 205306
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) We modeled the electron and hole states in Si/SiO2 quantum wells within a basis of standing waves using the 30-band k . p theory. The hard-wall confinement potential is assumed, and the influence of the peculiar band structure of bulk silicon on the quantum-well sub-bands is explored. Numerous spurious solutions in the conduction-band and valence-band energy spectra are found and are identified to be of two types: (1) spurious states which have large contributions of the bulk solutions with large wave vectors (the high-k spurious solutions) and (2) states which originate mainly from the spurious valley outside the Brillouin zone (the extravalley spurious solutions). An algorithm to remove all those nonphysical solutions from the electron and hole energy spectra is proposed. Furthermore, slow and oscillatory convergence of the hole energy levels with the number of basis functions is found and is explained by the peculiar band mixing and the confinement in the considered quantum well. We discovered that assuming the hard-wall potential leads to numerical instability of the hole states computation. Nonetheless, allowing the envelope functions to exponentially decay in a barrier of finite height is found to improve the accuracy of the computed hole states.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000327161500007 Publication Date 2013-11-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 10 Open Access
  Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Belgian Science Policy (IAP), the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
  Call Number UA @ lucian @ c:irua:112704 Serial 18
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P.
  Title Mixed pairing symmetries and flux-induced spin current in mesoscopic superconducting loops with spin correlations Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 91 Issue 91 Pages 214504
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) We numerically investigate the mixed pairing symmetries inmesoscopic superconducting loops in the presence of spin correlations by solving the Bogoliubov-de Gennes equations self-consistently. The spatial variations of the superconducting order parameters and the spontaneous magnetization are determined by the band structure. When the threaded magnetic flux turns on, the charge and spin currents both emerge and depict periodic evolution. In the case of a mesoscopic loop with dominant triplet p(x) +/- ip(y)-wave symmetry, a slight change of the chemical potential may lead to novel flux-dependent evolution patterns of the ground-state energy and the magnetization. The spin-polarized currents show pronounced quantum oscillations with fractional periods due to the appearance of energy jumps in flux, accompanied with a steplike feature of the enhanced spin current. Particularly, at some appropriate flux, the peaks of the zero-energy local density of states clearly indicate the occurrence of the odd-frequency pairing. In the case of a superconducting loop with dominant singlet d(x2-y2)-wave symmetry, the spatial profiles of the zero-energy local density of states and the magnetization show spin-dependent features on different sample diagonals. Moreover, the evolution of the flux-induced spin current always exhibits an hc/e periodicity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000355647100003 Publication Date 2015-06-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 15 Open Access
  Notes ; This work was supported by the National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
  Call Number c:irua:126433 Serial 2089
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P.
  Title Majorana fermion states and fractional flux periodicity in mesoscopic d-wave superconducting loops with spin-orbit interaction Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 90 Issue 1 Pages 014522
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) We numerically investigate the spin-orbit (SO) coupling effect on the magnetic flux evolution of energy and supercurrent in mesoscopic d-wave superconducting loops by solving the spin-generalized Bogoliubov-de Gennes equations self-consistently. It is found that the energy spectrum splits when the SO interaction is involved and the Majorana zero mode can be realized in the [100] edges of square systems for an appropriate SO coupling strength. Superconducting phase transitions appear when the energy gap closes, accompanied by energy jumps between different energy parabolas in the ground state, which provides a possible mechanism to support fractional flux periodicity of supercurrent. Moreover, in the case of rectangular loops with SO coupling, the jumps of the ground-state energy gradually disappear by increasing the ratio of length to height of the sample, and a paramagnetic response with opposite direction of the screening current around zero flux value can occur in such systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000341233800010 Publication Date 2014-07-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 7 Open Access
  Notes ; This work was supported by National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by Visiting Scholar Program of Shanghai Municipal Education Commission, by Innovation Program of Shanghai Municipal Education Commission under Grant No. 13YZ006, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
  Call Number UA @ lucian @ c:irua:119266 Serial 1938
Permanent link to this record
 

 
Author Dantas, D.S.; Lima, A.R.P.; Chaves, A.; Almeida, C.A.S.; Farias, G.A.; Milošević, M.V.
  Title Bound vortex states and exotic lattices in multicomponent Bose-Einstein condensates : the role of vortex-vortex interaction Type A1 Journal article
  Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
  Volume 91 Issue 91 Pages 023630
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) We numerically study the vortex-vortex interaction in multicomponent homogeneous Bose-Einstein condensates within the realm of the Gross-Pitaevskii theory. We provide strong evidence that pairwise vortex interaction captures the underlying mechanisms which determine the geometric configuration of the vortices, such as different lattices in many-vortex states, as well as the bound vortex states with two (dimer) or three (trimer) vortices. Specifically, we discuss and apply our theoretical approach to investigate intra- and intercomponent vortex-vortex interactions in two- and three-component Bose-Einstein condensates, thereby shedding light on the formation of the exotic vortex configurations. These results correlate with current experimental efforts in multicomponent Bose-Einstein condensates and the understanding of the role of vortex interactions in multiband superconductors.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000350255200014 Publication Date 2015-02-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.925 Times cited 12 Open Access
  Notes ; This work was supported by the National Council for Scientific and Technological Development (CNPq-Brazil), the Coordination for the Improvement of Higher Education Personnel (CAPES-Brazil), Research Foundation Flanders (FWO), and the bilateral FWO-CNPq program between Flanders and Brazil. M.V.M. acknowledges support from the CAPES-PVE program (Grant No. BEX1392/11-5). ; Approved Most recent IF: 2.925; 2015 IF: 2.808
  Call Number c:irua:124907 Serial 252
Permanent link to this record
 

 
Author Ding, F.; Li, B.; Akopian, N.; Perinetti, U.; Chen, Y.H.; Peeters, F.M.; Rastelli, A.; Zwiller, V.; Schmidt, O.G.
  Title Single neutral excitons confined in AsBr3 in situ etched InGaAs quantum rings Type A1 Journal article
  Year 2011 Publication Journal of nanoelectronics and optoelectronics Abbreviated Journal J Nanoelectron Optoe
  Volume 6 Issue 1 Pages 51-57
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract (up) We observe the evolution of single self-assembled semiconductor quantum dots into quantum rings during AsBr3 in situ etching. The direct three-dimensional imaging of In(Ga)As nanostructures embedded in GaAs matrix is demonstrated by selective wet chemical etching combined with atomic force microscopy. Single neutral excitons confined in these quantum rings are studied by magneto-photoluminescence. Oscillations in the exciton radiative recombination energy and in the emission intensity are observed under an applied magnetic field. Further, we demonstrate that the period of the oscillations can be tuned by a gate potential that modifies the exciton confinement. The experimental results, combined with calculations, indicate that the exciton Aharonov-Bohm effect may account for the observed effects.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000290692200005 Publication Date 2011-04-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1555-130X;1555-1318; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 0.497 Times cited 3 Open Access
  Notes ; We acknowledge L. P. Kouwenhoven and Z. G. Wang for support, C. C. Bof Bufon, C. Deneke, V. Fomin, A. Govorov, S. Kiravittaya, and Wen-Hao Chang for their help and discussions. We are grateful for the financial support of NWO (VIDI), the CAS-MPG programm, the DFG (FOR730), BMBF (No. 01BM459), NSFC China (60625402), and Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 0.497; 2011 IF: 0.556
  Call Number UA @ lucian @ c:irua:90187 Serial 3025
Permanent link to this record
 

 
Author Ye, M.; Schroeder, J.; Mehbod, M.; Deltour, R.; Naessens, G.; Duvigneaud, P.H.; Verbist, K.; Van Tendeloo, G.
  Title Structural properties of Zn-substituted epitaxial YBa2Cu3O7-\delta thin films Type A1 Journal article
  Year 1996 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
  Volume 9 Issue 7 Pages 543-548
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (up) We optimized the deposition of YBa2(Cu1-xZnx)(3)O-7-delta thin-films using inverted cylindrical magnetron sputtering and report here a detailed structural study, especially in relation to crystal growth, associated surface morphology, Y2O3 precipitation and other secondary phases important for flux pinning. We find that the epitaxial quality of the Zn-substituted YBa2Cu3O7-delta films is decreased compared with high-quality pure YBa2Cu3O7-delta films prepared under identical conditions. The pure films have smoother surfaces, while those of Zn-substituted films contain pinholes and outgrowths. Secondary phases and a-axis grains were observed in the Zn-substituted films. Y2O3 precipitates with typical dimensions of 50-100 Angstrom have been found in both pure and Zn-substituted samples. However, their density of about 10(23) m(-3), observed in the pure films, is significantly reduced in the Zn-substituted films when increasing the Zn concentration up to 4%.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos A1996UX28600006 Publication Date 2002-08-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.325 Times cited 7 Open Access
  Notes Approved
  Call Number UA @ lucian @ c:irua:15464 Serial 3257
Permanent link to this record
 

 
Author Yusupov, M.; Lackmann, J.-W.; Razzokov, J.; Kumar, S.; Stapelmann, K.; Bogaerts, A.
  Title Impact of plasma oxidation on structural features of human epidermal growth factor Type A1 Journal article
  Year 2018 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
  Volume 15 Issue 8 Pages 1800022
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (up) We perform computer simulations supported by experiments to investigate the oxidation of an important signaling protein, that is, human epidermal growth factor (hEGF), caused by cold atmospheric plasma (CAP) treatment. Specifically, we study the conformational changes of hEGF with different degrees of oxidation, to mimic short and long CAP treatment times. Our results indicate that the oxidized structures become more flexible, due to their conformational changes and breakage of the disulfide bonds, especially at higher oxidation degrees. MM/GBSA calculations reveal that an increasing oxidation level leads to a lower binding free energy of hEGF with its receptor. These results help to understand the fundamentals of the use of CAP for wound healing versus cancer treatment at short and longer treatment times.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000441895700004 Publication Date 2018-05-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.846 Times cited 7 Open Access Not_Open_Access
  Notes Fonds Wetenschappelijk Onderzoek, 1200216N ; Bundesministerium für Bildung und Forschung, 03Z22DN12 ; Approved Most recent IF: 2.846
  Call Number PLASMANT @ plasmant @c:irua:152815 Serial 5008
Permanent link to this record
 

 
Author Kourmoulakis, G.; Michail, A.; Paradisanos, I.; Marie, X.; Glazov, M.M.; Jorissen, B.; Covaci, L.; Stratakis, E.; Papagelis, K.; Parthenios, J.; Kioseoglou, G.
  Title Biaxial strain tuning of exciton energy and polarization in monolayer WS2 Type A1 Journal Article
  Year 2023 Publication Applied Physics Letters Abbreviated Journal
  Volume 123 Issue 22 Pages
  Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;
  Abstract (up) We perform micro-photoluminescence and Raman experiments to examine the impact of biaxial tensile strain on the optical properties of WS2 monolayers. A strong shift on the order of −130 meV per % of strain is observed in the neutral exciton emission at room temperature. Under near-resonant excitation, we measure a monotonic decrease in the circular polarization degree under the applied strain. We experimentally separate the effect of the strain-induced energy detuning and evaluate the pure effect coming from the biaxial strain. The analysis shows that the suppression of the circular polarization degree under the biaxial strain is related to an interplay of energy and polarization relaxation channels as well as to variations in the exciton oscillator strength affecting the long-range exchange interaction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001124156400003 Publication Date 2023-11-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record
  Impact Factor 4 Times cited Open Access
  Notes Hellenic Foundation for Research and Innovation, HFRI-FM17-3034 ; Approved Most recent IF: 4; 2023 IF: 3.411
  Call Number CMT @ cmt @c:irua:202178 Serial 8991
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Vanuytsel, S.; Neyts, E.C.; Bogaerts, A.
  Title Phosphatidylserine flip-flop induced by oxidation of the plasma membrane: a better insight by atomic scale modeling Type A1 Journal article
  Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
  Volume 14 Issue 10 Pages 1700013
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (up) We perform molecular dynamics simulations to study the flip-flop motion of phosphatidylserine (PS) across the plasma membrane upon increasing oxidation degree of the membrane. Our computational results show that an increase of the oxidation degree in the lipids leads to a decrease of the free energy barrier for translocation of PS through the membrane. In other words, oxidation of the lipids facilitates PS flip-flop motion across the membrane, because in native phospholipid bilayers this is only a “rare event” due to the high energy barriers for the translocation of PS. The present study provides an atomic-scale insight into the mechanisms of the PS flip-flop upon oxidation of lipids, as produced for example by cold atmospheric plasma, in living cells.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000413045800010 Publication Date 2017-04-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.846 Times cited 9 Open Access Not_Open_Access
  Notes Fonds Wetenschappelijk Onderzoek, 1200216N ; Approved Most recent IF: 2.846
  Call Number PLASMANT @ plasmant @c:irua:149567 Serial 4910
Permanent link to this record
 

 
Author Milošević, M.V.; Kanda, A.; Hatsumi, S.; Peeters, F.M.; Ootuka, Y.
  Title Local current injection into mesoscopic superconductors for the manipulation of quantum states Type A1 Journal article
  Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 103 Issue 21 Pages 217003-217003,4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) We perform strategic current injection in a small mesoscopic superconductor and control the (non)equilibrium quantum states in an applied homogeneous magnetic field. In doing so, we realize a current-driven splitting of multiquanta vortices, current-induced transitions between states with different angular momenta, and current-controlled switching between otherwise degenerate quantum states. These fundamental phenomena form the basis for the electronic and logic applications discussed, and are confirmed in both theoretical simulations and multiple-small-tunnel-junction transport measurements.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000272054300044 Publication Date 2009-12-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited 48 Open Access
  Notes Approved Most recent IF: 8.462; 2009 IF: 7.328
  Call Number UA @ lucian @ c:irua:94498 Serial 1826
Permanent link to this record
 

 
Author Chaves, A.; Moura, V.N.; Linard, F.J.A.; Covaci, L.; Milošević, M.V.
  Title Tunable magnetic focusing using Andreev scattering in superconductor-graphene hybrid devices Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
  Volume 128 Issue 12 Pages 124303
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract (up) We perform the wavepacket dynamics simulation of a graphene-based device where propagating electron trajectories are tamed by an applied magnetic field toward a normal/superconductor interface. The magnetic field controls the incidence angle of the incoming electronic wavepacket at the interface, which results in the tunable electron-hole ratio in the reflected wave function due to the angular dependence of the Andreev reflection. Here, mapped control of the quasiparticle trajectories by the external magnetic field not only defines an experimental probe for fundamental studies of the Andreev reflection in graphene but also lays the foundation for further development of magnetic focusing devices based on nanoengineered superconducting two-dimensional materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000576393200002 Publication Date 2020-09-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.2 Times cited 1 Open Access Not_Open_Access
  Notes ; This work was supported by the Brazilian Council for Research (CNPq) through the PRONEX/FUNCAP and PQ programs and by the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 3.2; 2020 IF: 2.068
  Call Number UA @ admin @ c:irua:172730 Serial 6639
Permanent link to this record
 

 
Author Scarrozza, M.; Pourtois, G.; Houssa, M.; Heyns, M.; Stesmans, A.
  Title Oxidation of the GaAs(001) surface : insights from first-principles calculations Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 85 Issue 19 Pages 195307-195307,8
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (up) We performed a detailed investigation of the oxidation of the technologically relevant GaAs(001)-beta 2(2x4) surface via density functional calculations. The purpose is to gain insights on the atomistic mechanisms and local bondings that underlie the degradation of the surface properties once exposed to oxygen. The study comprises the adsorption of single O atoms, through the sampling of several adsorption sites, and the subsequent formation of the O adsorbate at increasing coverage by taking into account multiple-atom adsorption. Based on the evaluation of the energetics and the structural properties of the atomistic models generated, the results here reported delineate a consistent picture of the initial stage of the surface oxidation: (i) at low coverage, in the limit of single O insertions, oxygen is incorporated on the surface forming a twofold-bridging Ga-O-As bond; (ii) at increasing coverage, as multiple O atoms are involved, this is accompanied by the formation of a threefold-coordinated bond (with two Ga and one As atoms); (iii) the latter has important implications regarding the electronic properties of the adsorbate since this O bonding may result in the formation of As dangling bonds. Moreover, a clear trend of increased energy gain for the incorporation of neighboring O atoms compared to single O insertions indicates that the formation of oxide clusters is favored over a regime of uniform oxidation. Our findings provide a detailed description of the O bonding and stress the importance of modeling the adsorption of multiple O atoms for an accurate description of the surface oxidation.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000303755700006 Publication Date 2012-05-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 15 Open Access
  Notes Approved Most recent IF: 3.836; 2012 IF: 3.767
  Call Number UA @ lucian @ c:irua:99122 Serial 2538
Permanent link to this record
 

 
Author de Aquino, B.R.C.H.T.; Cabral, L.R.E.; de Souza Silva, C.C.; Albino Aguiar, J.; Milošević, M.V.; Peeters, F.M.
  Title Dynamic phases of vortex-antivortex molecules in a Corbino disk with magnetic dipole on top Type A1 Journal article
  Year 2012 Publication Physica: C : superconductivity Abbreviated Journal Physica C
  Volume 479 Issue Pages 115-118
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) We performed a molecular dynamics study of vortex-antivortex motion in a superconducting disk with a magnetic dot on top, in the Corbino disk geometry. In this system, vortices and antivortices are forced to move in opposite azimuthal directions by a radially applied current. The dot is magnetized out of plane in order to stabilize composite vortex-antivortex configurations, with vortices closer to the center of the disk and antivortices near to the disk edge. We observe that the interplay between the spatially inhomogeneous current distribution, the screening currents induced by the dipole, and the attractive vortex-antivortex (v-av) interaction result in different dynamical phases. At low current values, antivortices which are distributed at outer rings – remain bounded to vortices at inner rings and the whole configuration rotates rigidly. Above a threshold current, vortices and antivortices unbind and move at different angular velocities in a highly correlated way. Finally, at very strong drive, vortex-antivortex attraction is overhelmed by the external current Lorentz force, causing them to move in opposite directions. (C) 2011 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.404 Times cited Open Access
  Notes Approved Most recent IF: 1.404; 2012 IF: 0.718
  Call Number UA @ lucian @ c:irua:101870 Serial 764
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M.; Chaves, A.; Farias, G.A.
  Title Conductance maps of quantum rings due to a local potential perturbation Type A1 Journal article
  Year 2013 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
  Volume 25 Issue 49 Pages 495301-495309
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) We performed a numerical simulation of the dynamics of a Gaussian shaped wavepacket inside a small sized quantum ring, smoothly connected to two leads and exposed to a perturbing potential of a biased atomic force microscope tip. Using the Landauer formalism, we calculated conductance maps of this system in the case of single and two subband transport. We explain the main features in the conductance maps as due to the AFM tip influence on the wavepacket phase and amplitude. In the presence of an external magnetic field, the tip modifies the phi(0) periodic Aharonov-Bohm oscillation pattern into a phi(0)/2 periodic Al'tshuler-Aronov-Spivak oscillation pattern. Our results in the case of multiband transport suggest tip selectivity to higher subbands, making them more observable in the total
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000327181400002 Publication Date 2013-11-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.649 Times cited 12 Open Access
  Notes ; This work was supported by the Methusalem programme of the Flemish government, the CNPq-FWO bilateral programme and PNPD and FUNCAP/PRONEX grants. ; Approved Most recent IF: 2.649; 2013 IF: 2.223
  Call Number UA @ lucian @ c:irua:112694 Serial 478
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.
  Title Hydrogenation of bilayer graphene and the formation of bilayer graphane from first principles Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
  Volume 80 Issue 24 Pages 245422,1-245422,6
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) We performed ab initio density-functional theory calculations to investigate the process of hydrogenation of a bilayer of graphene. 50% hydrogen coverage is possible in case that the hydrogen atoms are allowed to adsorb on both sides of the bilayer. In this case interlayer chemical bonding occurs which stabilizes the structure. At maximum coverage, a bilayer of graphane is formed which has properties that are similar to those of a single layer of graphane.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000273229200126 Publication Date 2009-12-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 113 Open Access
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
  Call Number UA @ lucian @ c:irua:80578 Serial 1535
Permanent link to this record
 

 
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A.
  Title Effect of oxidative stress on cystine transportation by xC‾ antiporter Type A1 Journal article
  Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys
  Volume 674 Issue Pages 108114
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (up) We performed computer simulations to investigate the effect of oxidation on the extracellular cystine (CYC) uptake by the xC− antiporter. The latter is important for killing of cancer cells. Specifically, applying molecular dynamics (MD) simulations we studied the transport of CYC across xCT, i.e., the light subunit of the xC− antiporter, in charge of bidirectional transport of CYC and glutamate. We considered the outward facing (OF) configuration of xCT, and to study the effect of oxidation, we modified the Cys327 residue, located in the vicinity of the extracellular milieu, to cysteic acid (CYO327). Our computational results showed that oxidation of Cys327 results in a free energy barrier for CYC translocation, thereby blocking the access of CYC to the substrate binding site of the OF system. The formation of the energy barrier was found to be due to the conformational changes in the channel. Analysis of the MD trajectories revealed that the reorganization of the side chains of the Tyr244 and CYO327 residues play a critical role in the OF channel blocking. Indeed, the calculated distance between Tyr244 and either Cys327 or CYO327 showed a narrowing of the channel after oxidation. The obtained free energy barrier for CYC translocation was found to be 33.9kJmol−1, indicating that oxidation of Cys327, by e.g., cold atmospheric plasma, is more effective in inhibiting the xC− antiporter than in the mutation of this amino acid to Ala (yielding a barrier of 32.4kJmol−1). The inhibition of the xC− antiporter may lead to Cys starvation in some cancer cells, eventually resulting in cancer cell death.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000525439700011 Publication Date 2019-09-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.165 Times cited Open Access
  Notes Ministry of Science, Research and Technology of Iran; University of Antwerp; Research Foundation − Flanders, 1200219N ; Universiteit Antwerpen; Hercules Foundation; Flemish Government; UA; M. G. acknowledges funding from the Ministry of Science, Research and Technology of Iran and from the University of Antwerp in Belgium. M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant number 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved Most recent IF: 3.165
  Call Number PLASMANT @ plasmant @c:irua:163474 Serial 5372
Permanent link to this record
 

 
Author Albrecht, W.; Deng, T.-S.; Goris, B.; van Huis, M.A.; Bals, S.; van Blaaderen, A.
  Title Single Particle Deformation and Analysis of Silica-Coated Gold Nanorods before and after Femtosecond Laser Pulse Excitation Type A1 Journal article
  Year 2016 Publication Nano letters Abbreviated Journal Nano Lett
  Volume 16 Issue 16 Pages 1818-1825
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract (up) We performed single particle deformation experiments on silica-coated gold nanorods under femtosecond (fs) illumination. Changes in the particle shape were analyzed by electron microscopy and associated changes in the plasmon resonance by electron energy loss spectroscopy. Silica-coated rods were found to be more stable compared to uncoated rods but could still be deformed via an intermediate bullet-like shape for silica shell thicknesses of 14 nm. Changes in the size ratio of the rods after fs-illumination resulted in blue-shifting of the longitudinal plasmon resonances. Two-dimensional spatial mapping of the plasmon resonances revealed that the flat side of the bullet-like particles showed a less pronounced longitudinal plasmonic electric field enhancement. These findings were confirmed by finite-difference time-domain (FDTD) simulations. Furthermore, at higher laser fluences size reduction of the particles was found as well as for particles that were not completely deformed yet.
  Address Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University , Princetonplein 5, 3584 CC Utrecht, The Netherlands
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language English Wos 000371946300045 Publication Date 2016-02-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.712 Times cited 55 Open Access OpenAccess
  Notes We thank Dr. Nicolas Gauquelin for his assistance during the EELS measurements and Thomas Atlantzis for the high-resolution images of the gold clusters. We furthermore thank Ernest van der Wee for the simulation of the confocal point spread functions. The authors acknowledge financial support from the European Research Council under the European Unions Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement #291667 HierarSACol and the Foundation of Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). The authors furthermore acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI). This work was supported by the Flemish Fund for Scientific Research (FWO Vlaanderen) through a postdoctoral research grant to B.G.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712
  Call Number c:irua:131924 c:irua:131924 Serial 4016
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M.
  Title Comment on “Tunable spin-injection and magnetoconductance in a novel 2DEG-ferromagnet structure” [phys. stat. sol. (b) 235, No. 1, 157-161 (2003)] Type A1 Journal article
  Year 2004 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
  Volume 241 Issue 1 Pages 222-223
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) We point out that the predicted strong spin-injection effect by Jiang and Jalil [phys. stat. sol. (b) 235, 157 (2003)] for a double magnetic barrier structure is based on a wrong calculation of the transmission probability. We corrected the result and found no significant spin-injection.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Berlin Editor
  Language Wos 000188585200028 Publication Date 2003-12-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.674 Times cited 11 Open Access
  Notes Approved Most recent IF: 1.674; 2004 IF: 0.982
  Call Number UA @ lucian @ c:irua:103257 Serial 413
Permanent link to this record
 

 
Author Zarenia, M.; Perali, A.; Peeters, F.M.; Neilson, D.
  Title Large gap electron-hole superfluidity and shape resonances in coupled graphene nanoribbons Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
  Volume 6 Issue 6 Pages 24860
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract (up) We predict enhanced electron-hole superfluidity in two coupled electron-hole armchair-edge terminated graphene nanoribbons separated by a thin insulating barrier. In contrast to graphene monolayers, the multiple subbands of the nanoribbons are parabolic at low energy with a gap between the conduction and valence bands, and with lifted valley degeneracy. These properties make screening of the electron-hole interaction much weaker than for coupled electron-hole monolayers, thus boosting the pairing strength and enhancing the superfluid properties. The pairing strength is further boosted by the quasi one-dimensional quantum confinement of the carriers, as well as by the large density of states near the bottom of each subband. The latter magnifies superfluid shape resonances caused by the quantum confinement. Several superfluid partial condensates are present for finite-width nanoribbons with multiple subbands. We find that superfluidity is predominately in the strongly-coupled BEC and BCS-BEC crossover regimes, with large superfluid gaps up to 100 meV and beyond. When the gaps exceed the subband spacing, there is significant mixing of the subbands, a rounding of the shape resonances, and a resulting reduction in the one-dimensional nature of the system.
  Address
  Corporate Author Thesis
  Publisher Nature Publishing Group Place of Publication London Editor
  Language Wos 000374654500002 Publication Date 2016-04-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.259 Times cited 7 Open Access
  Notes ; M.Z. acknowledges support by the Flemish Science Foundation (FWO-Vl), the University Research Fund (BOF), and the European Science Foundation (POLATOM). A.P. and D.N. acknowledge support by the University of Camerino FAR project CESEMN. The authors thank the colleagues involved in the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions for this work. ; Approved Most recent IF: 4.259
  Call Number UA @ lucian @ c:irua:133619 Serial 4201
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.
  Title Heating of quasiparticles driven by oscillations of the order parameter in short superconducting microbridges Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 83 Issue 22 Pages 224523-224523,6
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) We predict heating of quasiparticles driven by order parameter oscillations in the resistive state of short superconducting microbridges. The finite relaxation time of the magnitude of the order parameter |Δ| and the dependence of the spectral functions both on |Δ| and the supervelocity Q are the origin of this effect. Our results are opposite to those of Aslamazov and Larkin [ Zh. Eks. Teor. Fiz. 70 1340 (1976)] and Schmid et al. [ Phys. Rev. B 21 5076 (1980)] where cooling of quasiparticles was found.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000292218200010 Publication Date 2011-06-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 4 Open Access
  Notes ; This work was supported by the Russian Foundation for Basic Research, Russian Agency of Education under the Federal Target Programme “Scientific and educational personnel of innovative Russia in 2009-2013,” Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
  Call Number UA @ lucian @ c:irua:90924 Serial 1415
Permanent link to this record
 

 
Author Snoeckx, R.; Setareh, M.; Aerts, R.; Simon, P.; Maghari, A.; Bogaerts, A.
  Title Influence of N2 concentration in a CH4/N2 dielectric barrier discharge used for CH4 conversion into H2 Type A1 Journal article
  Year 2013 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ
  Volume 38 Issue 36 Pages 16098-16120
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (up) We present a combined study of experimental and computational work for a dielectric barrier discharge (DBD) used for CH4 conversion into H2. More specifically, we investigated the influence of N2 as an impurity (150,000 ppm) and as additive gas (199%) on the CH4 conversion and H2 yield. For this purpose, a zero-dimensional chemical kinetics model is applied to study the plasma chemistry. The calculated conversions and yields for various gas mixing ratios are compared to the obtained experimental values, and good agreement is achieved. The study reveals the significance of the View the MathML source and View the MathML source metastable states for the CH4 conversion into H2, based on a kinetic analysis of the reaction chemistry.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Oxford Editor
  Language Wos 000327904500027 Publication Date 2013-10-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.582 Times cited 40 Open Access
  Notes Approved Most recent IF: 3.582; 2013 IF: 2.930
  Call Number UA @ lucian @ c:irua:111372 Serial 1642
Permanent link to this record
 

 
Author Tsirlin, A.A.; Abakumov, A.M.; Ritter, C.; Henry, P.F.; Janson, O.; Rosner, H.
  Title Short-range order of Br and three-dimensional magnetism in (CuBr)LaNb2O7 Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 85 Issue 21 Pages 214427
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (up) We present a comprehensive study of the crystal structure, magnetic structure, and microscopic magnetic model of (CuBr)LaNb2O7, the Br analog of the spin-gap quantum magnet (CuCl) LaNb2O7. Despite similar crystal structures and spin lattices, the magnetic behavior and even peculiarities of the atomic arrangement in the Cl and Br compounds are very different. The high- resolution x-ray and neutron data reveal a split position of Br atoms in (CuBr) LaNb2O7. This splitting originates from two possible configurations developed by [CuBr] zigzag ribbons. While the Br atoms are locally ordered in the ab plane, their arrangement along the c direction remains partially disordered. The predominant and energetically more favorable configuration features an additional doubling of the c lattice parameter that was not observed in (CuCl) LaNb2O7. (CuBr) LaNb2O7 undergoes long-range antiferromagnetic ordering at T-N = 32 K, which is nearly 70% of the leading exchange coupling J4 similar or equal to 48 K. The Br compound does not show any experimental signatures of low-dimensional magnetism because the underlying spin lattice is three-dimensional. The coupling along the c direction is comparable to the couplings in the ab plane, even though the shortest Cu-Cu distance along c (11.69 angstrom) is three times larger than nearest-neighbor distances in the ab plane (3.55 angstrom). The stripe antiferromagnetic long-range order featuring columns of parallel spins in the ab plane and antiparallel spins along c is verified experimentally and confirmed by the microscopic analysis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000305557600002 Publication Date 2012-06-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 5 Open Access
  Notes Approved Most recent IF: 3.836; 2012 IF: 3.767
  Call Number UA @ lucian @ c:irua:100289 Serial 2998
Permanent link to this record
 

 
Author Tiwari, S.; Van de Put, M.L.; Sorée, B.; Vandenberghe, W.G.
  Title Ab initio modeling of few-layer dilute magnetic semiconductors Type P1 Proceeding
  Year 2021 Publication International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 – International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 27-29, 2021, Dallas, TX Abbreviated Journal
  Volume Issue Pages 141-145
  Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract (up) We present a computational model to model the magnetic structure of two-dimensional (2D) dilute-magnetic-semiconductors (DMS) both the monolayers and multilayers using first-principles density functional theory (DFT), as well as their magnetic phase transition as a function of temperature using Monte-Carlo simulations. Using our method, we model the magnetic structure of bulk, bilayer, and monolayer MoS2 substitutionally doped with Fe atoms. We find that the out-of-plane interaction in bilayer MoS2 is weakly ferromagnetic, whereas in bulk MoS2 it is strongly anti-ferromagnetic. Finally, we show that the magnetic order is more robust in bilayer Fe-doped MoS2 compared to the monolayer and results in a room-temperature FM at an atomic substitution of 14-16%.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000766985400034 Publication Date 2021-11-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 978-1-6654-0685-7 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:187291 Serial 7401
Permanent link to this record
 

 
Author Dong, H.M.; Qin, H.; Zhang, J.; Peeters, F.M.; Xu, W.
  Title Terahertz absorption window in bilayer graphene Type H1 Book chapter
  Year 2009 Publication Abbreviated Journal
  Volume Issue Pages 247-248
  Keywords H1 Book chapter; Condensed Matter Theory (CMT)
  Abstract (up) We present a detailed theoretical study of terahertz (THz) optical absorption in bilayer graphene. Considering an air/graphene/dielectric-wafer system, we find that there is an absorption window in the range 3 similar to 30 THz. Such an absorption window is induced by different transition energies required for inter- and intra-band optical absorption in the presence of the Pauli blockade effect. As a result, the position and width of this THz absorption window depend sensitively on temperature and carrier density of the system. These results are pertinent to the applications of recently developed graphene systems as novel optoelectronic devices such as THz photo-detectors.
  Address
  Corporate Author Thesis
  Publisher Ieee Place of Publication New York, N.Y. Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN 978-1-4244-5416-7 Additional Links UA library record; WoS full record;
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:99225 Serial 3506
Permanent link to this record
 

 
Author Han, F.W.; Xu, W.; Li, L.L.; Zhang, C.; Dong, H.M.; Peeters, F.M.
  Title Electronic and transport properties of n-type monolayer black phosphorus at low temperatures Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 95 Issue 95 Pages 115436
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) We present a detailed theoretical study of the electronic and transport properties of monolayer black phosphorus (BP). This study is motivated by recent experimental activities in investigating n-type few-layer BP systems. The electron density of states, the screening length, and the low-temperature electron mobility are calculated for monolayer BP (MLBP). In particular, the electron transport mobilities along the armchair and zigzag directions are examined on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation. The anisotropic electron mobilities in MLBP along different directions are demonstrated where the electron-impurity scattering is considered. Furthermore, we compare the results obtained from two electronic band structures of MLBP and find that the simplified model can describe quite rightly the electronic and transport properties of MLBP. This study is relevant to the application of few-layer BP based electronic systems as advanced electronic devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000399140700012 Publication Date 2017-03-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 12 Open Access
  Notes National Natural Science Foundation of China, 11574319 11304316 11304317 11604380 ; Ministry of Science and Technology of the People's Republic of China, 2011YQ130018 ; Chinese Academy of Sciences; Approved Most recent IF: 3.836
  Call Number CMT @ cmt @ c:irua:142431 Serial 4564
Permanent link to this record
 

 
Author Li, Q.N.; Xu, W.; Xiao, Y.M.; Ding, L.; Van Duppen, B.; Peeters, F.M.
  Title Optical absorption window in Na₃Bi based three-dimensional Dirac electronic system Type A1 Journal article
  Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
  Volume 128 Issue 15 Pages 155707
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) We present a detailed theoretical study of the optoelectronic properties of a Na3Bi based three-dimensional Dirac electronic system (3DDES). The optical conductivity is evaluated using the energy-balance equation derived from a Boltzmann equation, where the electron Hamiltonian is taken from a simplified k . p approach. We find that for short-wavelength irradiation, the optical absorption in Na3Bi is mainly due to inter-band electronic transitions. In contrast to the universal optical conductance observed for graphene, the optical conductivity for Na3Bi based 3DDES depends on the radiation frequency but not on temperature, carrier density, and electronic relaxation time. In the radiation wavelength regime of about 5 mu m, < lambda < 200 mu m, an optical absorption window is found. This is similar to what is observed in graphene. The position and width of the absorption window depend on the direction of the light polarization and sensitively on temperature, carrier density, and electronic relaxation time. Particularly, we demonstrate that the inter-band optical absorption channel can be switched on and off by applying the gate voltage. This implies that similar to graphene, Na3Bi based 3DDES can also be applied in infrared electro-optical modulators. Our theoretical findings are helpful in gaining an in-depth understanding of the basic optoelectronic properties of recently discovered 3DDESs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000585807400004 Publication Date 2020-10-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record
  Impact Factor 3.2 Times cited 1 Open Access
  Notes ; This work was supported by the National Natural Science Foundation of China (NNSFC Nos. U1930116, U1832153, 11764045, 11574319, and 11847054) and the Center of Science and Technology of Hefei Academy of Science (No. 2016FXZY002). Applied Basic Research Foundation of Department of Science and Technology of Yunnan Province (No. 2019FD134), the Department of Education of Yunnan Province (No. 2018JS010), the Young Backbone Teachers Training Program of Yunnan University, and the Department of Science and Technology of Yunnan Province are acknowledged. ; Approved Most recent IF: 3.2; 2020 IF: 2.068
  Call Number UA @ admin @ c:irua:173591 Serial 6571
Permanent link to this record
 

 
Author Li, L.L.; Xu, W.; Peeters, F.M.
  Title Optical conductivity of topological insulator thin films Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 117 Issue 117 Pages 175305
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (up) We present a detailed theoretical study on the optoelectronic properties of topological insulator thin film (TITFs). The k . p approach is employed to calculate the energy spectra and wave functions for both the bulk and surface states in the TITF. With these obtained results, the optical conductivities induced by different electronic transitions among the bulk and surface states are evaluated using the energy-balance equation derived from the Boltzmann equation. We find that for Bi2Se3-based TITFs, three characteristic regimes for the optical absorption can be observed. (i) In the low radiation frequency regime (photon energy (h) over bar omega < 200 meV), the free-carrier absorption takes place due to intraband electronic transitions. An optical absorption window can be observed. (ii) In the intermediate radiation frequency regime (200 < (h) over bar omega < 300 meV), the optical absorption is induced mainly by interband electronic transitions from surface states in the valance band to surface states in the conduction band and an universal value sigma(0) = e(2) / (8<(h)over bar>) for the optical conductivity can be obtained. (iii) In the high radiation frequency regime ((h) over bar omega > 300 meV), the optical absorption can be achieved via interband electronic transitions from bulk and surface states in the valance band to bulk and surface states in the conduction band. A strong absorption peak can be observed. These interesting findings indicate that optical measurements can be applied to identify the energy regimes of bulk and surface states in the TITF. (C) 2015 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000354984100615 Publication Date 2015-05-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited 9 Open Access
  Notes ; This work was supported by the National Natural Science Foundation of China (Grant No. 11304316), Ministry of Science and Technology of China (Grant No. 2011YQ130018), Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 2.068; 2015 IF: 2.183
  Call Number c:irua:126412 Serial 2473
Permanent link to this record
 

 
Author Saniz, R.; Sarmadian, N.; Partoens, B.; Batuk, M.; Hadermann, J.; Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Lamoen, D.
  Title First-principles study of CO and OH adsorption on in-doped ZnO surfaces Type A1 Journal article
  Year 2019 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids
  Volume 132 Issue Pages 172-181
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract (up) We present a first-principles computational study of CO and OH adsorption on non-polar ZnO (10¯10) surfaces doped with indium. The calculations were performed using a model ZnO slab. The position of the In dopants was varied from deep bulk-like layers to

the surface layers. It was established that the preferential location of the In atoms is at the surface by examining the dependence of

the defect formation energy as well as the surface energy on In location. The adsorption sites on the surface of ZnO and the energy

of adsorption of CO molecules and OH-species were determined in connection to In doping. It was found that OH has higher

bonding energy to the surface than CO. The presence of In atoms at the surface of ZnO is favorable for CO adsorption, resulting

in an elongation of the C-O bond and in charge transfer to the surface. The effect of CO and OH adsorption on the electronic

and conduction properties of surfaces was assessed. We conclude that In-doped ZnO surfaces should present a higher electronic

response upon adsorption of CO.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000472124700023 Publication Date 2019-04-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.059 Times cited 7 Open Access Not_Open_Access: Available from 26.04.2021
  Notes FWO-Vlaanderen, G0D6515N ; ERA.Net RUS Plus, 096 ; VSC; HPC infrastructure of the University of Antwerp; FWO-Vlaanderen; Flemish Government-department EWI; Approved Most recent IF: 2.059
  Call Number EMAT @ emat @UA @ admin @ c:irua:159656 Serial 5170
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: