toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van Alphen, S.; Hecimovic, A.; Kiefer, C.K.; Fantz, U.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 462 Issue Pages 142217  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Given the ecological problems associated to the CO2 emissions of fossil fuels, plasma technology has gained

interest for conversion of CO2 into value-added products. Microwave plasmas operating at atmospheric pressure

have proven to be especially interesting, due to the high gas temperatures inside the reactor (i.e. up to 6000 K)

allowing for efficient thermal dissociation of CO2 into CO and O2. However, the performance of these high

temperature plasmas is limited by recombination of CO back into CO2 once the gas cools down in the afterglow.

In this work, we computationally investigated several quenching nozzles, developed and experimentally tested

by Hecimovic et al., [1] for their ability to quickly cool the gas after the plasma, thereby quenching the CO

recombination reactions. Using a 3D computational fluid dynamics model and a quasi-1D chemical kinetics

model, we reveal that a reactor without nozzle lacks gas mixing between hot gas in the center and cold gas near

the reactor walls. Especially at low flow rates, where there is an inherent lack of convective cooling due to the

low gas flow velocity, the temperature in the afterglow remains high (between 2000 and 3000 K) for a relatively

long time (in the 0.1 s range). As shown by our quasi-1D chemical kinetics model, this results in a important loss

of CO due to recombination reactions. Attaching a nozzle in the effluent of the reactor induces fast gas quenching

right after the plasma. Indeed, it introduces (i) more convective cooling by forcing cool gas near the walls to mix

with hot gas in the center of the reactor, as well as (ii) more conductive cooling through the water-cooled walls of

the nozzle. Our model shows that gas quenching and the suppression of recombination reactions have more

impact at low flow rates, where recombination is the most limiting factor in the conversion process.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000962382600001 Publication Date 2023-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195889 Serial 7250  
Permanent link to this record
 

 
Author Van Alphen, S.; Hecimovic, A.; Kiefer, C.K.; Fantz, U.; Snyders, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas Type A1 Journal article
  Year 2023 Publication Chemical engineering journal Abbreviated Journal  
  Volume 462 Issue Pages 142217  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Given the ecological problems associated to the CO2 emissions of fossil fuels, plasma technology has gained

interest for conversion of CO2 into value-added products. Microwave plasmas operating at atmospheric pressure

have proven to be especially interesting, due to the high gas temperatures inside the reactor (i.e. up to 6000 K)

allowing for efficient thermal dissociation of CO2 into CO and O2. However, the performance of these high

temperature plasmas is limited by recombination of CO back into CO2 once the gas cools down in the afterglow.

In this work, we computationally investigated several quenching nozzles, developed and experimentally tested

by Hecimovic et al., [1] for their ability to quickly cool the gas after the plasma, thereby quenching the CO

recombination reactions. Using a 3D computational fluid dynamics model and a quasi-1D chemical kinetics

model, we reveal that a reactor without nozzle lacks gas mixing between hot gas in the center and cold gas near

the reactor walls. Especially at low flow rates, where there is an inherent lack of convective cooling due to the

low gas flow velocity, the temperature in the afterglow remains high (between 2000 and 3000 K) for a relatively

long time (in the 0.1 s range). As shown by our quasi-1D chemical kinetics model, this results in a important loss

of CO due to recombination reactions. Attaching a nozzle in the effluent of the reactor induces fast gas quenching

right after the plasma. Indeed, it introduces (i) more convective cooling by forcing cool gas near the walls to mix

with hot gas in the center of the reactor, as well as (ii) more conductive cooling through the water-cooled walls of

the nozzle. Our model shows that gas quenching and the suppression of recombination reactions have more

impact at low flow rates, where recombination is the most limiting factor in the conversion process.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000962382600001 Publication Date 2023-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15.1 Times cited Open Access OpenAccess  
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 15.1; 2023 IF: 6.216  
  Call Number PLASMANT @ plasmant @c:irua:195889 Serial 7259  
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A. url  doi
openurl 
  Title Cold Atmospheric Plasma Increases Temozolomide Sensitivity of Three-Dimensional Glioblastoma Spheroids via Oxidative Stress-Mediated DNA Damage Type A1 Journal article
  Year 2021 Publication Cancers Abbreviated Journal Cancers  
  Volume 13 Issue 8 Pages 1780  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract (up) Glioblastoma multiforme (GBM) is the most frequent and aggressive primary malignant brain tumor in adults. Current standard radiotherapy and adjuvant chemotherapy with the alkylating agent temozolomide (TMZ) yield poor clinical outcome. This is due to the stem-like properties of tumor cells and genetic abnormalities in GBM, which contribute to resistance to TMZ and progression. In this study, we used cold atmospheric plasma (CAP) to enhance the sensitivity to TMZ through inhibition of antioxidant signaling (linked to TMZ resistance). We demonstrate that CAP indeed enhances the cytotoxicity of TMZ by targeting the antioxidant specific glutathione (GSH)/glutathione peroxidase 4 (GPX4) signaling. We optimized the threshold concentration of TMZ on five different GBM cell lines (U251, LN18, LN229, U87-MG and T98G). We combined TMZ with CAP and tested it on both TMZ-sensitive (U251, LN18 and LN229) and TMZ-resistant (U87-MG and T98G) cell lines using two-dimensional cell cultures. Subsequently, we used a three-dimensional spheroid model for the U251 (TMZ-sensitive) and U87-MG and T98G (TMZ-resistant) cells. The sensitivity of TMZ was enhanced, i.e., higher cytotoxicity and spheroid shrinkage was obtained when TMZ and CAP were administered together. We attribute the anticancer properties to the release of intracellular reactive oxygen species, through inhibiting the GSH/GPX4 antioxidant machinery, which can lead to DNA damage. Overall, our findings suggest that the combination of CAP with TMZ is a promising combination therapy to enhance the efficacy of TMZ towards the treatment of GBM spheroids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000644001200001 Publication Date 2021-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-6694 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes We thank the Department of Biomedical Sciences, and the Laboratory of Protein Science, Proteomics & Epigenetic Signalling, at the University of Antwerp, for providing the facilities for the cell experiments. We are also grateful to Peter Ponsaerts from the Laboratory of Experimental Haematology, at the University of Antwerp, for providing the fluorescence microscope. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:177779 Serial 6746  
Permanent link to this record
 

