|   | 
Details
   web
Records
Author Vos, P.E.J.; Nikolova, I.; Janssen, S.
Title A high-order model for accurately simulating the size distribution of ultrafine particles in a traffic tunnel Type A1 Journal article
Year 2012 Publication Atmospheric environment : an international journal Abbreviated Journal
Volume 59 Issue Pages 415-425
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract (down) We present a computational model for simulating the dispersion of traffic emitted particulate matter inside a road tunnel, with an emphasis on the number concentration of ultrafine particles (UFP). The model primarily calculates the size distribution of the particle number concentration at each location inside the tunnel. The proposed model differs from existing models in the sense that it uses a continuous representation of the size distribution based upon the high-order finite element method and that it solves the governing equations using the state-of-the-art discontinuous Galerkin method. Next to the traditional transport processes, the model also implements the most important aerosol transformation processes such as coagulation, condensation and dry deposition. It is shown that based upon parametrisations found in literature, the process of condensation in a traffic tunnel cannot properly be modelled. Therefore, we present a correction factor that allows for a better parametrisation. The adequate performance of the model is demonstrated by both a verification study and a validation study. For the verification we show that the discretisation error converges consistently while for the validation we compare the modelled results with a suitable set of data from a UFP measurement campaign in a Taiwanese traffic tunnel. The model is shown to correctly simulate the observed behaviour and by applying a statistical model evaluation we demonstrate that the proposed model meets widely accepted air quality model acceptance criteria. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000309081100047 Publication Date 2012-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-2310 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:101793 Serial 8033
Permanent link to this record
 

 
Author Friedrich, T.; Yu, C.-P.; Verbeek, J.; Pennycook, T.; Van Aert, S.
Title Phase retrieval from 4-dimensional electron diffraction datasets Type P1 Proceeding
Year 2021 Publication Proceedings T2 – IEEE International Conference on Image Processing (ICIP), SEP 19-22, 2021, Electr. network Abbreviated Journal
Volume Issue Pages 3453-3457
Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) We present a computational imaging mode for large scale electron microscopy data, which retrieves a complex wave from noisy/sparse intensity recordings using a deep learning approach and subsequently reconstructs an image of the specimen from the Convolutional Neural Network (CNN) predicted exit waves. We demonstrate that an appropriate forward model in combination with open data frameworks can be used to generate large synthetic datasets for training. In combination with augmenting the data with Poisson noise corresponding to varying dose-values, we effectively eliminate overfitting issues. The U-NET[1] based architecture of the CNN is adapted to the task at hand and performs well while maintaining a relatively small size and fast performance. The validity of the approach is confirmed by comparing the reconstruction to well-established methods using simulated, as well as real electron microscopy data. The proposed method is shown to be effective particularly in the low dose range, evident by strong suppression of noise, good spatial resolution, and sensitivity to different atom types, enabling the simultaneous visualisation of light and heavy elements and making different atomic species distinguishable. Since the method acts on a very local scale and is comparatively fast it bears the potential to be used for near-real-time reconstruction during data acquisition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000819455103114 Publication Date 2021-08-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-6654-4115-5 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:189462 Serial 7089
Permanent link to this record
 

 
Author Tsirlin, A.A.; Abakumov, A.M.; Ritter, C.; Henry, P.F.; Janson, O.; Rosner, H.
Title Short-range order of Br and three-dimensional magnetism in (CuBr)LaNb2O7 Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 21 Pages 214427
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) We present a comprehensive study of the crystal structure, magnetic structure, and microscopic magnetic model of (CuBr)LaNb2O7, the Br analog of the spin-gap quantum magnet (CuCl) LaNb2O7. Despite similar crystal structures and spin lattices, the magnetic behavior and even peculiarities of the atomic arrangement in the Cl and Br compounds are very different. The high- resolution x-ray and neutron data reveal a split position of Br atoms in (CuBr) LaNb2O7. This splitting originates from two possible configurations developed by [CuBr] zigzag ribbons. While the Br atoms are locally ordered in the ab plane, their arrangement along the c direction remains partially disordered. The predominant and energetically more favorable configuration features an additional doubling of the c lattice parameter that was not observed in (CuCl) LaNb2O7. (CuBr) LaNb2O7 undergoes long-range antiferromagnetic ordering at T-N = 32 K, which is nearly 70% of the leading exchange coupling J4 similar or equal to 48 K. The Br compound does not show any experimental signatures of low-dimensional magnetism because the underlying spin lattice is three-dimensional. The coupling along the c direction is comparable to the couplings in the ab plane, even though the shortest Cu-Cu distance along c (11.69 angstrom) is three times larger than nearest-neighbor distances in the ab plane (3.55 angstrom). The stripe antiferromagnetic long-range order featuring columns of parallel spins in the ab plane and antiparallel spins along c is verified experimentally and confirmed by the microscopic analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305557600002 Publication Date 2012-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:100289 Serial 2998
Permanent link to this record
 

