|   | 
Details
   web
Records
Author Van Duppen, B.; Vasilopoulos, P.; Peeters, F.M.
Title Spin and valley polarization of plasmons in silicene due to external fields Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 3 Pages 035142
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The electronic properties of the two-dimensional material silicene are strongly influenced by the application of a perpendicular electric field E-z and of an exchange field M due to adatoms positioned on the surface or a ferromagnetic substrate. Within the random phase approximation, we investigate how electron-electron interactions are affected by these fields and present analytical and numerical results for the dispersion of plasmons, their lifetime, and their oscillator strength. We find that the combination of the fields E-z and M brings a spin and valley texture to the particle-hole excitation spectrum and allows the formation of spin-and valley-polarized plasmons. When the Fermi level lies in the gap of one spin in one valley, the intraband region of the corresponding spectrum disappears. For zero E-z and finite M the spin symmetry is broken and spin polarization is possible. The lifetime and oscillator strength of the plasmons are shown to depend strongly on the number of spin and valley type electrons that form the electron-hole pairs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000339974700001 Publication Date 2014-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 49 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant grant to B.V.D., the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:118776 Serial 3080
Permanent link to this record
 

 
Author Tahir, M.; Vasilopoulos, P.; Peeters, F.M.
Title Magneto-optical transport properties of monolayer phosphorene Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 045420
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The electronic properties of monolayer phosphorene are exotic due to its puckered structure and large intrinsic direct band gap. We derive and discuss its band structure in the presence of a perpendicular magnetic field. Further, we evaluate the magneto-optical Hall and longitudinal optical conductivities as functions of temperature, magnetic field, and Fermi energy, and show that they are strongly influenced by the magnetic field. The imaginary part of the former and the real part of the latter exhibit regular interband oscillations as functions of the frequency omega in the range (h) over bar omega similar to 1.5-2 eV. Strong intraband responses in the latter and weak ones in the former occur at much lower frequencies. The magneto-optical response can be tuned in the microwave-to-terahertz and visible frequency ranges in contrast with a conventional two-dimensional electron gas or graphene in which the response is limited to the terahertz regime. This ability to isolate carriers in an anisotropic structure may make phosphorene a promising candidate for new optical devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000358373600003 Publication Date 2015-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 68 Open Access
Notes ; This work was supported by the the Canadian NSERC Grant No. OGP0121756 (M.T., P.V.) and by the Flemish Science Foundation (FWO-Vl) (F.M.P.). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:127192 Serial 1903
Permanent link to this record
 

 
Author Smolin, S.Y.; Choquette, A.K.; Wilks, R.G.; Gauquelin, N.; Félix, R.; Gerlach, D.; Ueda, S.; Krick, A.L.; Verbeeck, J.; Bär, M.; Baxter, J.B.; May, S.J.
Title Energy Level Alignment and Cation Charge States at the LaFeO3/LaMnO3(001) Heterointerface Type A1 Journal article
Year 2017 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces
Volume 4 Issue 4 Pages 1700183
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) The electronic properties of LaFeO 3 /LaMnO 3 epitaxial heterojunctions are investigated to determine the valence and conduction band offsets and the nominal Mn and Fe valence states at the interface. Studying a systematic series of (LaFeO 3 ) n /(LaMnO 3 ) m bilayers (m ≈ 50) epitaxially grown in the (001) orientation using molecular beam epitaxy, layer-resolved electron energy loss spectroscopy reveals a lack of significant interfacial charge transfer, with a nominal 3+ valence state observed for both Mn and Fe across the interface. Through a combination of variable angle spectroscopic ellipsometry and hard X-ray photoelectron spectroscopy, type I energy level alignments are obtained at the LaFeO 3 /LaMnO 3 interface with positive valence and conduction band offsets of (1.20 ± 0.07) eV and (0.5–0.7 ± 0.3) eV, respectively, with minimal band bending. Variable temperature resistivity measurements reveal that the bilayers remain insulating and that the presence of the heterojunction does not result in a conducting interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000406068400011 Publication Date 2017-04-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2196-7350 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.279 Times cited 14 Open Access Not_Open_Access
Notes The authors thank Dmytro Nykypanchuk for assistance with the near- infrared ellipsometry measurement of the LaMnO 3 film. S.Y.S., A.K.C., J.B.B, and S.J.M. acknowledge funding from the National Science Foundation under grant number ECCS-1201957. S.Y.S. acknowledges additional funding from the German Academic Exchange Service (DAAD) through the Research Internships in Science and Engineering (RISE) professional program 2015 ID 5708457. A.L.K. was funded by the National Science Foundation under grant number DMR-1151649. J.V. and N.G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp and from the FWO project G.0044.13N (Charge ordering). The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Ellipsometry measurements of the LaMnO 3 film were carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-ACO2-98CH10886. S.U. would like to thank the staff of HiSOR, Hiroshima University, and JAEA/Spring-8 for the development of HAXPES at BL15XU of SPring-8. The HAXPES measurements were performed with approval of NIMS Synchrotron X-ray Station (Proposal No. 2015B4601), and were partly supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. The authors also thank HZB for the allocation of synchrotron radiation beamtime for HAXPES/XANES measurements. R.G.W., R.F, and M.B. are grateful to the Impuls- und Vernetzungsfonds of the Helmholtz Association (VH-NG-423).; National Science Foundation, ECCS-1201957 DMR-1151649 ; Deutscher Akademischer Austauschdienst, 2015 ID 5708457 ; GOA project; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; Flemish Government; U.S. Department of Energy, DE-ACO2-98CH10886 ; Vernetzungsfonds of the Helmholtz Association, VH-NG-423 ; Approved Most recent IF: 4.279
Call Number EMAT @ emat @ c:irua:142346UA @ admin @ c:irua:142346 Serial 4553
Permanent link to this record
 