 
Author Ozkan, A.; Bogaerts, A.; Reniers, F. pdf  url
doi  openurl
  Title Routes to increase the conversion and the energy efficiency in the splitting of CO2by a dielectric barrier discharge Type A1 Journal article
  Year 2017 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 50 Issue 50 Pages 084004  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Here, we present routes to increase CO2 conversion into CO using an atmospheric pressure dielectric-barrier discharge. The change in conversion as a function of simple plasma parameters, such as power, flow rate, but also frequency, on-and-off power pulse, thickness and the chemical nature of the dielectric, wall and gas temperature, are described. By means of an in-depth electrical characterization of the discharge (effective plasma voltage, dielectric voltage, plasma current, number and lifetime of the microdischarges), combined with infrared analysis of the walls of the reactor, optical emission spectroscopy for the gas temperature, and mass spectrometry for the CO2 conversion, we propose a global interpretation of the effect of all the experimental parameters on the conversion and efficiency of the reaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395400700001 Publication Date 2017-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 28 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Interuniversity Attraction Pole) program PSIPhysical Chemistry of Plasma–Surface Interaction financially supported by the Belgian Federal Office for Science Policy (BELSPO). A Ozkan would like to thank the financial support given by the Fonds David et Alice Van Buuren. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @ c:irua:140093 Serial 4415  
Permanent link to this record
 

 
Author Dufour, T.; Minnebo, J.; Abou Rich, S.; Neyts, E.C.; Bogaerts, A.; Reniers, F. pdf  doi
openurl 
  Title Understanding polyethylene surface functionalization by an atmospheric He/O2 plasma through combined experiments and simulations Type A1 Journal article
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 47 Issue 22 Pages 224007  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) High density polyethylene surfaces were exposed to the atmospheric post-discharge of a radiofrequency plasma torch supplied in helium and oxygen. Dynamic water contact angle measurements were performed to evaluate changes in surface hydrophilicity and angle resolved x-ray photoelectron spectroscopy was carried out to identify the functional groups responsible for wettability changes and to study their subsurface depth profiles, up to 9 nm in depth. The reactions leading to the formation of CO, C = O and OC = O groups were simulated by molecular dynamics. These simulations demonstrate that impinging oxygen atoms do not react immediately upon impact but rather remain at or close to the surface before eventually reacting. The simulations also explain the release of gaseous species in the ambient environment as well as the ejection of low molecular weight oxidized materials from the surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000336207900008 Publication Date 2014-05-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 13 Open Access  
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721  
  Call Number UA @ lucian @ c:irua:116919 Serial 3804  
Permanent link to this record
 

 
Author Zaryouh, H.; Verswyvel, H.; Bauwens, M.; Van Haesendonck, G.; Deben, C.; Lin, A.; De Waele, J.; Vermorken, J.B.; Koljenovic, S.; Bogaerts, A.; Lardon, F.; Smits, E.; Wouters, A. openurl 
  Title De belofte van hoofdhalskankerorganoïden in kankeronderzoek : een blik op de toekomst Type A2 Journal article
  Year 2023 Publication Onco-hemato : multidisciplinair tijdschrift voor oncologie Abbreviated Journal  
  Volume 17 Issue 7 Pages 54-58  
  Keywords A2 Journal article; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Hoofd-halskanker vormt een aanzienlijke uitdaging met bijna 900.000 nieuwe diagnoses per jaar, waarbij de jaarlijkse incidentie blijft stijgen. Vaak wordt de diagnose pas in een laat stadium gesteld, wat complexe behandelingen noodzakelijk maakt. Terugval van patiënten is helaas een veelvoorkomend probleem. De gemiddelde overlevingsduur is beperkt tot enkele maanden. Daarom is er een dringende behoefte om nieuwe, veelbelovende behandelingen te ontwikkelen voor patiënten met hoofd-halskanker. Voor het bereiken van deze vooruitgang spelen innovatieve studiemodellen een cruciale rol. Het ontwikkelen van deze nieuwe behandelingen start met laboratoriumonderzoek, waarbij traditionele tweedimensionale celculturen hun beperkingen hebben. Daarom verschuiven onderzoekers hun aandacht meer en meer naar geavanceerdere driedimensionale modellen, met hoofd-halskankerorganoïden als beloftevol nieuw model. Dit model behoudt immers zowel het genetische profiel als de morfologische kenmerken van de originele tumor van de hoofd-halskankerpatiënt. Hoofdhalskankerorganoïden bieden daarom de mogelijkheid om innovatieve behandelingen te testen en kunnen mogelijk zelfs de respons van een patiënt op bepaalde therapieën voorspellen. Hoewel tumororganoïden als ‘patiënt-in-het-lab’ veelbelovend zijn, zijn er uitdagingen te overwinnen, zoals de ontwikkelingstijd en de toepasbaarheid bij alle tumortypes, evenals het ontbreken van immuuncellen en andere micro-omgevingscomponenten. Er is daarom een grote behoefte aan gestandaardiseerde protocollen voor de ontwikkeling van organoïden en verkorting van de ontwikkelingstijd. Concluderend bieden driedimensionale hoofd-halskankerorganoïden een veelbelovend perspectief voor de toekomst van kankerbehandelingen. Ze hebben het potentieel om bij te dragen aan de ontwikkeling van gepersonaliseerde behandelingen en zo de overlevingskansen van kankerpatiënten te verbeteren. Het is echter belangrijk om hun voorspellend vermogen en toepassingsmogelijkheden verder te onderzoeken, voordat ze op grote schaal worden geïmplementeerd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2030-2738 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202271 Serial 9004  
Permanent link to this record
 

