|
Record |
Links |
|
Author |
Latimer, M.L.; Berdiyorov, G.R.; Xiao, Z.L.; Kwok, W.K.; Peeters, F.M. |
|
|
Title |
Vortex interaction enhanced saturation number and caging effect in a superconducting film with a honeycomb array of nanoscale holes |
Type |
A1 Journal article |
|
Year |
2012 |
Publication |
Physical review : B : condensed matter and materials physics |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
85 |
Issue |
1 |
Pages |
012505-012505,4 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
The electrical transport properties of a MoGe thin film with a honeycomb array of nanoscale holes are investigated. The critical current of the system shows nonmatching anomalies as a function of applied magnetic field, enabling us to distinguish between multiquanta vortices trapped in the holes and interstitial vortices located between the holes. The number of vortices trapped in each hole is found to be larger than the saturation number predicted for an isolated hole and shows a nonlinear field dependence, leading to the caging effect as predicted from the Ginzburg-Landau (GL) theory. Our experimental results are supplemented by numerical simulations based on the GL theory. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000299867200001 |
Publication Date |
2012-01-26 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1098-0121;1550-235X; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.836 |
Times cited |
41 |
Open Access |
|
|
|
Notes |
; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP) (theory) and by the US Department of Energy (DOE) Grant No. DE-FG02-06ER46334 (experiment). G. R. B. acknowledges an individual grant from FWO-Vl. W. K. K. acknowledges support from DOE BES under Contract No. DE-AC02-06CH11357, which also funds Argonne's Center for Nanoscale Materials (CNM), where the focused-ion-beam milling was performed. M.L.L was a recipient of the NIU/ANL Distinguished Graduate Fellowship. ; |
Approved |
Most recent IF: 3.836; 2012 IF: 3.767 |
|
|
Call Number |
UA @ lucian @ c:irua:96224 |
Serial |
3866 |
|
Permanent link to this record |