 
Author Beheshtian, J.; Sadeghi, A.; Neek-Amal, M.; Michel, K.H.; Peeters, F.M.
Title Induced polarization and electronic properties of carbon-doped boron nitride nanoribbons Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 19 Pages 195433-195438
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The electronic properties of boron nitride nanoribbons (BNNRs) doped with a line of carbon atoms are investigated using density functional calculations. By replacing a line of alternating B and N atoms with carbons, three different configurations are possible depending on the type of the atoms which bond to the carbons. We found very different electronic properties for these configurations: (i) the NCB arrangement is strongly polarized with a large dipole moment having an unexpected direction, (ii) the BCB and NCN arrangements are nonpolar with zero dipole moment, (iii) the doping by a carbon line reduces the band gap regardless of the local arrangement of the borons and the nitrogens around the carbon line, and (iv) the polarization and energy gap of the carbon-doped BNNRs can be tuned by an electric field applied parallel to the carbon line. Similar effects were found when either an armchair or zigzag line of carbon was introduced.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000311694200006 Publication Date 2012-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes ; We would like to thank J. M. Pereira and S. Goedecker for helpful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl), the ESF-EuroGRAPHENE project CONGRAN. M. N.-A is supported by EU-Marie Curie IIF postdoc Fellowship/299522. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:105136 Serial 1603
Permanent link to this record
 

 
Author Neek-Amal, M.; Covaci, L.; Shakouri, K.; Peeters, F.M.
Title Electronic structure of a hexagonal graphene flake subjected to triaxial stress Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 11 Pages 115428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The electronic properties of a triaxially strained hexagonal graphene flake with either armchair or zigzag edges are investigated using molecular dynamics simulations and tight-binding calculations. We found that (i) the pseudomagnetic field in strained graphene flakes is not uniform neither in the center nor at the edge of zigzag terminated flakes, (ii) the pseudomagnetic field is almost zero in the center of armchair terminated flakes but increases dramatically near the edges, (iii) the pseudomagnetic field increases linearly with strain, for strains lower than 15% but increases nonlinearly beyond it, (iv) the local density of states in the center of the zigzag hexagon exhibits pseudo-Landau levels with broken sublattice symmetry in the zeroth pseudo-Landau level, and in addition there is a shift in the Dirac cone due to strain induced scalar potentials, and (v) there is size effect in pseudomagnetic field. This study provides a realistic model of the electronic properties of inhomogeneously strained graphene where the relaxation of the atomic positions is correctly included together with strain induced modifications of the hopping terms up to next-nearest neighbors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000324690400008 Publication Date 2013-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M.N.-A.), the ESF EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111168 Serial 1011
Permanent link to this record
 

 
Author Macke, S.; Radi, A.; Hamann-Borrero, J.E.; Verna, A.; Bluschke, M.; Brück, S.; Goering, E.; Sutarto, R.; He, F.; Cristiani, G.; Wu, M.; Benckiser, E.; Habermeier, H.-U.; Logvenov, G.; Gauquelin, N.; Botton, G.A; Kajdos, A.P.; Stemmer, S.; Sawatzky,G.A.; Haverkort, M.W.; Keimer, B.; Hinkov, V.
Title Element Specific Monolayer Depth Profiling Type A1 Journal Article
Year 2014 Publication Advanced Materials Abbreviated Journal Adv Mater
Volume 26 Issue 38 Pages 6554-6559
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)
Abstract (down) The electronic phase behavior and functionality of interfaces and surfaces in complex materials are strongly correlated to chemical composition profiles, stoichiometry and intermixing. Here a novel analysis scheme for resonant X-ray reflectivity maps is introduced to determine such profiles, which is element specific and non-destructive, and which exhibits atomic-layer resolution and a probing depth of hundreds of nanometers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000343763200004 Publication Date 2014-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1521-4095 ISBN Additional Links
Impact Factor 19.791 Times cited 34 Open Access
Notes Approved Most recent IF: 19.791; 2014 IF: NA
Call Number EMAT @ emat @ Serial 4541
Permanent link to this record
 

 
Author Leenaerts, O.; Vercauteren, S.; Schoeters, B.; Partoens, B.
Title System-size dependent band alignment in lateral two-dimensional heterostructures Type A1 Journal article
Year 2016 Publication 2D materials Abbreviated Journal 2D Mater
Volume 3 Issue 3 Pages 025012
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The electronic band alignment in semiconductor heterostructures is a key factor for their use in electronic applications. The alignment problem has been intensively studied for bulk systems but is less well understood for low-dimensional heterostructures. In this work we investigate the alignment in two-dimensional lateral heterostructures. First-principles calculations are used to show that the electronic band offset depends crucially on the width and thickness of the heterostructure slab. The particular heterostructures under study consist of thin hydrogenated and fluorinated diamond slabs which are laterally joined together. Two different limits for the band offset are observed. For infinitely wide heterostructures the vacuum potential above the two materials is aligned leading to a large step potential within the heterostructure. For infinitely thick heterostructure slabs, on the other hand, there is no potential step in the heterostructure bulk, but a large potential step in the vacuum region above the heterojunction is observed. The band alignment in finite systems depends on the particular dimensions of the system. These observations are shown to result from an interface dipole at the heterojunction that tends to align the band structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000378571400032 Publication Date 2016-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited 19 Open Access
Notes This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government— department EWI. Approved Most recent IF: 6.937
Call Number c:irua:132792 c:irua:132792 Serial 4055
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M.
Title Electronic structure of InAs/GaSb core-shell nanowires Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 16 Pages 165439-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The electronic and optical properties of InAs/GaSb core-shell nanowires are investigated within the effective mass k . p approach. These systems have a broken band gap, which results in spatially separated confinement of electrons and holes. We investigated these structures for different sizes of the InAs and GaSb core and shell radius. We found that for certain configurations, the conduction band states penetrate into the valence band states resulting in a negative band gap (E-g < 0), which leads to a conduction band ground state that lies below the valence band ground state at the Gamma point. For certain core-shell wires, only one conduction band state penetrates into the valence band and in this case, a minigap Delta opens up away from the Gamma point and as a consequence the electronic properties of the nanowire now depend on both E-g and Delta values.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000310131400005 Publication Date 2012-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 26 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:102164 Serial 1014
Permanent link to this record
 

 
Author Hai; Studart; Peeters, F.M.
Title Multisubband electron-transport in delta-doped semiconductor systems Type A1 Journal article
Year 1995 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 52 Issue 11 Pages 8363-8371
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The electron transport properties in delta-doped semiconductor systems-are studied. The subband electronic structure of the delta-doped system is obtained by solving the coupled Schrodinger and Poisson equations. The screening of the quasi-two-dimensional electron gas is taken into account for the ionized impurity scattering through the matrix dielectric function within the random-phase approximation. The quantum and transport mobilities are calculated numerically as a function of the total electron density and the width of the doped layer at zero temperature. The intersubband scattering and the effect of empty subbands above the Fermi level on the electron mobilities are investigated. The calculated mobilities are in reasonable agreement with the available experimental results.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1995RV81800091 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 67 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:95353 Serial 2243
Permanent link to this record
 

 
Author Cherigui, E.A.M.; Şentosun, K.; Mamme, M.H.; Lukaczynska, M.; Terryn, H.; Bals, S.; Ustarroz, J.
Title On the control and effect of water content during the electrodeposition of Ni nanostructures from deep eutectic solvents Type A1 Journal article
Year 2018 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 122 Issue 122 Pages 23129-23142
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride urea deep eutectic solvent (DES) containing different amounts of water. By combining electrochemical techniques, with ex situ field emission scanning electron microscopy, high-angle annular dark field scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy, the effect of water content on the electrochemical processes occurring during nickel deposition was better understood. At highly negative potentials and depending on water content, Ni growth is halted due to water splitting and formation of a mixed layer of Ni/NiOx(OH)(2(1-x)(ads)). Moreover, under certain conditions, the DES components can also be (electro)chemically reduced at the electrode surface, blocking further three-dimensional growth of the Ni NPs. Hence, a two-dimensional crystalline Ni-containing network can be formed in the interparticle region.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000447471700038 Publication Date 2018-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 27 Open Access OpenAccess
Notes ; E.A.M.C. and M.H.M. acknowledge funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S.B. acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). Finally, J.U. acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). ; ecas_sara Approved Most recent IF: 4.536
Call Number UA @ lucian @ c:irua:154731 Serial 5121
Permanent link to this record
 

 
Author Mernissi Cherigui, E.A.; Sentosun, K.; Bouckenooge, P.; Vanrompay, H.; Bals, S.; Terryn, H.; Ustarroz, J.
Title A Comprehensive Study of the Electrodeposition of Nickel Nanostructures from Deep Eutectic Solvents: Self-Limiting Growth by Electrolysis of Residual Water Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 121 Pages 9337-9347
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) The electrodeposition of nickel nanostructures on glassy carbon was investigated in 1:2 choline chloride – urea (1:2 ChCl-U) deep eutectic solvent (DES). By combining electrochemical techniques with ex-situ FE-SEM, XPS, HAADF-STEM and EDX, the electrochemical processes occurring during nickel deposition were better understood. Special attention was given to the interaction between the solvent and the growing nickel nanoparticles. The application of a suffciently negative potential results into the electrocatlytic hydrolisis of residual water in the DES, which leads to the formation of a mixed layer of Ni/Ni(OH)2(ads). In addition, hydrogen bonds between hydroxide species and the DES components could be formed, quenching the growth of the nickel clusters favouring their aggregation. Due to these processes, a highly dense distribution of nickel nanostructures can be obtained within a wide potential range. Understanding the role of residual water and the interactions at the interface during metal electrodeposition from DESs is essential to produce supported nanostructures in a controllable way for a broad range of applications and technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000400881100027 Publication Date 2017-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 66 Open Access OpenAccess
Notes E.A. Mernissi Cherigui acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, research project G019014N). S. Bals acknowledges funding from the European Research Council (Starting Grant No. COLOURATOMS 335078). H.V. gratefully acknowledges financial support by the Flemish Fund for Scientifi c Research (FWO Vlaanderen). Finally, J. Ustarroz acknowledges funding from the Fonds Wetenschappelijk Onderzoek in Flanders (FWO, postdoctoral grant 12I7816N). (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); ECAS_Sara Approved Most recent IF: 4.536
Call Number EMAT @ emat @ c:irua:142208UA @ admin @ c:irua:142208 Serial 4551
Permanent link to this record
 

 
Author Latimer, M.L.; Berdiyorov, G.R.; Xiao, Z.L.; Kwok, W.K.; Peeters, F.M.
Title Vortex interaction enhanced saturation number and caging effect in a superconducting film with a honeycomb array of nanoscale holes Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 1 Pages 012505-012505,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The electrical transport properties of a MoGe thin film with a honeycomb array of nanoscale holes are investigated. The critical current of the system shows nonmatching anomalies as a function of applied magnetic field, enabling us to distinguish between multiquanta vortices trapped in the holes and interstitial vortices located between the holes. The number of vortices trapped in each hole is found to be larger than the saturation number predicted for an isolated hole and shows a nonlinear field dependence, leading to the caging effect as predicted from the Ginzburg-Landau (GL) theory. Our experimental results are supplemented by numerical simulations based on the GL theory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000299867200001 Publication Date 2012-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP) (theory) and by the US Department of Energy (DOE) Grant No. DE-FG02-06ER46334 (experiment). G. R. B. acknowledges an individual grant from FWO-Vl. W. K. K. acknowledges support from DOE BES under Contract No. DE-AC02-06CH11357, which also funds Argonne's Center for Nanoscale Materials (CNM), where the focused-ion-beam milling was performed. M.L.L was a recipient of the NIU/ANL Distinguished Graduate Fellowship. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:96224 Serial 3866
Permanent link to this record
 

 
Author Esfahani, D.N.; Covaci, L.; Peeters, F.M.
Title Nonlinear response to electric field in extended Hubbard models Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 20 Pages 205121
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The electric-field response of a one-dimensional ring of interacting fermions, where the interactions are described by the extended Hubbard model, is investigated. By using an accurate real-time propagation scheme based on the Chebyshev expansion of the evolution operator, we uncover various nonlinear regimes for a range of interaction parameters that allows modeling of metallic and insulating (either charge density wave or spin density wave insulators) rings. The metallic regime appears at the phase boundary between the two insulating phases and provides the opportunity to describe either weakly or strongly correlated metals. We find that the fidelity susceptibility of the ground state as a function of magnetic flux piercing the ring provides a very good measure of the short-time response. Even completely different interacting regimes behave in a similar manner at short time scales as long as the ground-state fidelity susceptibility is the same. Depending on the strength of the electric field we find various types of responses: persistent currents in the insulating phase, a dissipative regime, or damped Bloch-like oscillations with varying frequencies or even irregular in nature. Furthermore, we also consider the dimerization of the ring and describe the response of a correlated band insulator. In this case the distribution of the energy levels is more clustered and the Bloch-like oscillations become even more irregular.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345423300002 Publication Date 2014-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (Fonds Wetenschappelijk Onderzoek – FWO) and the Methusalem program of the Flemish government. One of us (L. C.) receives support as a postdoctoral fellow of the FWO. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:122204 Serial 2355
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.; Devreese, J.T.
Title Polaron-cyclotron-resonance spectrum resulting from interface- and slab-phonon modes in a GaAs/AlAs quantum well Type A1 Journal article
Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 47 Issue 16 Pages 10358-10374
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract (down) The effects of interface optical-phonon and confined slab LO-phonon modes on the polaron cyclotron-resonance frequency are investigated for a GaAs/AlAs quantum well. Using degenerate second-order perturbation theory, the polaron Landau levels are calculated and the polaron resonant region is investigated. In order to know the relative importance of the different resonant frequencies we present a full calculation of the magneto-optical absorption spectrum. At a fixed magnetic field we found four different peaks in the absorption spectrum. The relative oscillator strength of the different peaks changes with increasing magnetic field. For comparative purposes, the polaron Landau levels and cyclotron mass are also calculated using only the bulk LO-phonon modes. The influence of the finiteness of the confinement potential is investigated. We found that the interface-phonon modes influence the magnetopolaron resonance considerably near the optical-phonon frequencies for narrow wells. In the limit of zero magnetic field we recover our previous results and in the case of an infinite-barrier quantum well we are able to recover the results for a two- and three-dimensional system.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1993LA29800034 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 69 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:5739 Serial 2663
Permanent link to this record
 

 
Author Shakouri, K.; Szafran, B.; Esmaeilzadeh, M.; Peeters, F.M.
Title Effective spin-orbit interaction Hamiltonian for quasi-one-dimensional quantum rings Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 16 Pages 165314-165314,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The effective Hamiltonian for an electron in a quasi-one-dimensional quantum ring in the presence of spin-orbit interactions is derived. We demonstrate that, when both coupling types are simultaneously present, the effective Hamiltonian derived by the lowest-radial-state approximation produces energy spectra and charge densities which deviate strongly from the exact ones. For equal Rashba and Dresselhaus coupling constants the lowest-radial-state approximation opens artifactal avoided crossings in the energy spectra and deforms the circular symmetry of the confined charge densities. In this case, there does not exist a ring thin enough to justify the restriction to the lowest radially quantized energy state. We derive the effective Hamiltonian accounting for both the lowest and the first excited radial states, and show that the inclusion of the latter restores the correct features of the exact solution. Relation of this result to the states of a quantum wire is also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000303068800006 Publication Date 2012-04-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 32 Open Access
Notes ; This work was partially supported by Polish Ministry of Science and Higher Education and its grants for Scientific Research. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98258 Serial 855
Permanent link to this record
 

 
Author Skaltsas, T.; Ke, X.; Bittencourt, C.; Tagmatarchis, N.
Title Ultrasonication induces oxygenated species and defects onto exfoliated graphene Type A1 Journal article
Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 117 Issue 44 Pages 23272-23278
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) The effect of ultrasonication parameters, such as time and power applied, to exfoliate graphite in o-dichlorobenzene (o-DCB) and N-methyl-1,2-pyrrolidone (NMP) was examined. It was found that the concentration of graphene was higher in o-DCB, while its dispersibility was increased when sonication was applied for a longer period and/or at higher power. However, spectroscopic examination by X-ray photoelectron spectroscopy (XPS) revealed that ultrasonication causes defects and induces oxygen functional groups in the form of carboxylic acids and ethers/epoxides onto the graphene lattice. Additional proof for the latter arose from Raman, IR, and thermogravimetry studies. The carboxylic acids and ethers/epoxides onto exfoliated graphene were derived from air during ultrasonication and found independent of the solvent used for the exfoliation and the power and/or time ultrasonication applied. Quantitative evaluation of the amount of oxygenated species present on exfoliated graphene as performed by high-resolution XPS revealed that the relative oxygen percentage was higher when exfoliation was performed in NMP. Finally, the sonication time and/or power affected the oxygen content on exfoliated graphene, since extended ultrasonication resulted in a decrease in the oxygen content on exfoliated graphene, with a simultaneous increase of defected sp(3) carbon atoms.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000326845400090 Publication Date 2013-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 65 Open Access
Notes Approved Most recent IF: 4.536; 2013 IF: 4.835
Call Number UA @ lucian @ c:irua:112710 Serial 3797
Permanent link to this record
 

 
Author Ribbens, S.; Beyers, E.; Schellens, K.; Mertens, M.; Ke, X.; Bals, S.; Van Tendeloo, G.; Meynen, V.; Cool, P.
Title Systematic evaluation of thermal and mechanical stability of different commercial and synthetic photocatalysts in relation to their photocatalytic activity Type A1 Journal article
Year 2012 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat
Volume 156 Issue Pages 62-72
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract (down) The effect of thermal treatment and mechanical stress on the structural and photocatalytic properties of eight different (synthetic and commercial) photocatalysts has been thoroughly investigated. Different mesoporous Ti-based materials were prepared via surfactant based synthesis routes (e.g. Pluronic 123, CTMABr = Cetyltrimethylammonium bromide) or via template-free synthesis routes (e.g. trititanate nanotubes). Also, the stabilizing effect of the NaOH/NH4OH post-treatment on the templated mesoporous materials and their photocatalytic activity was investigated. Furthermore, the thermal and mechanical properties of commercially available titanium dioxides such as P25 Evonik® and Millenium PC500® were studied. The various photocatalysts were analyzed with N2-sorption, X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) to obtain information concerning the specific surface area, pore volume, crystal structure, morphology, phase transitions, etc. In general, results show that the NaOH post-treatment leads to an increased control of the crystallization process during calcination resulting in a higher thermal stability, but at the same time diminishes the photocatalytic activity. Mesoporous materials in which pre-synthesized nanoparticles are used as titania source have the best mechanical stability whereas the mechanical stability of the nanotubes is the most limited. At increased temperatures and pressures, the tested commercial titanium dioxides lose their superior photocatalytic activity caused by a decreased accessibility of the active sites. The observed changes in adsorption capacities and photocatalytic activities cannot be assigned to one single phenomenon. In this respect, it shows the need to define a general/standard method to compare different photocatalysts. Furthermore, it is shown that the photocatalytic properties do not necessarily deteriorate under thermal stress, but can be improved due to crystallization, even though the initial material is (partially) destroyed. It is shown that the usefulness of a specific type of photocatalyst strongly depends on the application and the temperature/pressure to which it needs to resist.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000303625200010 Publication Date 2012-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.615 Times cited 8 Open Access
Notes Fwo Approved Most recent IF: 3.615; 2012 IF: 3.365
Call Number UA @ lucian @ c:irua:96910 Serial 3466
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
Title Size effects and strain state of Ga1-xInxAs/GaAs multiple quantum wells: Monte Carlo study Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 78 Issue 16 Pages 165326,1-165326,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) The effect of the size of the GaAs barrier and the Ga1−xInxAs well on the structural properties of a Ga1−xInxAs/GaAs multiple quantum well structure is investigated using the Metropolis Monte Carlo approach based on a well-parametrized Tersoff potential. It is found that within the well the Ga-As and In-As bond lengths undergo contractions whose magnitude increases with increasing In content in sharp contrast with bond-length variations in the bulk Ga1−xInxAs systems. For fixed barrier size and In content, the contraction of the bonds is also found to increase with increasing size of the well. Using the local atomic structure of the heterostructures, a more local analysis of the strain state of the systems is given and comparison with the prediction of macroscopic continuum elasticity theory shows deviations from the latter.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000260574500084 Publication Date 2008-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:72920 Serial 3036
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Peeters, F.M.
Title Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 165406
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The effect of the number of stacking layers and the type of stacking on the electronic and optical properties of bilayer and trilayer black phosphorus are investigated by using first-principles calculations within the framework of density functional theory. We find that inclusion of many-body effects (i.e., electron-electron and electron-hole interactions) modifies strongly both the electronic and optical properties of black phosphorus. While trilayer black phosphorus with a particular stacking type is found to be a metal by using semilocal functionals, it is predicted to have an electronic band gap of 0.82 eV when many-body effects are taken into account within the G(0)W(0) scheme. Though different stacking types result in similar energetics, the size of the band gap and the optical response of bilayer and trilayer phosphorene are very sensitive to the number of layers and the stacking type. Regardless of the number of layers and the type of stacking, bilayer and trilayer black phosphorus are direct band gap semiconductors whose band gaps vary within a range of 0.3 eV. Stacking arrangements that are different from the ground state structure in both bilayer and trilayer black phosphorus exhibit significant modified valence bands along the zigzag direction and result in larger hole effective masses. The optical gap of bilayer (trilayer) black phosphorus varies by 0.4 (0.6) eV when changing the stacking type. The calculated binding energy of the bound exciton hardly changes with the type of stacking and is found to be 0.44 (0.30) eV for bilayer (trilayer) phosphorous.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000362435300005 Publication Date 2015-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 127 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C.S. acknowledges support from Turkish Academy of Sciences (TUBA-GEBIP). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:128320 Serial 4242
Permanent link to this record
 

 
Author Liu, Y.; Cheng, F.; Li, X.J.; Peeters, F.M.; Chang, K.
Title Tuning of the two electron states in quantum rings through the spin-orbit interaction Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 4 Pages 1-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The effect of the Coulomb interaction on the energy spectrum and anisotropic distribution of two electron states in a quantum ring in the presence of Rashba spin-orbit interaction (RSOI) and Dresselhaus SOI (DSOI) is investigated in the presence of a perpendicular magnetic field. We find that the interplay between the RSOI and DSOI makes the single quantum ring behaves like a laterally coupled quantum dot and the interdot coupling can be tuned by changing the strengths of the SOIs. The interplay can lead to singlet-triplet state mixing and anticrossing behavior when the singlet and triplet states meet with increasing magnetic field. The two electron ground state displays a bar-bell-like spatial anisotropic distribution in a quantum ring at a specific crystallographic direction, i.e., [110] or [11̅ 0], which can be switched by reversing the direction of the perpendicular electric field. The ground state exhibits a singlet-triplet state transition with increasing magnetic field and strengths of RSOI and DSOI. An anisotropic electron distribution is predicted which can be detected through the measurement of its optical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000280234100006 Publication Date 2010-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes ; This work was supported by NSFC under Grants No. 60525405 and No. 10874175 and the Belgium Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:84087 Serial 3756
Permanent link to this record
 

 
Author Leenaerts, O.; Sahin, H.; Partoens, B.; Peeters, F.M.
Title First-principles investigation of B- and N-doped fluorographene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 3 Pages 035434-35435
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The effect of substitutional doping of fluorographene with boron and nitrogen atoms on its electronic and magnetic properties is investigated using first-principles calculations. It is found that boron dopants can be readily incorporated in the fluorographene crystal where they act as shallow acceptors and cause hole doping, but no changes in the magnetic properties are observed. Nitrogen dopants act as deep donors and give rise to a magnetic moment, but the resulting system becomes chemically unstable. These results are opposite to what was found for substitutional doping of graphane, i.e., hydrogenated graphene, in which case B substituents induce magnetism and N dopants do not.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322083700002 Publication Date 2013-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109807 Serial 1210
Permanent link to this record
 

 
Author Moldovan, D.; Masir, M.R.; Peeters, F.M.
Title Electronic states in a graphene flake strained by a Gaussian bump Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 3 Pages 035446-35447
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The effect of strain in graphene is usually modeled by a pseudomagnetic vector potential which is, however, derived in the limit of small strain. In realistic cases deviations are expected in view of graphene's very high strain tolerance, which can be up to 25%. Here we investigate the pseudomagnetic field generated by a Gaussian bump and we show that it exhibits significant differences with numerical tight-binding results. Furthermore, we calculate the electronic states in the strained region for a hexagon shaped flake with armchair edges. We find that the sixfold symmetry of the wave functions inside the Gaussian bump is directly related to the different effects of strain along the fundamental directions of graphene: zigzag and armchair. Low energy electrons are strongly confined in the armchair directions and are localized on the carbon atoms of a single sublattice.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322587500003 Publication Date 2013-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109800 Serial 1007
Permanent link to this record
 

 
Author Marikutsa, A.V.; Rumyantseva, M.N.; Frolov, D.D.; Morozov, I.V.; Boltalin, A.I.; Fedorova, A.A.; Petukhov, I.A.; Yashina, L.V.; Konstantinova, E.A.; Sadovskaya, E.M.; Abakumov, A.M.; Zubavichus, Y.V.; Gaskov, A.M.;
Title Role of PdOx and RuOy clusters in oxygen exchange between nanocrystalline tin dioxide and the gas phase Type A1 Journal article
Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 117 Issue 45 Pages 23858-23867
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) The effect of palladium- and ruthenium-based clusters on nanocrystalline tin dioxide interaction with oxygen was studied by temperature-programmed oxygen isotopic exchange with mass-spectrometry detection. The modification of aqueous sol-gel prepared SnO2 by palladium and, to a larger extent, by ruthenium, increases surface oxygen concentration on the materials. The revealed effects on oxygen exchange-lowering the threshold temperature, separation of surface oxygen contribution to the process, increase of heteroexchange rate and oxygen diffusion coefficient, decrease of activation energies of exchange and diffusion-were more intensive for Ru-modified SnO2 than in the case of SnO2/Pd. The superior promoting activity of ruthenium on tin dioxide interaction with oxygen was interpreted by favoring the dissociative O-2 adsorption and increasing the oxygen mobility, taking into account the structure and chemical composition of the modifier clusters.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000327110500046 Publication Date 2013-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 20 Open Access
Notes Approved Most recent IF: 4.536; 2013 IF: 4.835
Call Number UA @ lucian @ c:irua:112706 Serial 2924
Permanent link to this record
 

 
Author Kuznetsov, A.S.; Cuong, N.T.; Tikhomirov, V.K.; Jivanescu, M.; Stesmans, A.; Chibotaru, L.F.; Velázquez, J.J.; Rodríguez, V.D.; Kirilenko, D.; Van Tendeloo, G.; Moshchalkov, V.V.
Title Effect of heat-treatment on luminescence and structure of Ag nanoclusters doped oxyfluoride glasses and implication for fiber drawing Type A1 Journal article
Year 2012 Publication Optical materials Abbreviated Journal Opt Mater
Volume 34 Issue 4 Pages 616-621
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) The effect of heat treatment on the structure and luminescence of Ag nanoclusters doped oxyfluoride glasses was studied and the implication for drawing the corresponding fibers doped with luminescent Ag nanoclusters has been proposed. The heat treatment results, first, in condensation of the Ag nanoclusters into larger Ag nanoparticles and loss of Ag luminescence, and further heat treatment results in precipitation of a luminescent-loss nano- and microcrystalline Ag phases onto the surface of the glass. Thus, the oxyfluoride fiber doped with luminescent Ag nanoclusters was pulled from the viscous glass melt and its attenuation loss was 0.19 dB/cm in the red part of the spectrum; i.e. near to the maximum of Ag nanoclusters luminescence band. The nucleation centers for the Ag nanoclusters in oxyfluoride glasses have been suggested to be the fluorine vacancies and their nanoclusters.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000300124500006 Publication Date 2011-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-3467; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.238 Times cited 25 Open Access
Notes Methusalem Approved Most recent IF: 2.238; 2012 IF: 1.918
Call Number UA @ lucian @ c:irua:93632 Serial 811
Permanent link to this record
 

 
Author Yang, C.H.; Peeters, F.M.; Xu, W.
Title Landau-level broadening due to electron-impurity interaction in graphene in strong magnetic fields Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 7 Pages 075401:1-075401:6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The effect of electron-impurity and electron-electron interactions on the energy spectrum of electrons moving in graphene is investigated in the presence of a high magnetic field. We find that the width of the broadened Landau levels exhibits an approximate 1/B dependence near half filling for charged impurity scattering. The Landau-level width, the density of states, and the Fermi energy exhibit an oscillatory behavior as a function of magnetic field. Comparison with experiment shows that scattering with charged impurities cannot be the main scattering mechanism that determines the width of the Landau levels.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000280553700008 Publication Date 2010-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the National Science Foundation of China under Grant No. 10804053, the Foundation of NUIST under Grant No. S8108062001, and the Chinese Academy of Sciences and Department of Science and Technology of Yunnan Province. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:84043 Serial 1769
Permanent link to this record
 

 
Author Avetisyan, A.A.; Partoens, B.; Peeters, F.M.
Title Stacking order dependent electric field tuning of the band gap in graphene multilayers Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 11 Pages 115432,1-115432,7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The effect of different stacking order of graphene multilayers on the electric field induced band gap is investigated. We considered a positively charged top and a negatively charged back gate in order to independently tune the band gap and the Fermi energy of three and four layer graphene systems. A tight-binding approach within a self-consistent Hartree approximation is used to calculate the induced charges on the different graphene layers. We found that the gap for trilayer graphene with the ABC stacking is much larger than the corresponding gap for the ABA trilayer. Also we predict that for four layers of graphene the energy gap strongly depends on the choice of stacking, and we found that the gap for the different types of stacking is much larger as compared to the case of Bernal stacking. Trigonal warping changes the size of the induced electronic gap by approximately 30% for intermediate and large values of the induced electron density.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000276248800145 Publication Date 2010-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 142 Open Access
Notes ; ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:82274 Serial 3148
Permanent link to this record
 

 
Author Ding, L.; Zhao, M.; Ehlers, F.J.H.; Jia, Z.; Zhang, Z.; Weng, Y.; Schryvers, D.; Liu, Q.; Idrissi, H.
Title “Branched” structural transformation of the L12-Al3Zr phase manipulated by Cu substitution/segregation in the Al-Cu-Zr alloy system Type A1 Journal article
Year 2024 Publication Journal of materials science & technology Abbreviated Journal Journal of Materials Science & Technology
Volume 185 Issue Pages 186-206
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract (down) The effect of Cu on the evolution of the Al3Zr phase in an Al-Cu-Zr cast alloy during solution treatment at 500 °C has been thoroughly studied by combining atomic resolution high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy and first-principles cal- culations. The heat treatment initially produces a pure L12-Al3Zr microstructure, allowing for about 13 % Cu to be incorporated in the dispersoid. Cu incorporation increases the energy barrier for anti-phase boundary (APB) activation, thus stabilizing the L12 structure. Additional heating leads to a Cu-induced “branched”path for the L12 structural transformation, with the latter process accelerated once the first APB has been created. Cu atoms may either (i) be repelled by the APBs, promoting the transformation to a Cu-poor D023 phase, or (ii) they may segregate at one Al-Zr layer adjacent to the APB, promoting a transformation to a new thermodynamically favored phase, Al4CuZr, formed when these segregation layers are periodically arranged. Theoretical studies suggest that the branching of the L12 transformation path is linked to the speed at which an APB is created, with Cu attraction triggered by a comparatively slow process. This unexpected transformation behavior of the L12-Al3Zr phase opens a new path to understanding, and potentially regulating the Al3Zr dispersoid evolution for high temperature applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001154261100001 Publication Date 2023-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1005-0302 ISBN Additional Links UA library record; WoS full record
Impact Factor 10.9 Times cited Open Access Not_Open_Access
Notes This work was supported by the National Key Research and Development Program (No. 2020YFA0405900), the National Natural Science Foundation of China (Grant No. 52371111 and U2141215 ), the Natural Science Foundation of Jiangsu Province (No. BE2022159 ). We are grateful to the High Performance Computing Center of Nanjing Tech University for supporting the computational resources. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR- FNRS). Approved Most recent IF: 10.9; 2024 IF: 2.764
Call Number EMAT @ emat @c:irua:202392 Serial 8981
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Bacaksiz, C.; Senger, R.T.; Peeters, F.M.
Title Tuning the magnetic anisotropy in single-layer crystal structures Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 104407
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The effect of an applied electric field and the effect of charging are investigated on themagnetic anisotropy (MA) of various stable two-dimensional (2D) crystals such as graphene, FeCl2, graphone, fluorographene, and MoTe2 using first-principles calculations. We found that themagnetocrystalline anisotropy energy of Co-on-graphene and Os-doped-MoTe2 systems change linearly with electric field, opening the possibility of electric field tuningMAof these compounds. In addition, charging can rotate the easy-axis direction ofCo-on-graphene andOs-doped-MoTe2 systems from the out-of-plane (in-plane) to in-plane (out-of-plane) direction. The tunable MA of the studied materials is crucial for nanoscale electronic technologies such as data storage and spintronics devices. Our results show that controlling the MA of the mentioned 2D crystal structures can be realized in various ways, and this can lead to the emergence of a wide range of potential applications where the tuning and switching of magnetic functionalities are important.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000360961400004 Publication Date 2015-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 37 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules Foundation. H.S. is supported by a FWO Pegasus Marie Curie Fellowship. C.B. and R.T.S. acknowledge support from TUBITAK Project No. 111T318. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:127838 Serial 4269
Permanent link to this record
 

 
Author Lu, Y.-G.; Verbeeck, J.; Turner, S.; Hardy, A.; Janssens, S.D.; De Dobbelaere, C.; Wagner, P.; Van Bael, M.K.; Van Tendeloo, G.
Title Analytical TEM study of CVD diamond growth on TiO2 sol-gel layers Type A1 Journal article
Year 2012 Publication Diamond and related materials Abbreviated Journal Diam Relat Mater
Volume 23 Issue Pages 93-99
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (down) The early growth stages of chemical vapor deposition (CVD) diamond on a solgel TiO2 film with buried ultra dispersed diamond seeds (UDD) have been studied. In order to investigate the diamond growth mechanism and understand the role of the TiO2 layer in the growth process, high resolution transmission electron microscopy (HRTEM), energy-filtered TEM and electron energy loss spectroscopy (EELS) techniques were applied to cross sectional diamond film samples. We find evidence for the formation of TiC crystallites inside the TiO2 layer at different diamond growth stages. However, there is no evidence that diamond nucleation starts from these crystallites. Carbon diffusion into the TiO2 layer and the chemical bonding state of carbon (sp2/sp3) were both extensively investigated. We provide evidence that carbon diffuses through the TiO2 layer and that the diamond seeds partially convert to amorphous carbon during growth. This carbon diffusion and diamond to amorphous carbon conversion make the seed areas below the TiO2 layer grow and bend the TiO2 layer upwards to form the nucleation center of the diamond film. In some of the protuberances a core of diamond seed remains, covered by amorphous carbon. It is however unlikely that the remaining seeds are still active during the growth process.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000302887600017 Publication Date 2012-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-9635; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.561 Times cited 16 Open Access
Notes Iap; Esteem 026019; Fwo Approved Most recent IF: 2.561; 2012 IF: 1.709
Call Number UA @ lucian @ c:irua:95037UA @ admin @ c:irua:95037 Serial 111
Permanent link to this record
 

 
Author Bousige, C.; Rols, S.; Cambedouzou, J.; Verberck, B.; Pekker, S.; Kováts, É.; Durkó, G.; Jalsovsky, I.; Pellegrini, É.; Launois, P.
Title Lattice dynamics of a rotor-stator molecular crystal: Fullerene-cubane C60\centerdot C8H8 Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 19 Pages 195413-195413,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (down) The dynamics of fullerene-cubane (C60⋅C8H8) cocrystal is studied combining experimental [x-ray diffuse scattering, quasielastic and inelastic neutron scattering (INS)] and simulation (molecular dynamics) investigations. Neutron scattering gives direct evidence of the free rotation of fullerenes and of the libration of cubanes in the high-temperature phase, validating the rotor-stator description of this molecular system. X-ray diffuse scattering shows that orientational disorder survives the order/disorder transition in the low-temperature phase, although the loss of fullerene isotropic rotational diffusion is featured by the appearance of a 2.2 meV mode in the INS spectra. The coupling between INS and simulations allows identifying a degeneracy lift of the cubane librations in the low temperature phase, which is used as a tool for probing the environment of cubane in this phase and for getting further insights into the phase transition mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000283923500004 Publication Date 2010-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; The authors acknowledge P.-A. Albouy and S. Rouziere (LPS, Orsay) for fruitful discussions and for their support during diffuse scattering experiments. Work in Hungary was supported by the Hungarian Research Fund, OTKA under Grant No. K72954. The CS group at the ILL is acknowledged for their support during the MD simulations. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85801 Serial 1802
Permanent link to this record