 
Author Snoeckx, R.; Setareh, M.; Aerts, R.; Simon, P.; Maghari, A.; Bogaerts, A.
Title Influence of N2 concentration in a CH4/N2 dielectric barrier discharge used for CH4 conversion into H2 Type A1 Journal article
Year 2013 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ
Volume 38 Issue 36 Pages 16098-16120
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) We present a combined study of experimental and computational work for a dielectric barrier discharge (DBD) used for CH4 conversion into H2. More specifically, we investigated the influence of N2 as an impurity (150,000 ppm) and as additive gas (199%) on the CH4 conversion and H2 yield. For this purpose, a zero-dimensional chemical kinetics model is applied to study the plasma chemistry. The calculated conversions and yields for various gas mixing ratios are compared to the obtained experimental values, and good agreement is achieved. The study reveals the significance of the View the MathML source and View the MathML source metastable states for the CH4 conversion into H2, based on a kinetic analysis of the reaction chemistry.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000327904500027 Publication Date 2013-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 40 Open Access
Notes Approved Most recent IF: 3.582; 2013 IF: 2.930
Call Number UA @ lucian @ c:irua:111372 Serial 1642
Permanent link to this record
 

 
Author Yu, CP.; Vega Ibañez, F.; Béché, A.; Verbeeck, J.
Title Quantum wavefront shaping with a 48-element programmable phase plate for electrons Type A1 Journal Article
Year 2023 Publication SciPost Physics Abbreviated Journal SciPost Phys.
Volume 15 Issue Pages 223
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)
Abstract (down) We present a 48-element programmable phase plate for coherent electron waves produced by a combination of photolithography and focused ion beam. This brings the highly successful concept of wavefront shaping from light optics into the realm of electron optics and provides an important new degree of freedom to prepare electron quantum states. The phase plate chip is mounted on an aperture rod placed in the C2 plane of a transmission electron microscope operating in the 100-300 kV range. The phase plate's behavior is characterized by a Gerchberg-Saxton algorithm, showing a phase sensitivity of 0.075 rad/mV at 300 kV, with a phase resolution of approximately 3x10e−3π. In addition, we provide a brief overview of possible use cases and support it with both simulated and experimental results.
Address
Corporate Author Thesis
Publisher SciPost Place of Publication Editor
Language English Wos 001116838500002 Publication Date 2023-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited 1 Open Access
Notes This project is the result of a long-term effort involving many differ- ent sources of funding: JV acknowledges funding from an ERC proof of concept project DLV- 789598 ADAPTEM, as well as a University IOF proof of concept project towards launching the AdaptEM spin-off and the eBEAM project, supported by the European Union’s Horizon 2020 research and innovation program FETPROACT-EIC-07-2020: emerging paradigms and com- munities. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3 and via The IMPRESS project from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. FV, JV, and AB acknowledge funding from G042820N ‘Explor- ing adaptive optics in transmission electron microscopy.’ CPY acknowledges funding from a TOP-BOF project from the University of Antwerp. Approved Most recent IF: 5.5; 2023 IF: NA
Call Number EMAT @ emat @c:irua:202037 Serial 8984
Permanent link to this record
 

 
Author Sun, S.R.; Kolev, S.; Wang, H.X.; Bogaerts, A.
Title Coupled gas flow-plasma model for a gliding arc: investigations of the back-breakdown phenomenon and its effect on the gliding arc characteristics Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 015003
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) We present a 3D and 2D Cartesian quasi-neutral plasma model for a low current argon gliding arc discharge, including strong interactions between the gas flow and arc plasma column.

The 3D model is applied only for a short time of 0.2 ms due to its huge computational cost. It mainly serves to verify the reliability of the 2D model. As the results in 2D compare well with those in 3D, they can be used for a better understanding of the gliding arc basic characteristics. More specifically, we investigate the back-breakdown phenomenon induced by an artificially controlled plasma channel, and we discuss its effect on the gliding arc characteristics. The

back-breakdown phenomenon, or backward-jump motion of the arc, as observed in the experiments, results in a drop of the gas temperature, as well as in a delay of the arc velocity with respect to the gas flow velocity, allowing more gas to pass through the arc, and thus increasing the efficiency of the gliding arc for gas treatment applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000419253000001 Publication Date 2016-11-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 9 Open Access OpenAccess
Notes This work is financially supported by the Methusalem financing, by the Fund for Scientific Research Flanders (FWO) and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. This work was also supported by the National Natural Science Foundation of China (Grant Nos. 11275021, 11575019). S R Sun thanks the financial support from the China Scholarship Council. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:138993 Serial 4337
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.
Title Heating of quasiparticles driven by oscillations of the order parameter in short superconducting microbridges Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 22 Pages 224523-224523,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We predict heating of quasiparticles driven by order parameter oscillations in the resistive state of short superconducting microbridges. The finite relaxation time of the magnitude of the order parameter |Δ| and the dependence of the spectral functions both on |Δ| and the supervelocity Q are the origin of this effect. Our results are opposite to those of Aslamazov and Larkin [ Zh. Eks. Teor. Fiz. 70 1340 (1976)] and Schmid et al. [ Phys. Rev. B 21 5076 (1980)] where cooling of quasiparticles was found.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000292218200010 Publication Date 2011-06-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; This work was supported by the Russian Foundation for Basic Research, Russian Agency of Education under the Federal Target Programme “Scientific and educational personnel of innovative Russia in 2009-2013,” Flemish Science Foundation (FWO-Vl), and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:90924 Serial 1415
Permanent link to this record
 

 
Author Zarenia, M.; Perali, A.; Peeters, F.M.; Neilson, D.
Title Large gap electron-hole superfluidity and shape resonances in coupled graphene nanoribbons Type A1 Journal article
Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 6 Issue 6 Pages 24860
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (down) We predict enhanced electron-hole superfluidity in two coupled electron-hole armchair-edge terminated graphene nanoribbons separated by a thin insulating barrier. In contrast to graphene monolayers, the multiple subbands of the nanoribbons are parabolic at low energy with a gap between the conduction and valence bands, and with lifted valley degeneracy. These properties make screening of the electron-hole interaction much weaker than for coupled electron-hole monolayers, thus boosting the pairing strength and enhancing the superfluid properties. The pairing strength is further boosted by the quasi one-dimensional quantum confinement of the carriers, as well as by the large density of states near the bottom of each subband. The latter magnifies superfluid shape resonances caused by the quantum confinement. Several superfluid partial condensates are present for finite-width nanoribbons with multiple subbands. We find that superfluidity is predominately in the strongly-coupled BEC and BCS-BEC crossover regimes, with large superfluid gaps up to 100 meV and beyond. When the gaps exceed the subband spacing, there is significant mixing of the subbands, a rounding of the shape resonances, and a resulting reduction in the one-dimensional nature of the system.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000374654500002 Publication Date 2016-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 7 Open Access
Notes ; M.Z. acknowledges support by the Flemish Science Foundation (FWO-Vl), the University Research Fund (BOF), and the European Science Foundation (POLATOM). A.P. and D.N. acknowledge support by the University of Camerino FAR project CESEMN. The authors thank the colleagues involved in the MultiSuper International Network (http://www.multisuper.org) for exchange of ideas and suggestions for this work. ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:133619 Serial 4201
Permanent link to this record
 

 
Author Papp, G.; Peeters, F.M.
Title Comment on “Tunable spin-injection and magnetoconductance in a novel 2DEG-ferromagnet structure” [phys. stat. sol. (b) 235, No. 1, 157-161 (2003)] Type A1 Journal article
Year 2004 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 241 Issue 1 Pages 222-223
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We point out that the predicted strong spin-injection effect by Jiang and Jalil [phys. stat. sol. (b) 235, 157 (2003)] for a double magnetic barrier structure is based on a wrong calculation of the transmission probability. We corrected the result and found no significant spin-injection.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000188585200028 Publication Date 2003-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972;1521-3951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 11 Open Access
Notes Approved Most recent IF: 1.674; 2004 IF: 0.982
Call Number UA @ lucian @ c:irua:103257 Serial 413
Permanent link to this record
 

 
Author Guzzinati, G.; Das, P.P.; Zompra, A., A.; Nicopoulos, S.; Verbeeck, J.
Title Electron energy loss spectra of several organic compounds Type Dataset
Year 2020 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract (down) We placed crystals of different compounds to explore the possibility of fingerprinting them through EELS. Here are representative datasets of 7 different compounds: b-cyclodextrin hexacarboxy cyclohexane tannin TH-15 peptide TH-27 peptide two different forms of piroxicam The datasets were collected at EMAT, using a monochromated FEI Titan3 TEM, within the scope of an EUSMI request. More information as well as analysis methodologies adopted for the data are detailed in the paper: Das et al. “Reliable Characterization of Organic & Pharmaceutical Compounds with High Resolution Monochromated EEL Spectroscopy”, Polymers 2020, 12(7), 1434.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:180654 Serial 6866
Permanent link to this record
 

 
Author Albrecht, W.; Deng, T.-S.; Goris, B.; van Huis, M.A.; Bals, S.; van Blaaderen, A.
Title Single Particle Deformation and Analysis of Silica-Coated Gold Nanorods before and after Femtosecond Laser Pulse Excitation Type A1 Journal article
Year 2016 Publication Nano letters Abbreviated Journal Nano Lett
Volume 16 Issue 16 Pages 1818-1825
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) We performed single particle deformation experiments on silica-coated gold nanorods under femtosecond (fs) illumination. Changes in the particle shape were analyzed by electron microscopy and associated changes in the plasmon resonance by electron energy loss spectroscopy. Silica-coated rods were found to be more stable compared to uncoated rods but could still be deformed via an intermediate bullet-like shape for silica shell thicknesses of 14 nm. Changes in the size ratio of the rods after fs-illumination resulted in blue-shifting of the longitudinal plasmon resonances. Two-dimensional spatial mapping of the plasmon resonances revealed that the flat side of the bullet-like particles showed a less pronounced longitudinal plasmonic electric field enhancement. These findings were confirmed by finite-difference time-domain (FDTD) simulations. Furthermore, at higher laser fluences size reduction of the particles was found as well as for particles that were not completely deformed yet.
Address Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University , Princetonplein 5, 3584 CC Utrecht, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Wos 000371946300045 Publication Date 2016-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 55 Open Access OpenAccess
Notes We thank Dr. Nicolas Gauquelin for his assistance during the EELS measurements and Thomas Atlantzis for the high-resolution images of the gold clusters. We furthermore thank Ernest van der Wee for the simulation of the confocal point spread functions. The authors acknowledge financial support from the European Research Council under the European Unions Seventh Framework Programme (FP-2007-2013)/ERC Advanced Grant Agreement #291667 HierarSACol and the Foundation of Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO). The authors furthermore acknowledge financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI). This work was supported by the Flemish Fund for Scientific Research (FWO Vlaanderen) through a postdoctoral research grant to B.G.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 12.712
Call Number c:irua:131924 c:irua:131924 Serial 4016
Permanent link to this record
 

 
Author Van der Paal, J.; Neyts, E.C.; Verlackt, C.C.W.; Bogaerts, A.
Title Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress Type A1 Journal article
Year 2016 Publication Chemical science Abbreviated Journal Chem Sci
Volume 7 Issue 7 Pages 489-498
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) We performed molecular dynamics simulations to investigate the effect of lipid peroxidation products on the structural and dynamic properties of the cell membrane. Our simulations predict that the lipid order in a phospholipid bilayer, as a model system for the cell membrane, decreases upon addition of lipid peroxidation products. Eventually, when all phospholipids are oxidized, pore formation can occur. This will allow reactive species, such as reactive oxygen and nitrogen species (RONS), to enter the cell and cause oxidative damage to intracellular macromolecules, such as DNA or proteins. On the other hand, upon increasing the cholesterol fraction of lipid bilayers, the cell membrane order increases, eventually reaching a certain threshold, from which cholesterol is able to protect the membrane against pore formation. This finding is crucial for cancer treatment by plasma technology, producing a large number of RONS, as well as for other cancer treatment methods that cause an increase in the concentration of extracellular RONS. Indeed, cancer cells contain less cholesterol than their healthy counterparts. Thus, they will be more vulnerable to the consequences of lipid peroxidation, eventually enabling the penetration of RONS into the interior of the cell, giving rise to oxidative stress, inducing pro-apoptotic factors. This provides, for the first time, molecular level insight why plasma can selectively treat cancer cells, while leaving their healthy counterparts undamaged, as is indeed experimentally demonstrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366826900058 Publication Date 2015-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.668 Times cited 106 Open Access
Notes The authors acknowledge nancial support from the Fund for Scientic Research (FWO) Flanders, grant number G012413N. The calculations were performed in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 8.668
Call Number c:irua:131058 Serial 3986
Permanent link to this record
 

 
Author Ghasemitarei, M.; Yusupov, M.; Razzokov, J.; Shokri, B.; Bogaerts, A.
Title Effect of oxidative stress on cystine transportation by xC‾ antiporter Type A1 Journal article
Year 2019 Publication Archives of biochemistry and biophysics Abbreviated Journal Arch Biochem Biophys
Volume 674 Issue Pages 108114
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) We performed computer simulations to investigate the effect of oxidation on the extracellular cystine (CYC) uptake by the xC− antiporter. The latter is important for killing of cancer cells. Specifically, applying molecular dynamics (MD) simulations we studied the transport of CYC across xCT, i.e., the light subunit of the xC− antiporter, in charge of bidirectional transport of CYC and glutamate. We considered the outward facing (OF) configuration of xCT, and to study the effect of oxidation, we modified the Cys327 residue, located in the vicinity of the extracellular milieu, to cysteic acid (CYO327). Our computational results showed that oxidation of Cys327 results in a free energy barrier for CYC translocation, thereby blocking the access of CYC to the substrate binding site of the OF system. The formation of the energy barrier was found to be due to the conformational changes in the channel. Analysis of the MD trajectories revealed that the reorganization of the side chains of the Tyr244 and CYO327 residues play a critical role in the OF channel blocking. Indeed, the calculated distance between Tyr244 and either Cys327 or CYO327 showed a narrowing of the channel after oxidation. The obtained free energy barrier for CYC translocation was found to be 33.9kJmol−1, indicating that oxidation of Cys327, by e.g., cold atmospheric plasma, is more effective in inhibiting the xC− antiporter than in the mutation of this amino acid to Ala (yielding a barrier of 32.4kJmol−1). The inhibition of the xC− antiporter may lead to Cys starvation in some cancer cells, eventually resulting in cancer cell death.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000525439700011 Publication Date 2019-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-9861 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.165 Times cited Open Access
Notes Ministry of Science, Research and Technology of Iran; University of Antwerp; Research Foundation − Flanders, 1200219N ; Universiteit Antwerpen; Hercules Foundation; Flemish Government; UA; M. G. acknowledges funding from the Ministry of Science, Research and Technology of Iran and from the University of Antwerp in Belgium. M. Y. gratefully acknowledges financial support from the Research Foundation − Flanders (FWO), grant number 1200219N. The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Finally, we thank A. S. Mashayekh Esfehan and A. Mohseni for their important comments on the manuscript. Approved Most recent IF: 3.165
Call Number PLASMANT @ plasmant @c:irua:163474 Serial 5372
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Hydrogenation of bilayer graphene and the formation of bilayer graphane from first principles Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 24 Pages 245422,1-245422,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We performed ab initio density-functional theory calculations to investigate the process of hydrogenation of a bilayer of graphene. 50% hydrogen coverage is possible in case that the hydrogen atoms are allowed to adsorb on both sides of the bilayer. In this case interlayer chemical bonding occurs which stabilizes the structure. At maximum coverage, a bilayer of graphane is formed which has properties that are similar to those of a single layer of graphane.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000273229200126 Publication Date 2009-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 113 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:80578 Serial 1535
Permanent link to this record
 

 
Author Petrovic, M.D.; Peeters, F.M.; Chaves, A.; Farias, G.A.
Title Conductance maps of quantum rings due to a local potential perturbation Type A1 Journal article
Year 2013 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 25 Issue 49 Pages 495301-495309
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We performed a numerical simulation of the dynamics of a Gaussian shaped wavepacket inside a small sized quantum ring, smoothly connected to two leads and exposed to a perturbing potential of a biased atomic force microscope tip. Using the Landauer formalism, we calculated conductance maps of this system in the case of single and two subband transport. We explain the main features in the conductance maps as due to the AFM tip influence on the wavepacket phase and amplitude. In the presence of an external magnetic field, the tip modifies the phi(0) periodic Aharonov-Bohm oscillation pattern into a phi(0)/2 periodic Al'tshuler-Aronov-Spivak oscillation pattern. Our results in the case of multiband transport suggest tip selectivity to higher subbands, making them more observable in the total
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000327181400002 Publication Date 2013-11-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 12 Open Access
Notes ; This work was supported by the Methusalem programme of the Flemish government, the CNPq-FWO bilateral programme and PNPD and FUNCAP/PRONEX grants. ; Approved Most recent IF: 2.649; 2013 IF: 2.223
Call Number UA @ lucian @ c:irua:112694 Serial 478
Permanent link to this record
 

 
Author de Aquino, B.R.C.H.T.; Cabral, L.R.E.; de Souza Silva, C.C.; Albino Aguiar, J.; Milošević, M.V.; Peeters, F.M.
Title Dynamic phases of vortex-antivortex molecules in a Corbino disk with magnetic dipole on top Type A1 Journal article
Year 2012 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 479 Issue Pages 115-118
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We performed a molecular dynamics study of vortex-antivortex motion in a superconducting disk with a magnetic dot on top, in the Corbino disk geometry. In this system, vortices and antivortices are forced to move in opposite azimuthal directions by a radially applied current. The dot is magnetized out of plane in order to stabilize composite vortex-antivortex configurations, with vortices closer to the center of the disk and antivortices near to the disk edge. We observe that the interplay between the spatially inhomogeneous current distribution, the screening currents induced by the dipole, and the attractive vortex-antivortex (v-av) interaction result in different dynamical phases. At low current values, antivortices which are distributed at outer rings – remain bounded to vortices at inner rings and the whole configuration rotates rigidly. Above a threshold current, vortices and antivortices unbind and move at different angular velocities in a highly correlated way. Finally, at very strong drive, vortex-antivortex attraction is overhelmed by the external current Lorentz force, causing them to move in opposite directions. (C) 2011 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited Open Access
Notes Approved Most recent IF: 1.404; 2012 IF: 0.718
Call Number UA @ lucian @ c:irua:101870 Serial 764
Permanent link to this record
 

 
Author Scarrozza, M.; Pourtois, G.; Houssa, M.; Heyns, M.; Stesmans, A.
Title Oxidation of the GaAs(001) surface : insights from first-principles calculations Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 19 Pages 195307-195307,8
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) We performed a detailed investigation of the oxidation of the technologically relevant GaAs(001)-beta 2(2x4) surface via density functional calculations. The purpose is to gain insights on the atomistic mechanisms and local bondings that underlie the degradation of the surface properties once exposed to oxygen. The study comprises the adsorption of single O atoms, through the sampling of several adsorption sites, and the subsequent formation of the O adsorbate at increasing coverage by taking into account multiple-atom adsorption. Based on the evaluation of the energetics and the structural properties of the atomistic models generated, the results here reported delineate a consistent picture of the initial stage of the surface oxidation: (i) at low coverage, in the limit of single O insertions, oxygen is incorporated on the surface forming a twofold-bridging Ga-O-As bond; (ii) at increasing coverage, as multiple O atoms are involved, this is accompanied by the formation of a threefold-coordinated bond (with two Ga and one As atoms); (iii) the latter has important implications regarding the electronic properties of the adsorbate since this O bonding may result in the formation of As dangling bonds. Moreover, a clear trend of increased energy gain for the incorporation of neighboring O atoms compared to single O insertions indicates that the formation of oxide clusters is favored over a regime of uniform oxidation. Our findings provide a detailed description of the O bonding and stress the importance of modeling the adsorption of multiple O atoms for an accurate description of the surface oxidation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303755700006 Publication Date 2012-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:99122 Serial 2538
Permanent link to this record
 

 
Author Chaves, A.; Moura, V.N.; Linard, F.J.A.; Covaci, L.; Milošević, M.V.
Title Tunable magnetic focusing using Andreev scattering in superconductor-graphene hybrid devices Type A1 Journal article
Year 2020 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 128 Issue 12 Pages 124303
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract (down) We perform the wavepacket dynamics simulation of a graphene-based device where propagating electron trajectories are tamed by an applied magnetic field toward a normal/superconductor interface. The magnetic field controls the incidence angle of the incoming electronic wavepacket at the interface, which results in the tunable electron-hole ratio in the reflected wave function due to the angular dependence of the Andreev reflection. Here, mapped control of the quasiparticle trajectories by the external magnetic field not only defines an experimental probe for fundamental studies of the Andreev reflection in graphene but also lays the foundation for further development of magnetic focusing devices based on nanoengineered superconducting two-dimensional materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000576393200002 Publication Date 2020-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited 1 Open Access Not_Open_Access
Notes ; This work was supported by the Brazilian Council for Research (CNPq) through the PRONEX/FUNCAP and PQ programs and by the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 3.2; 2020 IF: 2.068
Call Number UA @ admin @ c:irua:172730 Serial 6639
Permanent link to this record
 

 
Author Milošević, M.V.; Kanda, A.; Hatsumi, S.; Peeters, F.M.; Ootuka, Y.
Title Local current injection into mesoscopic superconductors for the manipulation of quantum states Type A1 Journal article
Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 103 Issue 21 Pages 217003-217003,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We perform strategic current injection in a small mesoscopic superconductor and control the (non)equilibrium quantum states in an applied homogeneous magnetic field. In doing so, we realize a current-driven splitting of multiquanta vortices, current-induced transitions between states with different angular momenta, and current-controlled switching between otherwise degenerate quantum states. These fundamental phenomena form the basis for the electronic and logic applications discussed, and are confirmed in both theoretical simulations and multiple-small-tunnel-junction transport measurements.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000272054300044 Publication Date 2009-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 48 Open Access
Notes Approved Most recent IF: 8.462; 2009 IF: 7.328
Call Number UA @ lucian @ c:irua:94498 Serial 1826
Permanent link to this record
 

 
Author Razzokov, J.; Yusupov, M.; Vanuytsel, S.; Neyts, E.C.; Bogaerts, A.
Title Phosphatidylserine flip-flop induced by oxidation of the plasma membrane: a better insight by atomic scale modeling Type A1 Journal article
Year 2017 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 14 Issue 10 Pages 1700013
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) We perform molecular dynamics simulations to study the flip-flop motion of phosphatidylserine (PS) across the plasma membrane upon increasing oxidation degree of the membrane. Our computational results show that an increase of the oxidation degree in the lipids leads to a decrease of the free energy barrier for translocation of PS through the membrane. In other words, oxidation of the lipids facilitates PS flip-flop motion across the membrane, because in native phospholipid bilayers this is only a “rare event” due to the high energy barriers for the translocation of PS. The present study provides an atomic-scale insight into the mechanisms of the PS flip-flop upon oxidation of lipids, as produced for example by cold atmospheric plasma, in living cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413045800010 Publication Date 2017-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 9 Open Access Not_Open_Access
Notes Fonds Wetenschappelijk Onderzoek, 1200216N ; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:149567 Serial 4910
Permanent link to this record
 

 
Author Kourmoulakis, G.; Michail, A.; Paradisanos, I.; Marie, X.; Glazov, M.M.; Jorissen, B.; Covaci, L.; Stratakis, E.; Papagelis, K.; Parthenios, J.; Kioseoglou, G.
Title Biaxial strain tuning of exciton energy and polarization in monolayer WS2 Type A1 Journal Article
Year 2023 Publication Applied Physics Letters Abbreviated Journal
Volume 123 Issue 22 Pages
Keywords A1 Journal Article; Condensed Matter Theory (CMT) ;
Abstract (down) We perform micro-photoluminescence and Raman experiments to examine the impact of biaxial tensile strain on the optical properties of WS2 monolayers. A strong shift on the order of −130 meV per % of strain is observed in the neutral exciton emission at room temperature. Under near-resonant excitation, we measure a monotonic decrease in the circular polarization degree under the applied strain. We experimentally separate the effect of the strain-induced energy detuning and evaluate the pure effect coming from the biaxial strain. The analysis shows that the suppression of the circular polarization degree under the biaxial strain is related to an interplay of energy and polarization relaxation channels as well as to variations in the exciton oscillator strength affecting the long-range exchange interaction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001124156400003 Publication Date 2023-11-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Additional Links UA library record; WoS full record
Impact Factor 4 Times cited Open Access
Notes Hellenic Foundation for Research and Innovation, HFRI-FM17-3034 ; Approved Most recent IF: 4; 2023 IF: 3.411
Call Number CMT @ cmt @c:irua:202178 Serial 8991
Permanent link to this record
 

 
Author Schoeters, B.; Leenaerts, O.; Pourtois, G.; Partoens, B.
Title Ab-initio study of the segregation and electronic properties of neutral and charged B and P dopants in Si and Si/SiO2 nanowires Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 118 Issue 118 Pages 104306
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) We perform first-principles calculations to investigate the preferred positions of B and P dopants, both neutral and in their preferred charge state, in Si and Si/SiO2 core-shell nanowires (NWs). In order to understand the observed trends in the formation energy, we isolate the different effects that determine these formation energies. By making the distinction between the unrelaxed and the relaxed formation energy, we separate the impact of the relaxation from that of the chemical environment. The unrelaxed formation energies are determined by three effects: (i) the effect of strain caused by size mismatch between the dopant and the host atoms, (ii) the local position of the band edges, and (iii) a screening effect. In the case of the SiNW (Si/SiO2 NW), these effects result in an increase of the formation energy away from the center (interface). The effect of relaxation depends on the relative size mismatch between the dopant and host atoms. A large size mismatch causes substantial relaxation that reduces the formation energy considerably, with the relaxation being more pronounced towards the edge of the wires. These effects explain the surface segregation of the B dopants in a SiNW, since the atomic relaxation induces a continuous drop of the formation energy towards the edge. However, for the P dopants, the formation energy starts to rise when moving from the center but drops to a minimum just next to the surface, indicating a different type of behavior. It also explains that the preferential location for B dopants in Si/SiO2 core-shell NWs is inside the oxide shell just next to the interface, whereas the P dopants prefer the positions next to the interface inside the Si core, which is in agreement with recent experiments. These preferred locations have an important impact on the electronic properties of these core-shell NWs. Our simulations indicate the possibility of hole gas formation when B segregates into the oxide shell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000361636900031 Publication Date 2015-09-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 3 Open Access
Notes This work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish government and the Universiteit Antwerpen. Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:128729 Serial 4056
Permanent link to this record
 

 
Author Yusupov, M.; Lackmann, J.-W.; Razzokov, J.; Kumar, S.; Stapelmann, K.; Bogaerts, A.
Title Impact of plasma oxidation on structural features of human epidermal growth factor Type A1 Journal article
Year 2018 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym
Volume 15 Issue 8 Pages 1800022
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract (down) We perform computer simulations supported by experiments to investigate the oxidation of an important signaling protein, that is, human epidermal growth factor (hEGF), caused by cold atmospheric plasma (CAP) treatment. Specifically, we study the conformational changes of hEGF with different degrees of oxidation, to mimic short and long CAP treatment times. Our results indicate that the oxidized structures become more flexible, due to their conformational changes and breakage of the disulfide bonds, especially at higher oxidation degrees. MM/GBSA calculations reveal that an increasing oxidation level leads to a lower binding free energy of hEGF with its receptor. These results help to understand the fundamentals of the use of CAP for wound healing versus cancer treatment at short and longer treatment times.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441895700004 Publication Date 2018-05-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.846 Times cited 7 Open Access Not_Open_Access
Notes Fonds Wetenschappelijk Onderzoek, 1200216N ; Bundesministerium für Bildung und Forschung, 03Z22DN12 ; Approved Most recent IF: 2.846
Call Number PLASMANT @ plasmant @c:irua:152815 Serial 5008
Permanent link to this record
 

 
Author Austing, D.G.; Payette, C.; Nair, S.V.; Yu, G.; Gupta, J.A.; Partoens, B.; Amaha, S.; Tarucha, S.
Title Scheme for coherently quenching resonant current in a three-level quantum dot energy level mixer Type A1 Journal article
Year 2009 Publication Physica status solidi: C: conferences and critical reviews Abbreviated Journal
Volume 6 Issue 4 Pages 940-943
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We outline a scheme to create a dark state by three-level mixing that is potentially a useful tool for quantum coherent transport. Magnetic-field-induced intra-dot level mixing can lead to rich quantum superposition phenomena between three approaching single-particle states in a quantum dot when probed by the ground state of an adjacent weakly coupled quantum dot in the single-electron resonant tunnelling regime. The mixing relies on non-negligible anharmonicity and anisotropy in confining potentials of realistic quantum dots. Anti-crossing and transfer of strengths between resonances can be understood with a simple coherent level mixing model. Superposition can lead to the formation of a dark state by complete cancellation of an otherwise strong resonance. This is an all-electrical analogue of coherent population trapping seen in three-level-systems from quantum and atom optics.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000266597600040 Publication Date 2008-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6351;1610-1642; ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:86927 Serial 2953
Permanent link to this record
 

 
Author Ye, M.; Schroeder, J.; Mehbod, M.; Deltour, R.; Naessens, G.; Duvigneaud, P.H.; Verbist, K.; Van Tendeloo, G.
Title Structural properties of Zn-substituted epitaxial YBa2Cu3O7-\delta thin films Type A1 Journal article
Year 1996 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 9 Issue 7 Pages 543-548
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) We optimized the deposition of YBa2(Cu1-xZnx)(3)O-7-delta thin-films using inverted cylindrical magnetron sputtering and report here a detailed structural study, especially in relation to crystal growth, associated surface morphology, Y2O3 precipitation and other secondary phases important for flux pinning. We find that the epitaxial quality of the Zn-substituted YBa2Cu3O7-delta films is decreased compared with high-quality pure YBa2Cu3O7-delta films prepared under identical conditions. The pure films have smoother surfaces, while those of Zn-substituted films contain pinholes and outgrowths. Secondary phases and a-axis grains were observed in the Zn-substituted films. Y2O3 precipitates with typical dimensions of 50-100 Angstrom have been found in both pure and Zn-substituted samples. However, their density of about 10(23) m(-3), observed in the pure films, is significantly reduced in the Zn-substituted films when increasing the Zn concentration up to 4%.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos A1996UX28600006 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.325 Times cited 7 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:15464 Serial 3257
Permanent link to this record
 

 
Author Ding, F.; Li, B.; Akopian, N.; Perinetti, U.; Chen, Y.H.; Peeters, F.M.; Rastelli, A.; Zwiller, V.; Schmidt, O.G.
Title Single neutral excitons confined in AsBr3 in situ etched InGaAs quantum rings Type A1 Journal article
Year 2011 Publication Journal of nanoelectronics and optoelectronics Abbreviated Journal J Nanoelectron Optoe
Volume 6 Issue 1 Pages 51-57
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract (down) We observe the evolution of single self-assembled semiconductor quantum dots into quantum rings during AsBr3 in situ etching. The direct three-dimensional imaging of In(Ga)As nanostructures embedded in GaAs matrix is demonstrated by selective wet chemical etching combined with atomic force microscopy. Single neutral excitons confined in these quantum rings are studied by magneto-photoluminescence. Oscillations in the exciton radiative recombination energy and in the emission intensity are observed under an applied magnetic field. Further, we demonstrate that the period of the oscillations can be tuned by a gate potential that modifies the exciton confinement. The experimental results, combined with calculations, indicate that the exciton Aharonov-Bohm effect may account for the observed effects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000290692200005 Publication Date 2011-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1555-130X;1555-1318; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.497 Times cited 3 Open Access
Notes ; We acknowledge L. P. Kouwenhoven and Z. G. Wang for support, C. C. Bof Bufon, C. Deneke, V. Fomin, A. Govorov, S. Kiravittaya, and Wen-Hao Chang for their help and discussions. We are grateful for the financial support of NWO (VIDI), the CAS-MPG programm, the DFG (FOR730), BMBF (No. 01BM459), NSFC China (60625402), and Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 0.497; 2011 IF: 0.556
Call Number UA @ lucian @ c:irua:90187 Serial 3025
Permanent link to this record
 

 
Author Payette, C.; Yu, G.; Gupta, J.A.; Austing, D.G.; Nair, S.V.; Partoens, B.; Amaha, S.; Tarucha, S.
Title Coherent three-level mixing in an electronic quantum dot Type A1 Journal article
Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 102 Issue 2 Pages 026808,1-026808,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We observe magnetic-field-induced level mixing and quantum superposition phenomena between three approaching single-particle states in a quantum dot probed via the ground state of an adjacent quantum dot by single-electron resonant tunneling. The mixing is attributed to anisotropy and anharmonicity in realistic dot confining potentials. The pronounced anticrossing and transfer of strengths (both enhancement and suppression) between resonances can be understood with a simple coherent level mixing model. Superposition can lead to the formation of a dark state by complete cancellation of an otherwise strong resonance, an effect resembling coherent population trapping in a three-level-system of quantum and atom optics.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000262535900060 Publication Date 2009-01-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 26 Open Access
Notes Approved Most recent IF: 8.462; 2009 IF: 7.328
Call Number UA @ lucian @ c:irua:76019 Serial 382
Permanent link to this record
 

 
Author Dantas, D.S.; Lima, A.R.P.; Chaves, A.; Almeida, C.A.S.; Farias, G.A.; Milošević, M.V.
Title Bound vortex states and exotic lattices in multicomponent Bose-Einstein condensates : the role of vortex-vortex interaction Type A1 Journal article
Year 2015 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 91 Issue 91 Pages 023630
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We numerically study the vortex-vortex interaction in multicomponent homogeneous Bose-Einstein condensates within the realm of the Gross-Pitaevskii theory. We provide strong evidence that pairwise vortex interaction captures the underlying mechanisms which determine the geometric configuration of the vortices, such as different lattices in many-vortex states, as well as the bound vortex states with two (dimer) or three (trimer) vortices. Specifically, we discuss and apply our theoretical approach to investigate intra- and intercomponent vortex-vortex interactions in two- and three-component Bose-Einstein condensates, thereby shedding light on the formation of the exotic vortex configurations. These results correlate with current experimental efforts in multicomponent Bose-Einstein condensates and the understanding of the role of vortex interactions in multiband superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000350255200014 Publication Date 2015-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.925 Times cited 12 Open Access
Notes ; This work was supported by the National Council for Scientific and Technological Development (CNPq-Brazil), the Coordination for the Improvement of Higher Education Personnel (CAPES-Brazil), Research Foundation Flanders (FWO), and the bilateral FWO-CNPq program between Flanders and Brazil. M.V.M. acknowledges support from the CAPES-PVE program (Grant No. BEX1392/11-5). ; Approved Most recent IF: 2.925; 2015 IF: 2.808
Call Number c:irua:124907 Serial 252
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P.
Title Majorana fermion states and fractional flux periodicity in mesoscopic d-wave superconducting loops with spin-orbit interaction Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 1 Pages 014522
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We numerically investigate the spin-orbit (SO) coupling effect on the magnetic flux evolution of energy and supercurrent in mesoscopic d-wave superconducting loops by solving the spin-generalized Bogoliubov-de Gennes equations self-consistently. It is found that the energy spectrum splits when the SO interaction is involved and the Majorana zero mode can be realized in the [100] edges of square systems for an appropriate SO coupling strength. Superconducting phase transitions appear when the energy gap closes, accompanied by energy jumps between different energy parabolas in the ground state, which provides a possible mechanism to support fractional flux periodicity of supercurrent. Moreover, in the case of rectangular loops with SO coupling, the jumps of the ground-state energy gradually disappear by increasing the ratio of length to height of the sample, and a paramagnetic response with opposite direction of the screening current around zero flux value can occur in such systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000341233800010 Publication Date 2014-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by Visiting Scholar Program of Shanghai Municipal Education Commission, by Innovation Program of Shanghai Municipal Education Commission under Grant No. 13YZ006, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119266 Serial 1938
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P.
Title Mixed pairing symmetries and flux-induced spin current in mesoscopic superconducting loops with spin correlations Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 214504
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) We numerically investigate the mixed pairing symmetries inmesoscopic superconducting loops in the presence of spin correlations by solving the Bogoliubov-de Gennes equations self-consistently. The spatial variations of the superconducting order parameters and the spontaneous magnetization are determined by the band structure. When the threaded magnetic flux turns on, the charge and spin currents both emerge and depict periodic evolution. In the case of a mesoscopic loop with dominant triplet p(x) +/- ip(y)-wave symmetry, a slight change of the chemical potential may lead to novel flux-dependent evolution patterns of the ground-state energy and the magnetization. The spin-polarized currents show pronounced quantum oscillations with fractional periods due to the appearance of energy jumps in flux, accompanied with a steplike feature of the enhanced spin current. Particularly, at some appropriate flux, the peaks of the zero-energy local density of states clearly indicate the occurrence of the odd-frequency pairing. In the case of a superconducting loop with dominant singlet d(x2-y2)-wave symmetry, the spatial profiles of the zero-energy local density of states and the magnetization show spin-dependent features on different sample diagonals. Moreover, the evolution of the flux-induced spin current always exhibits an hc/e periodicity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000355647100003 Publication Date 2015-06-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 15 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China under Grants No. 61371020 and No. 61271163, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:126433 Serial 2089
Permanent link to this record