 
Author Kolev, I.; Bogaerts, A.; Gijbels, R. url  doi
openurl 
  Title Influence of electron recapture by the cathode upon the discharge characteristics in dc planar magnetrons Type A1 Journal article
  Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 72 Issue Pages 056402,1-11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In dc magnetrons the electrons emitted from the cathode may return there due to the applied magnetic field. When that happens, they can be recaptured or reflected back into the discharge, depending on the value of the reflection coefficient (RC). A 2d3v (two-dimensional in coordinate and three-dimensional in velocity space) particle-in-cellMonte Carlo model, including an external circuit, is developed to determine the role of the electron recapture in the discharge processes. The detailed discharge structure as a function of RC for two pressures (4 and 25mtorr) is studied. The importance of electron recapture is clearly manifested, especially at low pressures. The results indicate that the discharge characteristics are dramatically changed with varying RC between 0 and 1. Thus, the electron recapture at the cathode appears to be a significant mechanism in magnetron discharges and RC a very important parameter in their correct quantitative description that should be dealt with cautiously.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000233603200089 Publication Date 2005-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 29 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:54667 Serial 1621  
Permanent link to this record
 

 
Author Jiang, W.; Zhang, Y.; Bogaerts, A. url  doi
openurl 
  Title Numerical characterization of local electrical breakdown in sub-micrometer metallized film capacitors Type A1 Journal article
  Year 2014 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 16 Issue Pages 113036  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In metallized film capacitors, there exists an air gap of about 0.2 μm between the films, with a pressure ranging generally from 130 atm. Because of the created potential difference between the two films, a microdischarge is formed in this gap. In this paper, we use an implicit particle-in-cell Monte Carlo collision simulation method to study the discharge properties in this direct-current microdischarge with 0.2 μm gap in a range of different voltages and pressures. The discharge process is significantly different from a conventional high pressure discharge. Indeed, the high electric field due to the small gap sustains the discharge by field emission. At low applied voltage (~15 V), only the electrons are generated by field emission, while both electrons and ions are generated as a stable glow discharge at medium applied voltage (~50 V). At still higher applied voltage (~100 V), the number of electrons and ions rapidly multiplies, the electric field reverses, and the discharge changes from a glow to an arc regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000346763400006 Publication Date 2014-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited Open Access  
  Notes Approved Most recent IF: 3.786; 2014 IF: 3.558  
  Call Number UA @ lucian @ c:irua:120455 Serial 2393  
Permanent link to this record
 

 
Author Yusupov, M.; Neyts, E.C.; Khalilov, U.; Snoeckx, R.; van Duin, A.C.T.; Bogaerts, A. url  doi
openurl 
  Title Atomic-scale simulations of reactive oxygen plasma species interacting with bacterial cell walls Type A1 Journal article
  Year 2012 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 14 Issue 9 Pages 093043  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In recent years there has been growing interest in the use of low-temperature atmospheric pressure plasmas for biomedical applications. Currently, however, there is very little fundamental knowledge regarding the relevant interaction mechanisms of plasma species with living cells. In this paper, we investigate the interaction of important plasma species, such as O3, O2 and O atoms, with bacterial peptidoglycan (or murein) by means of reactive molecular dynamics simulations. Specifically, we use the peptidoglycan structure to model the gram-positive bacterium Staphylococcus aureus murein. Peptidoglycan is the outer protective barrier in bacteria and can therefore interact directly with plasma species. Our results demonstrate that among the species mentioned above, O3 molecules and especially O atoms can break important bonds of the peptidoglycan structure (i.e. CO, CN and CC bonds), which subsequently leads to the destruction of the bacterial cell wall. This study is important for gaining a fundamental insight into the chemical damaging mechanisms of the bacterial peptidoglycan structure on the atomic scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000309393400001 Publication Date 2012-09-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 47 Open Access  
  Notes Approved Most recent IF: 3.786; 2012 IF: 4.063  
  Call Number UA @ lucian @ c:irua:101014 Serial 189  
Permanent link to this record
 

 
Author Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kolev, S.; Snoeckx, R.; Sun, S.; Trenchev, G.; Van Laer, K.; Wang, W. pdf  url
doi  openurl
  Title CO2conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design Type A1 Journal article
  Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 26 Issue 26 Pages 063001  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In recent years there has been growing interest in the use of plasma technology for CO2 conversion. To improve this application, a good insight into the underlying mechanisms is of great importance. This can be obtained from modeling the detailed plasma chemistry in order to understand the chemical reaction pathways leading to CO2 conversion (either in pure form or mixed with another gas). Moreover, in practice, several plasma reactor types are being investigated for CO2 conversion, so in addition it is essential to be able to model these reactor geometries so that their design can be improved, and the most energy efficient CO2 conversion can be achieved. Modeling the detailed plasma chemistry of CO2 conversion in complex reactors is, however, very time-consuming. This problem can be overcome by using a combination of two different types of model: 0D chemical reaction kinetics models are very suitable for describing the detailed plasma chemistry, while the characteristic features of different reactor geometries can be studied by 2D or 3D fluid models. In the first instance the latter can be developed in argon or helium with a simple chemistry to limit the calculation time; however, the ultimate aim is to implement the more complex CO2 chemistry in these models. In the present paper, examples will be given of both the 0D plasma chemistry models and the 2D and 3D fluid models for the most common plasma reactors used for CO2 conversion in order to emphasize the complementarity of both approaches. Furthermore, based on the modeling insights, the paper discusses the possibilities and limitations of plasma-based CO2 conversion in different types of plasma reactors, as well as what is needed to make further progress in this field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000412173700001 Publication Date 2017-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 26 Open Access OpenAccess  
  Notes We would like to thank T Silva, N Britoun, Th Godfroid and R Snyders (Université de Mons and Materia Nova Research Center), A Ozkan, Th Dufour and F Reniers (Université Libre de Bruxelles) andK Van Wesenbeeck and S Lenaerts (University of Antwerp) for providingexperimental data to validate our models. Furthermore, we acknowledge the financial support from the IAP/7 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’ by the Belgian Federal Office for Science Policy (BELSPO), the Francqui Research Foundation, the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 606889, the European Marie Skłodowska- Curie Individual Fellowship project ‘GlidArc’ within Horizon2020, the Methusalem financing of the University of Antwerp, the Fund for Scientific Research, Flanders (FWO; grant nos. G.0383.16N and 11U5316N) and the Institute for the Promotion of Innovation by Science and Technology in Flanders (IWT Flanders). The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.302  
  Call Number PLASMANT @ plasmant @ c:irua:144429 Serial 4614  
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Berthelot, A.; Heijkers, S.; Wang, W.; Sun, S.; Van Laer, K.; Ramakers, M.; Michielsen, I.; Uytdenhouwen, Y.; Meynen, V.; Cool, P. pdf  openurl
  Title Plasma based co2 conversion: a combined modeling and experimental study Type P1 Proceeding
  Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In recent years there is increased interest in plasma-based CO2 conversion. Several plasma setups are being investigated for this purpose, but the most commonly used ones are a dielectric barrier discharge (DBD), a microwave (MW) plasma and a gliding arc (GA) reactor. In this proceedings paper, we will show results from our experiments in a (packed bed) DBD reactor and in a vortex-flow GA reactor, as well as from our model calculations for the detailed plasma chemistry in a DBD, MW and GA, for pure CO2 as well as mixtures of CO2 with N-2, CH4 and H2O.  
  Address  
  Corporate Author Thesis  
  Publisher Masarykova univ Place of Publication Brno Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-80-210-8318-9 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:141553 Serial 4526  
Permanent link to this record
 

 
Author Van der Paal, J.; Fridman, G.; Bogaerts, A. pdf  doi
openurl 
  Title Ceramide cross-linking leads to pore formation: Potential mechanism behind CAP enhancement of transdermal drug delivery Type A1 Journal article
  Year 2019 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 16 Issue 16 Pages 1900122  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In recent years, cold atmospheric plasma (CAP) has been proposed as a novel method to enhance transdermal drug delivery, while avoiding tissue damage. However, the underlying mechanism for the increasing skin permeability upon CAP treatment is still undefined. We propose a mechanism in which CAP-generated reactive species induce cross-linking of skin lipids, leading to the generation of nanopores, thereby facilitating the permeation of drug molecules. Molecular dynamics simulations support this proposed mechanism. Furthermore, our results indicate that to achieve maximum enhancement of the permeability, the optimal treatment will depend on the exact lipid composition of the skin, as well as on the CAP source used.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000479747500001 Publication Date 2019-07-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited Open Access  
  Notes Approved Most recent IF: 2.846  
  Call Number UA @ admin @ c:irua:161874 Serial 6287  
Permanent link to this record
 

 
Author Van der Paal, J.; Verheyen, C.; Neyts, E.C.; Bogaerts, A. pdf  url
doi  openurl
  Title Hampering Effect of Cholesterol on the Permeation of Reactive Oxygen Species through Phospholipids Bilayer: Possible Explanation for Plasma Cancer Selectivity Type A1 Journal article
  Year 2017 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 7 Issue 7 Pages 39526  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In recent years, the ability of cold atmospheric pressure plasmas (CAPS) to selectively induce cell death in cancer cells has been widely established. This selectivity has been assigned to the reactive oxygen and nitrogen species (RONS) created in CAPs. To provide new insights in the search for an explanation

for the observed selectivity, we calculate the transfer free energy of multiple ROS across membranes containing a varying amount of cholesterol. The cholesterol fraction is investigated as a selectivity parameter because membranes of cancer cells are known to contain lower fractions of cholesterol compared to healthy cells. We find that cholesterol has a significant effect on the permeation of

reactive species across a membrane. Indeed, depending on the specific reactive species, an increasing cholesterol fraction can lead to (i) an increase of the transfer free energy barrier height and width, (ii) the formation of a local free energy minimum in the center of the membrane and (iii) the creation of extra free energy barriers due to the bulky sterol rings. In the context of plasma oncology, these observations suggest that the increased ingress of RONS in cancer cells can be explained by the decreased cholesterol fraction of their cell membrane.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000391306900001 Publication Date 2017-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 27 Open Access OpenAccess  
  Notes The authors acknowledge financial support from the Fund for Scientific Research (FWO) Flanders, grant number 11U5416N. The calculations were performed in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @ c:irua:139512 Serial 4340  
Permanent link to this record
 

 
Author Kumar, N.; Attri, P.; Dewilde, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Inactivation of human pancreatic ductal adenocarcinoma with atmospheric plasma treated media and water: a comparative study Type A1 Journal article
  Year 2018 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 51 Issue 25 Pages 255401  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In recent years, the interest in treating cancer cells with plasma treated media (PTM) and plasma treated water (PTW) has increased tremendously. However, the actions of PTM and PTW are still not entirely understood. For instance, it is not clear whether the action of PTM is due to a modification in proteins/amino acids after plasma treatment of the media, or due to reactive oxygen and nitrogen species (RONS) generated from the plasma, or a combination of both effects. To differentiate between the actions of RONS and modified proteins/amino acids on the treatment of cancer cells, we compared the effects of PTM and PTW on two different pancreatic ductal adenocarcinomas (MiaPaca-2, BxPc3) and pancreatic stellate cells

(PSCs) (hPSC128-SV). PSCs closely interact with cancer cells to create a tumor-promoting environment that stimulates local tumor progression and metastasis. We treated culture media and deionized water with a cold atmospheric plasma (CAP) jet, and subsequently applied this PTM/PTW at various ratios to the pancreatic cancer and PSC cell lines. We evaluated cell death, intracellular ROS concentrations and the mRNA expression profiles of four oxidative stress-related genes, i.e. Mitogen-activated protein kinase 7 (MAPK7), B-cell lymphoma 2 (BCL2), Checkpoint kinase 1 (CHEK1) and DNA damage-inducible transcript 3, also known as C/EBP homologous protein (CHOP). Our findings demonstrate that PTM and PTW have a similar efficacy to kill pancreatic cancer cells, while PTW is slightly more effective in killing PSCs, as compared to PTM. Furthermore, we observed an enhancement of the intracellular ROS concentrations in both pancreatic cancer cells and PSCs. Thus, it is likely that under our experimental conditions, the anti-cancer activity of PTM can be attributed more to the RONS present in the treated liquid, than to the modification of proteins/amino acids in the media. Furthermore, the fact that the chemo-resistant PSCs were killed by PTM/PTW may offer possibilities for new anti-cancer therapies for pancreatic cancer cells, including PSCs.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000434266900001 Publication Date 2018-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 6 Open Access OpenAccess  
  Notes We gratefully acknowledge financial support from the Research Foundation—Flanders (FWO) (grant number 12J5617N) and from the European Marie Skłodowska–Curie Individual Fellowship ‘Anticancer-PAM’ within Horizon2020 (grant number 743546). We also thank Atsushi Masamune (Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Miyagi Prefecture, Japan) for providing us with human PSCs (hPSC128-SV) for this study. Approved Most recent IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:151962 Serial 4997  
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Huygh, S.; Bal, K.M.; Neyts, E.C. pdf  doi
openurl 
  Title Temperature influence on the reactivity of plasma species on a nickel catalyst surface : an atomic scale study Type A1 Journal article
  Year 2013 Publication Catalysis today Abbreviated Journal Catal Today  
  Volume 211 Issue Pages 131-136  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In recent years, the potential use of hydrogen as a clean energy source has gained considerable attention. Especially H2 formation by Ni-catalyzed reforming of methane at elevated temperatures is an attractive process. However, a more fundamental knowledge at the atomic level is needed for a full comprehension of the reactions at the catalyst surface. In this contribution, we therefore investigate the H2 formation after CHx impacts on a Ni(1 1 1) surface in the temperature range 4001600 K, by means of reactive molecular dynamics (MD) simulations using the ReaxFF potential. While some H2 formation is already observed at the lower temperatures, substantial H2 formation is only obtained at elevated temperatures of 1400 K and above. At 1600 K, the H2 molecules are even the most frequently formed species. In direct correlation with the increasing dehydrogenation at elevated temperatures, an increased surface-to-subsurface C-diffusivity is observed as well. This study highlights the major importance of the temperature on the H2 formation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000320697800020 Publication Date 2013-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5861; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.636 Times cited 27 Open Access  
  Notes Approved Most recent IF: 4.636; 2013 IF: 3.309  
  Call Number UA @ lucian @ c:irua:108675 Serial 3500  
Permanent link to this record
 

 
Author Vanraes, P.; Nikiforov, A.; Bogaerts, A.; Leys, C. url  doi
openurl 
  Title Study of an AC dielectric barrier single micro-discharge filament over a water film Type A1 Journal article
  Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 8 Issue 1 Pages 10919  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In the last decades, AC powered atmospheric dielectric barrier discharges (DBDs) in air with a liquid electrode have been proposed as a promising plasma technology with versatile applicability in medicine agriculture and water treatment. The fundamental features of the micro-discharge filaments that make up this type of plasma have, however, not been studied yet in sufficient detail. In order to address this need, we investigated a single DBD micro-discharge filament over a water film in a sphere-to-sphere electrode configuration, by means of ICCD imaging and optical emission spectroscopy. When the water film temporarily acts as the cathode, the plasma duration is remarkably long and shows a clear similarity with a resistive barrier discharge, which we attribute to the resistive nature of the water film and the formation of a cathode fall. As another striking difference to DBD with solid electrodes, a constant glow-like plasma is observed at the water surface during the entire duration of the applied voltage cycle, indicating continuous plasma treatment of the liquid. We propose several elementary mechanisms that might underlie the observed unique behavior, based on the specific features of a water electrode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000439101600018 Publication Date 2018-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 3 Open Access OpenAccess  
  Notes P. Vanraes acknowledges funding by a University of Antwerp BOF grant. Approved Most recent IF: 4.259  
  Call Number PLASMANT @ plasmant @c:irua:152822c:irua:152411 Serial 4999  
Permanent link to this record
 

 
Author Tampieri, F.; Espona-Noguera, A.; Labay, C.; Ginebra, M.-P.; Yusupov, M.; Bogaerts, A.; Canal, C. pdf  url
doi  openurl
  Title Does non-thermal plasma modify biopolymers in solution? A chemical and mechanistic study for alginate Type A1 Journal Article
  Year 2023 Publication Biomaterials Science Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract (up) In the last decades, non-thermal plasma has been extensively investigated as a relevant tool for various biomedical applications, ranging from tissue decontamination to regeneration and from skin treatment to tumor therapies. This high versatility is due to the different kinds and amount of reactive oxygen and nitrogen species that can be generated during a plasma treatment and put in contact with the biological target. Some recent studies report that solutions of biopolymers with the ability to generate hydrogels, when treated with plasma, can enhance the generation of reactive species and influence their stability, resulting thus in the ideal media for indirect treatments of biological targets. The direct effects of the plasma treatment on the structure of biopolymers in water solution, as well as the chemical mechanisms responsible for the enhanced generation of RONS, are not yet fully understood. In this study, we aim at filling this gap by investigating, on the one hand, the nature and extent of the modifications induced by plasma treatment in alginate solutions, and, on the other hand, at using this information to explain the mechanisms responsible for the enhanced generation of reactive species as a consequence of the treatment. The approach we use is twofold: (i) investigating the effects of plasma treatment on alginate solutions, by size exclusion chromatography, rheology and scanning electron microscopy and (ii) study of a molecular model (glucuronate) sharing its chemical structure, by chromatography coupled with mass spectrometry and by molecular dynamics simulations. Our results point out the active role of the biopolymer chemistry during direct plasma treatment. Short-lived reactive species, such as OH radicals and O atoms, can modify the polymer structure, affecting its functional groups and causing partial fragmentation. Some of these chemical modifications, like the generation of organic peroxide, are likely responsible for the secondary generation of long-lived reactive species such as hydrogen peroxide and nitrite ions. This is relevant in view of using biocompatible hydrogels as vehicles for storage and delivery reactive species for targeted therapies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000973699000001 Publication Date 2023-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2047-4830 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.6 Times cited Open Access Not_Open_Access  
  Notes Agència de Gestió d’Ajuts Universitaris i de Recerca, SGR2022-1368 ; H2020 European Research Council, 714793 ; European Cooperation in Science and Technology, CA19110 CA20114 ; Secretaría de Estado de Investigación, Desarrollo e Innovación, PID2019-103892RB-I00/AEI/10.13039/501100011033 ; We thank Gonzalo Rodríguez Cañada and Xavier Solé-Martí (Universitat Politècnica de Catalunya) for help in collecting some of the experimental data and for the useful discussions. This work has been primarily funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 714793). The authors acknowledge MINECO for PID2019103892RB-I00/AEI/10.13039/501100011033 project (CC). The authors belong to SGR2022-1368 (FT, AEN, CL, MPG, CC) and acknowledge Generalitat de Catalunya for the ICREA Academia Award for Excellence in Research of CC. We thank also COST Actions CA20114 (Therapeutical Applications of Cold Plasmas) and CA19110 (Plasma Applications for Smart and Sustainable Agriculture) for the stimulating environment provided. Approved Most recent IF: 6.6; 2023 IF: 4.21  
  Call Number PLASMANT @ plasmant @c:irua:196773 Serial 8794  
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A.; Shamiryan, D. doi  openurl
  Title Simultaneous etching and deposition processes during the etching of silicon with a Cl2/O2/Ar inductively coupled plasma Type A1 Journal article
  Year 2011 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 8 Issue 6 Pages 490-499  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In this article, surface processes occurring during the etching of Si with a Cl2/O2/Ar plasma are investigated by means of experiments and modeling. Cl2-based plasmas are commonly used to etch silicon, while a small fraction of O2 is added to protect the sidewalls from lateral etching during the shallow trench isolation process. When the oxygen fraction exceeds a critical value, the wafer surface process changes from an etching regime to a deposition regime, drastically reducing the etch rate. This effect is commonly referred to as the etch stop phenomenon. To gain better understanding of this mechanism, the oxygen fraction is varied in the gas mixture and special attention is paid to the effects of oxygen and of the redeposition of non-volatile etched species on the overall etch/deposition process. It is found that, when the O2 flow is increased, the etch process changes from successful etching to the formation of a rough surface, and eventually to the actual growth of an oxide layer which completely blocks the etching of the underlying Si. The size of this etch stop island was found to increase as a function of oxygen flow, while its thickness was dependent on the amount of Si etched. This suggests that the growth of the oxide layer mainly depends on the redeposition of non-volatile etch products. The abrupt change in the etch rate as a function of oxygen fraction was not found back in the oxygen content of the plasma, suggesting the competitive nature between oxidation and chlorination at the wafer. Finally, the wafer and reactor wall compositions were investigated by modeling and it was found that the surface rapidly consisted mainly of SiO2 when the O2 flow was increased above about 15 sccm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000292116800003 Publication Date 2011-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.846; 2011 IF: 2.468  
  Call Number UA @ lucian @ c:irua:90926 Serial 3014  
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title A 3D model of a reverse vortex flow gliding arc reactor Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 035014  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In this computational study, a gliding arc plasma reactor with a reverse-vortex flow stabilization is modelled for the first time by a fluid plasma description. The plasma reactor operates with argon gas at atmospheric pressure. The gas flow is simulated using the k-ε Reynolds-averaged Navier–Stokes turbulent model. A quasi-neutral fluid plasma model is used for computing the plasma properties. The plasma arc movement in the reactor is observed, and the results for the gas flow, electrical characteristics, plasma density, electron temperature, and gas temperature are analyzed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000376557400022 Publication Date 2016-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 20 Open Access  
  Notes This research was carried out in the framework of the network on Physical Chemistry of Plasma–Surface Interactions— Interuniversity Attraction Poles, phase VII (http://psi-iap7.ulb. ac.be/), and supported by the Belgian Science Policy Office (BELSPO), and it was also funded by the Fund for Scientific Research Flanders (FWO). Grant number: 11U5316N. Approved Most recent IF: 3.302  
  Call Number c:irua:132888 c:irua:132888 Serial 4063  
Permanent link to this record
 

 
Author Neyts, E.C.; Bogaerts, A. doi  openurl
  Title Combining molecular dynamics with Monte Carlo simulations : implementations and applications Type A1 Journal article
  Year 2013 Publication Theoretical chemistry accounts : theory, computation, and modeling Abbreviated Journal Theor Chem Acc  
  Volume 132 Issue 2 Pages 1320-12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In this contribution, we present an overview of the various techniques for combining atomistic molecular dynamics with Monte Carlo simulations, mainly in the context of condensed matter systems, as well as a brief summary of the main accelerated dynamics techniques. Special attention is given to the force bias Monte Carlo technique and its combination with molecular dynamics, in view of promising recent developments, including a definable timescale. Various examples of the application of combined molecular dynamics / Monte Carlo simulations are given, in order to demonstrate the enhanced simulation efficiency with respect to either pure molecular dynamics or Monte Carlo.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000318294700010 Publication Date 2012-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-881X;1432-2234; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.89 Times cited 27 Open Access  
  Notes Approved Most recent IF: 1.89; 2013 IF: 2.143  
  Call Number UA @ lucian @ c:irua:104725 Serial 404  
Permanent link to this record
 

 
Author Ozkan, A.; Dufour, T.; Silva, T.; Britun, N.; Snyders, R.; Bogaerts, A.; Reniers, F. pdf  url
doi  openurl
  Title The influence of power and frequency on the filamentary behavior of a flowing DBD—application to the splitting of CO2 Type A1 Journal article
  Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 25 Issue 25 Pages 025013  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In this experimental study, a flowing dielectric barrier discharge operating at atmospheric pressure is used for the splitting of CO2 into O2 and CO. The influence of the applied frequency and plasma power on the microdischarge properties is investigated to understand their role on the CO2 conversion. Electrical measurements are carried out to explain the conversion trends and to characterize the microdischarges through their number, their lifetime,

their intensity and the induced electrical charge. Their influence on the gas and electrode temperatures is also evidenced through optical emission spectroscopy and infrared imaging. It is shown that, in our configuration, the conversion depends mostly on the charge delivered in the plasma and not on the effective plasma voltage when the applied power is modified. Similarly, at constant total current, a better conversion is observed at low frequencies, where a less filamentary discharge regime with a higher effective plasma voltage than that at a higher

frequency is obtained.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372337900015 Publication Date 2016-02-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 40 Open Access  
  Notes The authors acknowledge financial support from the IAPVII/ 12, P7/34 (Inter-university Attraction Pole) program ‘PSI-Physical Chemistry of Plasma-Surface Interactions’, financially supported by the Belgian Federal Office for Science Policy (BELSPO). A Ozkan would like to thank the financial support given by ‘Fonds David et Alice Van Buuren’. N Britun is a postdoctoral researcher of the F.R.S.-FNRS, Belgium. Approved Most recent IF: 3.302  
  Call Number c:irua:131904 Serial 4021  
Permanent link to this record
 

 
Author Martens, T.; Bogaerts, A.; van Dijk, J. doi  openurl
  Title Pulse shape influence on the atmospheric barrier discharge Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 13 Pages 131503,1-131503,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In this letter we compare the effect of a radio-frequency sine, a low frequency sine, a rectangular and a pulsed dc voltage profile on the calculated electron production and power consumption in the dielectric barrier discharge. We also demonstrate using calculated potential distribution profiles of high time and space resolution how the pulsed dc discharge generates a secondary discharge pulse by deactivating the power supply.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000276275300019 Publication Date 2010-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 35 Open Access  
  Notes Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:81538 Serial 2738  
Permanent link to this record
 

 
Author Martens, T.; Bogaerts, A.; Brok, W.J.M.; van Dijk, J. doi  openurl
  Title The influence of impurities on the performance of the dielectric barrier discharge Type A1 Journal article
  Year 2010 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 96 Issue 9 Pages 091501,1-091501,3  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In this letter, we investigate the effect of various levels of nitrogen impurity on the electrical performance of an atmospheric pressure dielectric barrier discharge in helium. We illustrate the different current profiles that are obtained, which exhibit one or more discharge pulses per half cycle and evaluate their performance in ionizing the discharge and dissipating the power. It is shown that flat and broad current profiles perform the best in ionizing the discharge and use the least amount of power per generated charged particle.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000275246200008 Publication Date 2010-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 28 Open Access  
  Notes Approved Most recent IF: 3.411; 2010 IF: 3.841  
  Call Number UA @ lucian @ c:irua:80944 Serial 1624  
Permanent link to this record
 

 
Author Van Gaens, W.; Bogaerts, A. pdf  doi
openurl 
  Title Reaction pathways of biomedically active species in an Ar plasma jet Type A1 Journal article
  Year 2014 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 23 Issue 3 Pages 035015-35027  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In this paper we analyse the gas phase production and loss pathways for several biomedically active species, i.e. N2(A), O, O3, O2(a), N, H, HO2, OH, NO, NO2, N2O5, H2O2, HNO2 and HNO3, in an argon plasma jet flowing into an open humid air atmosphere. For this purpose, we employ a zero-dimensional reaction kinetics model to mimic the typical experimental conditions by fitting several parameters to experimentally measured values. These include ambient air diffusion, the gas temperature profile and power deposition along the jet effluent. We focus in detail on how the pathways of the biomedically active species change as a function of the position in the effluent, i.e. inside the discharge device, active plasma jet effluent and afterglow region far from the nozzle. Moreover, we demonstrate how the reaction kinetics and species production are affected by different ambient air humidities, total deposited power into the plasma and gas temperature along the jet. It is shown that the dominant pathways can drastically change as a function of the distance from the nozzle exit or experimental conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000337891900017 Publication Date 2014-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 34 Open Access  
  Notes Approved Most recent IF: 3.302; 2014 IF: 3.591  
  Call Number UA @ lucian @ c:irua:117075 Serial 2820  
Permanent link to this record
 

 
Author Slaets, J.; Aghaei, M.; Ceulemans, S.; Van Alphen, S.; Bogaerts, A. pdf  url
doi  openurl
  Title CO2and CH4conversion in “real” gas mixtures in a gliding arc plasmatron: how do N2and O2affect the performance? Type A1 Journal article
  Year 2020 Publication Green Chemistry Abbreviated Journal Green Chem  
  Volume 22 Issue 4 Pages 1366-1377  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In this paper we study dry reforming of methane (DRM) in a gliding arc plasmatron (GAP) in the presence of N<sub>2</sub>and O<sub>2</sub>. N<sub>2</sub>is added to create a stable plasma at equal fractions of CO<sub>2</sub>and CH<sub>4</sub>, and because emissions from industrial plants typically contain N<sub>2</sub>, while O<sub>2</sub>is added to enhance the process. We test different gas mixing ratios to evaluate the conversion and energy cost. We obtain conversions between 31 and 52% for CO<sub>2</sub>and between 55 and 99% for CH<sub>4</sub>, with total energy costs between 3.4 and 5.0 eV per molecule, depending on the gas mixture. This is very competitive when benchmarked with the literature. In addition, we present a chemical kinetics model to obtain deeper insight in the underlying plasma chemistry. This allows determination of the major reaction pathways to convert CO<sub>2</sub>and CH<sub>4</sub>, in the presence of O<sub>2</sub>and N<sub>2</sub>, into CO and H<sub>2</sub>. We show that N<sub>2</sub>assists in the CO<sub>2</sub>conversion, but part of the applied energy is also wasted in N<sub>2</sub>excitation. Adding O<sub>2</sub>enhances the CH<sub>4</sub>conversion, and lowers the energy cost, while the CO<sub>2</sub>conversion remains constant, and only slightly drops at the highest O<sub>2</sub>fractions studied, when CH<sub>4</sub>is fully oxidized into CO<sub>2</sub>.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000518034000032 Publication Date 2020-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9262 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.8 Times cited Open Access OpenAccess  
  Notes H2020 European Research Council, 810182 ; Fonds Wetenschappelijk Onderzoek, GoF9618n 12M7118N ; We acknowledge financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and the FWO postdoctoral fellowship of M. A. (Grant number 12M7118N). This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the University of Antwerp. Approved Most recent IF: 9.8; 2020 IF: 9.125  
  Call Number PLASMANT @ plasmant @c:irua:167136 Serial 6339  
Permanent link to this record
 

 
Author Van Gaens, W.; Iseni, S.; Schmidt-Bleker, A.; Weltmann, K.-D.; Reuter, S.; Bogaerts, A. url  doi
openurl 
  Title Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure Type A1 Journal article
  Year 2015 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 17 Issue 17 Pages 033003  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In this paper we study the cold atmospheric pressure plasma jet, called kinpen, operating in Ar with different admixture fractions up to 1% pure , and + . Moreover, the device is operating with a gas curtain of dry air. The absolute net production rates of the biologically active ozone () and nitrogen dioxide () species are measured in the far effluent by quantum cascade laser absorption spectroscopy in the mid-infrared. Additionally, a zero-dimensional semi-empirical reaction kinetics model is used to calculate the net production rates of these reactive molecules, which are compared to the experimental data. The latter model is applied throughout the entire plasma jet, starting already within the device itself. Very good qualitative and even quantitative agreement between the calculated and measured data is demonstrated. The numerical model thus yields very useful information about the chemical pathways of both the and the generation. It is shown that the production of these species can be manipulated by up to one order of magnitude by varying the amount of admixture or the admixture type, since this affects the electron kinetics significantly at these low concentration levels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000352898500003 Publication Date 2015-03-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 29 Open Access  
  Notes Approved Most recent IF: 3.786; 2015 IF: 3.558  
  Call Number c:irua:124228 Serial 2391  
Permanent link to this record
 

 
Author Van Gaens, W.; Bruggeman, P.J.; Bogaerts, A. url  doi
openurl 
  Title Numerical analysis of the NO and O generation mechanism in a needle-type plasma jet Type A1 Journal article
  Year 2014 Publication New journal of physics Abbreviated Journal New J Phys  
  Volume 16 Issue Pages 063054  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In this paper we study two cold atmospheric pressure plasma jets, operating in Ar + 2% air, with a different electrode geometry but with the same power dissipated in the plasma. The density profiles of the biomedically active NO and O species throughout the plasma jet, previously obtained by laser diagnostics, are calculated by means of a zero-dimensional semi-empirical reaction kinetics model. A good agreement between the calculated and measured data is demonstrated. Furthermore, the most probable spatial power distribution in an RF driven plasma jet is obtained for the first time by comparing measured and calculated species density profiles. This was possible due to the strong effect of the power distribution on the NO and O density profiles. In addition the dominant reaction pathways for both the NO and the O species are identified. The model allows us to obtain key information on the reactive species production inside the jet, which is difficult to access by laser diagnostics in a coaxial geometry. Finally, we demonstrate that water impurities in the order of 100 ppm in the gas feed can have a significant effect on the spatial distribution of the NO and O density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000339081400006 Publication Date 2014-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.786 Times cited 34 Open Access  
  Notes Approved Most recent IF: 3.786; 2014 IF: 3.558  
  Call Number UA @ lucian @ c:irua:117946 Serial 2392  
Permanent link to this record
 

 
Author Madani, M.; Bogaerts, A.; Vangeneugden, D. openurl 
  Title Numerical modelling for a dielectric barrier discharge at atmospheric pressure in nitrogen Type P1 Proceeding
  Year 2005 Publication Abbreviated Journal  
  Volume Issue Pages 53-56  
  Keywords P1 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In this paper we used a one dimensional fluid model, for the simulations of a Dielectric Barrier Discharge at atmospheric pressure. From the current and voltage profiles and the density profiles, we notice that two different regimes can be obtained in a uniform DBD. Furthermore a two dimensional flud model was developed and we describe how the gasflow can be included in such a model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-90-808669-2-8 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:88728 Serial 2399  
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A. pdf  doi
openurl 
  Title Modeling adatom surface processes during crystal growth: a new implementation of the Metropolis Monte Carlo algorithm Type A1 Journal article
  Year 2009 Publication CrystEngComm Abbreviated Journal Crystengcomm  
  Volume 11 Issue 8 Pages 1597-1608  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In this paper, a new implementation of the Metropolis Monte Carlo (MMC) algorithm is presented. When combining the MMC model with a molecular dynamics (MD) code, crystal growth by plasma-enhanced chemical vapor deposition can be simulated. As the MD part simulates impacts of growth species onto the surface on a time scale of picoseconds, the MMC algorithm simulates the slower adatom surface processes. The implementation includes a criterion for the selection of atoms that are allowed to be displaced during the simulation, and a criterion of after how many MMC cycles the simulation is stopped. We performed combined MD-MMC simulations for hydrocarbon species that are important for the growth of ultrananocrystalline diamond (UNCD) films at partially hydrogenated diamond surfaces, since this implementation is part of a study of the growth mechanisms of (ultra)nanocrystalline diamond films. Exemplary for adatom arrangements during the growth of UNCD, the adatom surface behavior of C and C2H2 at diamond (111)1 × 1, C and C4H2 at diamond (111)1 × 1 and C3 at diamond (100)2 × 1 has been investigated. For all cases, the diamond crystal structure is pursued under the influence of MMC simulation. Additional longer time-scale MD simulations put forward very similar structures, verifying the MMC algorithm. Nevertheless, the MMC simulation time is typically one order of magnitude shorter than the MD simulation time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000268184300021 Publication Date 2009-04-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-8033; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.474 Times cited 15 Open Access  
  Notes Approved Most recent IF: 3.474; 2009 IF: 4.183  
  Call Number UA @ lucian @ c:irua:77374 Serial 2106  
Permanent link to this record
 

 
Author Tinck, S.; Boullart, W.; Bogaerts, A. doi  openurl
  Title Investigation of etching and deposition processes of Cl2/O2/Ar inductively coupled plasmas on silicon by means of plasmasurface simulations and experiments Type A1 Journal article
  Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 42 Issue Pages 095204,1-095204,13  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) In this paper, a simulation method is described to predict the etching behaviour of Cl2/O2/Ar inductively coupled plasmas on a Si substrate, as used in shallow trench isolation for the production of electronic devices. The hybrid plasma equipment model (HPEM) developed by Kushner et al is applied to calculate the plasma characteristics in the reactor chamber and two additional Monte Carlo simulations are performed to predict the fluxes, angles and energy of the plasma species bombarding the Si substrate, as well as the resulting surface processes such as etching and deposition. The simulations are performed for a wide variety of operating conditions such as gas composition, chamber pressure, power deposition and substrate bias. It is predicted by the simulations that when the fraction of oxygen in the gas mixture is too high, the oxidation of the Si substrate is superior to the etching of Si by chlorine species, resulting in an etch rate close to zero as is also observed in the experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000265531000030 Publication Date 2009-04-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 23 Open Access  
  Notes Approved Most recent IF: 2.588; 2009 IF: 2.083  
  Call Number UA @ lucian @ c:irua:75601 Serial 1731  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: