toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Wang, J.T.W.; Cabana, L.; Bourgognon, M.; Kafa, H.; Protti, A.; Venner, K.; Shah, A.M.; Sosabowski, J.K.; Mather, S.J.; Roig, A.; Ke, X.; Van Tendeloo, G.; de Rosales, R.T.M.; Tobias, G.; Al-Jamal, K.T.
  Title Magnetically decorated multiwalled carbon nanotubes as dual MRI and SPECT contrast agents Type A1 Journal article
  Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
  Volume 24 Issue 13 Pages 1880-1894
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract (down) Carbon nanotubes (CNTs) are one of the most promising nanomaterials to be used in biomedicine for drug/gene delivery as well as biomedical imaging. This study develops radio-labeled, iron oxide-decorated multiwalled CNTs (MWNTs) as dual magnetic resonance (MR) and single photon emission computed tomography (SPECT) contrast agents. Hybrids containing different amounts of iron oxide are synthesized by in situ generation. Physicochemical characterisations reveal the presence of superparamagnetic iron oxide nanoparticles (SPION) granted the magnetic properties of the hybrids. Further comprehensive examinations including high resolution transmission electron microscopy (HRTEM), fast Fourier transform simulations, X-ray diffraction, and X-ray photoelectron spectroscopy assure the conformation of prepared SPION as γ-Fe2O3. High r2 relaxivities are obtained in both phantom and in vivo MRI compared to the clinically approved SPION Endorem. The hybrids are successfully radio labeled with technetium-99m through a functionalized bisphosphonate and enable SPECT/CT imaging and γ-scintigraphy to quantitatively analyze the biodistribution in mice. No abnormality is found by histological examination and the presence of SPION and MWNT are identified by Perls stain and Neutral Red stain, respectively. TEM images of liver and spleen tissues show the co-localization of SPION and MWNTs within the same intracellular vesicles, indicating the in vivo stability of the hybrids after intravenous injection. The results demonstrate the capability of the present SPIONMWNT hybrids as dual MRI and SPECT contrast agents for in vivo use.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000333674100007 Publication Date 2013-11-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited 50 Open Access
  Notes Countatoms; Fp7; Esteem2; esteem2_ta Approved Most recent IF: 12.124; 2014 IF: 11.805
  Call Number UA @ lucian @ c:irua:111589 Serial 1891
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A.
  Title Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S,Se,Te) chalchogenide templates Type A1 Journal article
  Year 2014 Publication 2D materials Abbreviated Journal 2D Mater
  Volume 1 Issue 1 Pages 011010
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (down) By using first-principles simulations, we investigate the interaction of a 2D silicon layer with two classes of chalcogenide-layered compounds, namely MoX2 and GaX (X = S, Se, Te). A rather weak (van der Waals) interaction between the silicene layers and the chalcogenide layers is predicted. We found that the buckling of the silicene layer is correlated to the lattice mismatch between the silicene layer and the MoX2 or GaX template. The electronic properties of silicene on these different templates largely depend on the buckling of the silicene layer: highly buckled silicene on MoS2 is predicted to be metallic, while low buckled silicene on GaS and GaSe is predicted to be semi-metallic, with preserved Dirac cones at the K points. These results indicate new routes for artificially engineering silicene nanosheets, providing tailored electronic properties of this 2D layer on non-metallic substrates. These non-metallic templates also open the way to the possible integration of silicene in future nanoelectronic devices.
  Address
  Corporate Author Thesis
  Publisher IOP Publishing Place of Publication Bristol Editor
  Language Wos 000353649900011 Publication Date 2014-05-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2053-1583; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.937 Times cited 49 Open Access
  Notes Approved Most recent IF: 6.937; 2014 IF: NA
  Call Number UA @ lucian @ c:irua:126032 Serial 1048
Permanent link to this record
 

 
Author Ustarroz, J.; Altantzis, T.; Hammons, J.A.; Hubin, A.; Bals, S.; Terryn, H.
  Title The role of nanocluster aggregation, coalescence, and recrystallization in the electrochemical deposition of platinum nanostructures Type A1 Journal article
  Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 26 Issue 7 Pages 2396-2406
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) By using an optimized characterization approach that combines aberration-corrected transmission electron microscopy, electron tomography, and in situ ultrasmall angle X-ray scattering (USAXS), we show that the early stages of Pt electrochemical growth on carbon substrates may be affected by the aggregation, self-alignment, and partial coalescence of nanoclusters of d ≈ 2 nm. The morphology of the resulting nanostructures depends on the degree of coalescence and recrystallization of nanocluster aggregates, which in turn depends on the electrodeposition potential. At low overpotentials, a self-limiting growth mechanism may block the epitaxial growth of primary nanoclusters and results in loose dendritic aggregates. At more negative potentials, the extent of nanocluster coalescence and recrystallization is larger and further growth by atomic incorporation may be allowed. On one hand, this suggests a revision of the VolmerWeber island growth mechanism. Whereas this theory has traditionally assumed direct attachment as the only growth mechanism, it is suggested that nanocluster self-limiting growth, aggregation, and coalescence should also be taken into account during the early stages of nanoscale electrodeposition. On the other hand, depending on the deposition potential, ultrahigh porosities can be achieved, turning electrodeposition in an ideal process for highly active electrocatalyst production without the need of using high surface area carbon supports.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000334572300026 Publication Date 2014-03-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 55 Open Access Not_Open_Access
  Notes FWO; contract no. FWOAL527 Approved Most recent IF: 9.466; 2014 IF: 8.354
  Call Number UA @ lucian @ c:irua:116956 Serial 2916
Permanent link to this record
 

 
Author Prodi, A.; Daoud-Aladine, A.; Gozzo, F.; Schmitt, B.; Lebedev, O.; Van Tendeloo, G.; Gilioli, E.; Bolzoni, F.; Aruga-Katori, H.; Takagi, H.; Marezio, M.; Gauzzi, A.;
  Title Commensurate structural modulation in the charge- and orbitally ordered phase of the quadruple perovskite (NaMn3)Mn4O12 Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 90 Issue 18 Pages 180101
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) By means of synchrotron x-ray and electron diffraction, we studied the structural changes at the charge order transition T-CO = 176 K in the mixed-valence quadruple perovskite (NaMn3)Mn4O12. Below T-CO we find satellite peaks indicating a commensurate structural modulation with the same propagation vector q = ( 1/2,0,-1/2) of the CE magnetic structure that orders at low temperatures, similarly to the case of simple perovskites such as La0.5Ca0.5MnO3. In the present case, the modulated structure, together with the observation of a large entropy change at T-CO, gives evidence of a rare case of full Mn3+/Mn4+ charge and orbital order, consistent with the Goodenough-Kanamori model.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000344915100001 Publication Date 2014-11-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 11 Open Access
  Notes Approved Most recent IF: 3.836; 2014 IF: 3.736
  Call Number UA @ lucian @ c:irua:122097 Serial 406
Permanent link to this record
 

 
Author Mueller, K.; Krause, F.F.; Béché, A.; Schowalter, M.; Galioit, V.; Loeffler, S.; Verbeeck, J.; Zweck, J.; Schattschneider, P.; Rosenauer, A.
  Title Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction Type A1 Journal article
  Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
  Volume 5 Issue Pages 5653
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract (down) By focusing electrons on probes with a diameter of 50 pm, aberration-corrected scanning transmission electron microscopy (STEM) is currently crossing the border to probing subatomic details. A major challenge is the measurement of atomic electric fields using differential phase contrast (DPC) microscopy, traditionally exploiting the concept of a field- induced shift of diffraction patterns. Here we present a simplified quantum theoretical interpretation of DPC. This enables us to calculate the momentum transferred to the STEM probe from diffracted intensities recorded on a pixel array instead of conventional segmented bright- field detectors. The methodical development yielding atomic electric field, charge and electron density is performed using simulations for binary GaN as an ideal model system. We then present a detailed experimental study of SrTiO3 yielding atomic electric fields, validated by comprehensive simulations. With this interpretation and upgraded instrumentation, STEM is capable of quantifying atomic electric fields and high-contrast imaging of light atoms.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000347227700003 Publication Date 2014-12-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.124 Times cited 197 Open Access
  Notes 246791 COUNTATOMS; 278510 VORTEX; Hercules; 312483 ESTEEM2; esteem2ta; ECASJO; Approved Most recent IF: 12.124; 2014 IF: 11.470
  Call Number UA @ lucian @ c:irua:122835UA @ admin @ c:irua:122835 Serial 166
Permanent link to this record
 

 
Author Van Boxem, R.; Partoens, B.; Verbeeck, J.
  Title Rutherford scattering of electron vortices Type A1 Journal article
  Year 2014 Publication Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
  Volume 89 Issue 3 Pages 032715-32719
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract (down) By considering a cylindrically symmetric generalization of a plane wave, the first-order Born approximation of screened Coulomb scattering unfolds two new dimensions in the scattering problem: transverse momentum and orbital angular momentum of the incoming beam. In this paper, the elastic Coulomb scattering amplitude is calculated analytically for incoming Bessel beams. This reveals novel features occurring for wide-angle scattering and quantitative insights for small-angle vortex scattering. The result successfully generalizes the well-known Rutherford formula, incorporating transverse and orbital angular momentum into the formalism.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000333690500008 Publication Date 2014-03-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.925 Times cited 34 Open Access
  Notes 312483-Esteem2; N246791 – Countatoms; 278510 Vortex; esteem2jra1; esteem2jra3 ECASJO_; Approved Most recent IF: 2.925; 2014 IF: 2.808
  Call Number UA @ lucian @ c:irua:115562UA @ admin @ c:irua:115562 Serial 2936
Permanent link to this record
 

 
Author Govaerts, K.; Park, K.; De Beule, C.; Partoens, B.; Lamoen, D.
  Title Effect of Bi bilayers on the topological states of Bi2Se3 : a first-principles study Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 90 Issue 15 Pages 155124
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
  Abstract (down) Bi2Se3 is a three-dimensional topological insulator which has been extensively studied because it has a single Dirac cone on the surface, inside a relatively large bulk band gap. However, the effect of two-dimensional topological insulator Bi bilayers on the properties of Bi2Se3 and vice versa, has not been explored much. Bi bilayers are often present between the quintuple layers of Bi2Se3, since (Bi2)n(Bi2Se3)m form stable ground-state structures. Moreover, Bi2Se3 is a good substrate for growing ultrathin Bi bilayers. By first-principles techniques, we first show that there is no preferable surface termination by either Bi or Se. Next, we investigate the electronic structure of Bi bilayers on top of, or inside a Bi2Se3 slab. If the Bi bilayers are on top, we observe a charge transfer to the quintuple layers that increases the binding energy of the surface Dirac cones. The extra states, originating from the Bi bilayers, were declared to form a topological Dirac cone, but here we show that these are ordinary Rashba-split states. This result, together with the appearance of a new Dirac cone that is localized slightly deeper, might necessitate the reinterpretation of several experimental results. When the Bi bilayers are located inside the Bi2Se3 slab, they tend to split the slab into two topological insulators with clear surface states. Interface states can also be observed, but an energy gap persists because of strong coupling between the neighboring quintuple layers and the Bi bilayers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000343773200001 Publication Date 2014-10-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 30 Open Access
  Notes ; We gratefully acknowledge financial support from the Research Foundation – Flanders (FWO-Vlaanderen). K.G. thanks the University of Antwerp for a Ph.D. fellowship. C.D.B. is an aspirant of the Flemish Science Foundation. This work was carried out using the HPC infrastructure at the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC, supported financially by the Hercules Foundation and the Flemish Government (EWI Department). K.P. was supported by U.S. National Science Foundation Grant No. DMR-1206354. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
  Call Number UA @ lucian @ c:irua:119527 Serial 800
Permanent link to this record
 

 
Author Szaszko-Bogar, V.; Foeldi, P.; Peeters, F.M.
  Title Oscillating spin-orbit interaction as a source of spin-polarized wavepackets in two-terminal nanoscale devices Type A1 Journal article
  Year 2014 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
  Volume 26 Issue 13 Pages 135302
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (down) Ballistic transport through nanoscale devices with time-dependent Rashba-type spin- orbit interaction (SOI) can lead to spin-polarized wavepackets that appear even for completely unpolarized input. The SOI that oscillates in a finite domain generates density and spin polarization fluctuations that leave the region as propagating waves. In particular, spin polarization has space and time dependence even in regions without SOI. Our results are based on an analytical solution of the time-dependent Schrodinger equation. The relevant Floquet quasi-energies that are obtained appear in the energy spectrum of both the transmitted and the reflected waves.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.649 Times cited Open Access
  Notes Approved Most recent IF: 2.649; 2014 IF: 2.346
  Call Number UA @ lucian @ c:irua:116844 Serial 2533
Permanent link to this record
 

 
Author Egoavil, R.; Gauquelin, N.; Martinez, G.T.; Van Aert, S.; Van Tendeloo, G.; Verbeeck, J.
  Title Atomic resolution mapping of phonon excitations in STEM-EELS experiments Type A1 Journal article
  Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
  Volume 147 Issue Pages 1-7
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) Atomically resolved electron energy-loss spectroscopy experiments are commonplace in modern aberration-corrected transmission electron microscopes. Energy resolution has also been increasing steadily with the continuous improvement of electron monochromators. Electronic excitations however are known to be delocalized due to the long range interaction of the charged accelerated electrons with the electrons in a sample. This has made several scientists question the value of combined high spatial and energy resolution for mapping interband transitions and possibly phonon excitation in crystals. In this paper we demonstrate experimentally that atomic resolution information is indeed available at very low energy losses around 100 meV expressed as a modulation of the broadening of the zero loss peak. Careful data analysis allows us to get a glimpse of what are likely phonon excitations with both an energy loss and gain part. These experiments confirm recent theoretical predictions on the strong localization of phonon excitations as opposed to electronic excitations and show that a combination of atomic resolution and recent developments in increased energy resolution will offer great benefit for mapping phonon modes in real space.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000343157400001 Publication Date 2014-05-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.843 Times cited 22 Open Access
  Notes 246102 IFOX; 278510 VORTEX; 246791 COUNTATOMS; Hercules; 312483 ESTEEM2; esteem2jra3 ECASJO; Approved Most recent IF: 2.843; 2014 IF: 2.436
  Call Number UA @ lucian @ c:irua:118332UA @ admin @ c:irua:118332 Serial 177
Permanent link to this record
 

 
Author Dendooven, J.; Devloo-Casier, K.; Ide, M.; Grandfield; Kurttepeli; Ludwig, K.F.; Bals, S.; Van der Voort, P.; Detavernier, C.
  Title Atomic layer deposition-based tuning of the pore size in mesoporous thin films studied by in situ grazing incidence small angle X-ray scattering Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 6 Issue 24 Pages 14991-14998
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract (down) Atomic layer deposition (ALD) enables the conformal coating of porous materials, making the technique suitable for pore size tuning at the atomic level, e.g., for applications in catalysis, gas separation and sensing. It is, however, not straightforward to obtain information about the conformality of ALD coatings deposited in pores with diameters in the low mesoporous regime (<10 nm). In this work, it is demonstrated that in situ synchrotron based grazing incidence small angle X-ray scattering (GISAXS) can provide valuable information on the change in density and internal surface area during ALD of TiO2 in a porous titania film with small mesopores (3-8 nm). The results are shown to be in good agreement with in situ X-ray fluorescence data representing the evolution of the amount of Ti atoms deposited in the porous film. Analysis of both datasets indicates that the minimum pore diameter that can be achieved by ALD is determined by the size of the Ti-precursor molecule.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000345458200051 Publication Date 2014-10-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 41 Open Access OpenAccess
  Notes 239865 Cocoon; 335078 Colouratom; Fwo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2014 IF: 7.394
  Call Number UA @ lucian @ c:irua:122227 Serial 169
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Karkin, A.E.; Morozova, N.V.; Shchennikov, V.V.; Bykova, E.; Abakumov, A.M.; Tsirlin, A.A.; Glazyrin, K.V.; Dubrovinsky, L.
  Title A hard oxide semiconductor with a direct and narrow bandgap and switchable pn electrical conduction Type A1 Journal article
  Year 2014 Publication Advanced materials Abbreviated Journal Adv Mater
  Volume 26 Issue 48 Pages 8185-8191
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract (down) An oxide semiconductor (perovskite-type Mn2O3) is reported which has a narrow and direct bandgap of 0.45 eV and a high Vickers hardness of 15 GPa. All the known materials with similar electronic band structures (e.g., InSb, PbTe, PbSe, PbS, and InAs) play crucial roles in the semiconductor industry. The perovskite-type Mn2O3 described is much stronger than the above semiconductors and may find useful applications in different semiconductor devices, e.g., in IR detectors.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000346480800016 Publication Date 2014-10-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 19.791 Times cited 27 Open Access
  Notes Approved Most recent IF: 19.791; 2014 IF: 17.493
  Call Number UA @ lucian @ c:irua:122230 Serial 1408
Permanent link to this record
 

 
Author Aghaei, M.; Flamigni, L.; Lindner, H.; Günther, D.; Bogaerts, A.
  Title Occurrence of gas flow rotational motion inside the ICP torch : a computational and experimental study Type A1 Journal article
  Year 2014 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
  Volume 29 Issue 2 Pages 249-261
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (down) An inductively coupled plasma, connected to the sampling cone of a mass spectrometer, is computationally investigated. The occurrence of rotational motion of the auxiliary and carrier gas flows is studied. The effects of operating parameters, i.e., applied power and gas flow rates, as well as geometrical parameters, i.e., sampler orifice diameter and injector inlet diameter, are investigated. Our calculations predict that at higher applied power the auxiliary and carrier gas flows inside the torch move more forward to the sampling cone, which is validated experimentally for the auxiliary gas flow, by means of an Elan 6000 ICP-MS. Furthermore, an increase of the gas flow rates can also modify the occurrence of rotational motion. This is especially true for the carrier gas flow rate, which has a more pronounced effect to reduce the backward motion than the flow rates of the auxiliary and cooling gas. Moreover, a larger sampler orifice (e.g., 2 mm instead of 1 mm) reduces the backward flow of the auxiliary gas path lines. Finally, according to our model, an injector inlet of 2 mm diameter causes more rotations in the carrier gas flow than an injector inlet diameter of 1.5 mm, which can be avoided again by changing the operating parameters.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000329934000005 Publication Date 2013-11-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.379 Times cited 21 Open Access
  Notes Approved Most recent IF: 3.379; 2014 IF: 3.466
  Call Number UA @ lucian @ c:irua:112896 Serial 2427
Permanent link to this record
 

 
Author Lobato Hoyos, I.P.; van Dyck, D.
  Title An accurate parameterization for scattering factors, electron densities and electrostatic potentials for neutral atoms that obey all physical constraints Type A1 Journal article
  Year 2014 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A
  Volume 70 Issue 6 Pages 636-649
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract (down) An efficient procedure and computer program are outlined for fitting numerical X-ray and electron scattering factors with the correct inclusion of all physical constraints. The numerical electron scattering factors have been parameterized using five analytic non-relativistic hydrogen electron scattering factors as basis functions for 103 neutral atoms of the periodic table. The inclusion of the correct physical constraints in the electron scattering factor and its derived quantities allows the use of the new parameterization in different fields. In terms of quality of the fit, the proposed parameterization of the electron scattering factor is one order of magnitude better than the previous analytic fittings.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Copenhagen Editor
  Language Wos 000344599300012 Publication Date 2014-10-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2053-2733; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.725 Times cited 19 Open Access
  Notes Approved Most recent IF: 5.725; 2014 IF: NA
  Call Number UA @ lucian @ c:irua:122103 Serial 93
Permanent link to this record
 

 
Author Grieten, E.; Caen, J.; Schryvers, D.
  Title Optimal sample preparation to characterize corrosion in historical photographs with analytical TEM Type A1 Journal article
  Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
  Volume 20 Issue 5 Pages 1585-1590
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Antwerp Cultural Heritage Sciences (ARCHES)
  Abstract (down) An alternative focused ion beam preparation method is used for sampling historical photographs containing metallic nanoparticles in a polymer matrix. We use the preparation steps of classical ultra-microtomy with an alternative final sectioning with a focused ion beam. Transmission electron microscopy techniques show that the lamella has a uniform thickness, which is an important factor for analytical transmission electron microscopy. Furthermore, the method maintains the spatial distribution of nanoparticles in the soft matrix. The results are compared with traditional preparation techniques such as ultra-microtomy and classical focused ion beam milling.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge, Mass. Editor
  Language Wos 000345742900031 Publication Date 2014-09-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.891 Times cited Open Access
  Notes Approved Most recent IF: 1.891; 2014 IF: 1.877
  Call Number UA @ lucian @ c:irua:118481 Serial 2484
Permanent link to this record
 

 
Author Hoffman, B.M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D.R.; Seefeldt, L.C.
  Title Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage Type A1 Journal Article
  Year 2014 Publication Chemical Reviews Abbreviated Journal Chem. Rev.
  Volume 114 Issue 8 Pages 4041-4062
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
  Abstract (down) Ammonia is a crucial nutrient used for plant growth and as a building block in pharmaceutical and chemical industry, produced via nitrogen fixation of the ubiquitous atmospheric N2. Current industrial ammonia production relies heavily on fossil resources, but a lot of work is put into developing non-fossil based pathways. Among these is the use of nonequilibrium plasma. In this work, we investigated water vapor as H source for nitrogen fixation into NH3 by non-equilibrium plasma. The highest selectivity towards NH3 was observed with low amounts of added H2O vapor, but the highest production rate was reached at high H2O vapor.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2014-04-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0009-2665 ISBN Additional Links
  Impact Factor Times cited Open Access
  Notes We would like to thank Sylvia Dewilde (Department of Biomedical Sciences) for providing analytical equipment. Approved no
  Call Number PLASMANT @ plasmant @ Serial 6337
Permanent link to this record
 

 
Author Lu, J.; Martinez, G.T.; Van Aert, S.; Schryvers, D.
  Title Lattice deformations in quasi-dynamic strain glass visualised and quantified by aberration corrected electron microscopy Type A1 Journal article
  Year 2014 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
  Volume 251 Issue 10 Pages 2034-2040
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) Advanced transmission electron microscopy and statistical parameter estimated quantification procedures were applied to study the room temperature quasi-dynamical strain glass state in NiTi alloys. Nanosized strain pockets are visualised and the displacements of the atom columns are quantified. A comparison is made with conventional high-resolution transmission electron microscopy images of point defect induced strains in NiAl alloys.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Berlin Editor
  Language Wos 000344360000009 Publication Date 2014-03-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.674 Times cited 2 Open Access
  Notes Fwo Approved Most recent IF: 1.674; 2014 IF: 1.489
  Call Number UA @ lucian @ c:irua:120471 Serial 1801
Permanent link to this record
 

 
Author Verbruggen, S.W.; Keulemans, M.; Filippousi, M.; Flahaut, D.; Van Tendeloo, G.; Lacombe, S.; Martens, J.A.; Lenaerts, S.
  Title Plasmonic goldsilver alloy on TiO2 photocatalysts with tunable visible light activity Type A1 Journal article
  Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
  Volume 156 Issue Pages 116-121
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
  Abstract (down) Adaptation of the photoresponse of anatase TiO2 to match the solar spectrum is an important scientific challenge. Modification of TiO2 with noble metal nanoparticles displaying surface plasmon resonance effects is one of the promising approaches. Surface plasmon resonance typically depends on chemical composition, size, shape and spatial organization of the metal nanoparticles in contact with TiO2. AuxAg(1 − x) alloy nanoparticles display strong composition-dependent surface plasmon resonance in the visible light region of the spectrum. In this work, a general strategy is presented to prepare plasmonic TiO2-based photocatalysts with a visible light response that can be accurately tuned over a broad range of the spectrum. The application as self-cleaning material toward the degradation of stearic acid is demonstrated for a plasmonic TiO2 photocatalyst displaying visible light photoactivity at the intensity maximum of solar light around 490 nm.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000336013200014 Publication Date 2014-03-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.446 Times cited 84 Open Access
  Notes Flanders(FWO); Methusalem Approved Most recent IF: 9.446; 2014 IF: 7.435
  Call Number UA @ lucian @ c:irua:115552 Serial 2646
Permanent link to this record
 

 
Author Ramos, I.R.O.; Ferreira, W.P.; Munarin, F.F.; Peeters, F.M.
  Title Dynamical properties and melting of binary two-dimensional colloidal alloys Type A1 Journal article
  Year 2014 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
  Volume 90 Issue 6 Pages 062311
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract (down) A two-dimensional (2D) binary colloidal system consisting of interacting dipoles is investigated using an analytical approach. Within the harmonic approximation we obtain the phonon spectrum of the system as a function of the composition, dipole-moment ratio, and mass ratio between the small and big particles. Through a systematic analysis of the phonon spectra we are able to determine the stability region of the different lattice structures of the colloidal alloys. The gaps in the phonon frequency spectrum, the optical frequencies in the long-wavelength limit, and the sound velocity are discussed as well. Using the modified Lindemann criterion and within the harmonic approximation we estimate the melting temperature of the sublattice generated by the big particles.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor
  Language Wos 000346833500007 Publication Date 2014-12-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.366 Times cited 4 Open Access
  Notes ; This work was supported by the Brazilian agencies CNPq (Program Science Without Border), CAPES, and FUNCAP (International cooperation program); the Flemish Science Foundation (FWO-Vl); the bilateral program between Flanders and Brazil (CNPq-FWO collaborating project); and the VLIR-UOS (University Development Cooperation). I.R.O.R. is grateful to Professor E. B. Barros for fruitful discussions. W. P. F. thanks Professor D. Martin A. Buzza for his illuminating comments on this manuscript. ; Approved Most recent IF: 2.366; 2014 IF: 2.288
  Call Number UA @ lucian @ c:irua:122797 Serial 771
Permanent link to this record
 

 
Author Joris, I.; Bronders, J.; van der Grift, B.; Seuntjens, P.
  Title Model-based scenario analysis of the impact of remediation measures on metal leaching from soils contaminated by historic smelter emissions Type A1 Journal article
  Year 2014 Publication Journal of environmental quality Abbreviated Journal
  Volume 43 Issue 3 Pages 859-868
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract (down) A spatially distributed model for leaching of Cd from the unsaturated zone was developed for the Belgian-Dutch transnational Kempen region. The model uses as input land-use maps, atmospheric deposition data, and soil data and is part of a larger regional model that simulates transport of Cd in soil, groundwater, and surface water. A new method for deriving deposition from multiple sites was validated using soil data in different wind directions. Leaching was calculated for the period 1890 to 2010 using a reconstruction of metal loads in the region. The model was able to reproduce spatial patterns of concentrations in soil and groundwater and predicted the concentration in shallow groundwater adequately well for the purpose of evaluating management options. For 42% of the data points, measurements and calculations were within the same concentration class. The model was used for forecasting under a reference scenario, an autonomous development scenario including climate change, and a scenario with implementation of remediation measures. The impact of autonomous development (under the most extreme scenario of climatic change) amounted to an increase of 10% in cumulative Cd flux after 100 yr as compared with the reference scenario. The impact of remediation measures was mainly local and is less pronounced (i.e., only 3% change in cumulative flux at the regional scale). The integrated model served as a tool to assist in developing management strategies and prioritization of remediation of the wide-spread heavy metal contamination in the region.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000336275700009 Publication Date 2014-04-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0047-2425 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:117781 Serial 8260
Permanent link to this record
 

 
Author Huygh, S.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C.
  Title Development of a ReaxFF reactive force field for intrinsic point defects in titanium dioxide Type A1 Journal article
  Year 2014 Publication Computational materials science Abbreviated Journal Comp Mater Sci
  Volume 95 Issue Pages 579-591
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (down) A reactive ReaxFF force field is developed for studying the influence of intrinsic point defects on the chemistry with TiO2 condensed phases. The force field parameters are optimized to ab initio data for the equations of state, relative phase stabilities for titanium and titanium dioxide, potential energy differences for (TiO2)n-clusters (n = 116). Also data for intrinsic point defects in anatase were added. These data contain formation energies for interstitial titanium and oxygen vacancies, diffusion barriers of the oxygen vacancies and molecular oxygen adsorption on a reduced anatase (101) surface. Employing the resulting force field, we study the influence of concentration of oxygen vacancies and expansion or compression of an anatase surface on the diffusion of the oxygen vacancies. Also the barrier for oxygen diffusion in the subsurface region is evaluated using this force field. This diffusion barrier of 27.7 kcal/mol indicates that the lateral redistribution of oxygen vacancies on the surface and in the subsurface will be dominated by their diffusion in the subsurface, since both this barrier as well as the barriers for diffusion from the surface to the subsurface and vice versa (17.07 kcal/mol and 21.91 kcal/mol, respectively, as calculated with DFT), are significantly lower than for diffusion on the surface (61.12 kcal/mol as calculated with DFT).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000343781700077 Publication Date 2014-09-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0927-0256; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.292 Times cited 15 Open Access
  Notes Approved Most recent IF: 2.292; 2014 IF: 2.131
  Call Number UA @ lucian @ c:irua:119409 Serial 682
Permanent link to this record
 

 
Author Stambula, S.; Gauquelin, N.; Bugnet, M.; Gorantla, S.; Turner, S.; Sun, S.; Liu, J.; Zhang, G.; Sun, X.; Botton, G.A.
  Title Chemical structure of nitrogen-doped graphene with single platinum atoms and atomic clusters as a platform for the PEMFC electrode Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 118 Issue 8 Pages 3890-3900
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) A platform for producing stabilized Pt atoms and clusters through the combination of an N-doped graphene support and atomic layer deposition (ALD) for the Pt catalysts was investigated using transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). It was determined, using imaging and spectroscopy techniques, that a wide range of N-dopant types entered the graphene lattice through covalent bonds without largely damaging its structure. Additionally and most notably, Pt atoms and atomic clusters formed in the absence of nanoparticles. This work provides a new strategy for experimentally producing stable atomic and subnanometer cluster catalysts, which can greatly assist the proton exchange membrane fuel cell (PEMFC) development by producing the ultimate surface area to volume ratio catalyst.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000332188100004 Publication Date 2014-02-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 57 Open Access
  Notes Fwo Approved Most recent IF: 4.536; 2014 IF: 4.772
  Call Number UA @ lucian @ c:irua:115571 Serial 352
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D.
  Title Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
  Year 2014 Publication Rsc Advances Abbreviated Journal Rsc Adv
  Volume Issue 94 Pages 52140-52146
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200400 °C) is reported. The use of the fluorinated Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) molecular precursor in Ar/O2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in γ-Fe2O3 at 200 °C and α-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 °C the formation of highly oriented α-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000344389000041 Publication Date 2014-10-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.108 Times cited 4 Open Access
  Notes Approved Most recent IF: 3.108; 2014 IF: 3.840
  Call Number UA @ lucian @ c:irua:119529 Serial 2814
Permanent link to this record
 

 
Author Carraro, G.; Gasparotto, A.; Maccato, C.; Bontempi, E.; Lebedev, O.I.; Sada, C.; Turner, S.; Van Tendeloo, G.; Barreca, D.
  Title Rational synthesis of F-doped iron oxides on Al2O3(0001) single crystals Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
  Volume 4 Issue 94 Pages 52140-52146
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) A plasma enhanced-chemical vapor deposition (PE-CVD) route to Fe2O3-based materials on Al2O3(0001) single crystals at moderate growth temperatures (200-400 degrees C) is reported. The use of the fluorinated Fe(hfa)(2)TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine) molecular precursor in Ar/O-2 plasmas enabled an in situ F-doping of iron oxide matrices, with a fluorine content tunable as a function of the adopted preparative conditions. Variations of the thermal energy supply enabled control of the system phase composition, resulting in gamma-Fe2O3 at 200 degrees C and alpha-Fe2O3 nanostructures at higher deposition temperatures. Notably, at 400 degrees C the formation of highly oriented alpha-Fe2O3 nanocolumns characterized by an epitaxial relation with the Al2O3(0001) substrate was observed. Beside fluorine content, phase composition and nano-organization, even the system optical properties and, in particular, energy gap values, could be tailored by proper modifications of processing parameters.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000344389000041 Publication Date 2014-10-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.108 Times cited 4 Open Access
  Notes Approved Most recent IF: 3.108; 2014 IF: 3.840
  Call Number UA @ lucian @ c:irua:121239 Serial 2813
Permanent link to this record
 

 
Author Zhang, Y.; Jiang, W.; Bogaerts, A.
  Title Kinetic simulation of direct-current driven microdischarges in argon at atmospheric pressure Type A1 Journal article
  Year 2014 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
  Volume 47 Issue 43 Pages 435201
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract (down) A one-dimensional, implicit particle-in-cell Monte Carlo collision model is used to simulate the plasma kinetic properties at a steady state in a parallel-plate direct current argon glow microdischarge under various operating conditions, such as driving voltage (301000 V) and gap size (101000 µm) at atmospheric pressure. First, a comparison between rf and dc modes is shown for the same pressure, driving voltage and gap spacing. Furthermore, the effect of gap size scaling (in the range of 101000 µm) on the breakdown voltage, peak electron density and peak electron current density at the breakdown voltage is examined. The breakdown voltage is lower than 150 V in all gaps considered. The microdischarge is found to have a neutral bulk plasma region and a cathode sheath region with size varying with the applied voltage and the discharge gap. In our calculations, the electron and ion densities are of the order of 10181023 m−3, which is in the glow discharge limit, as the ionization degree is lower than 1% . The electron energy distribution function shows a two-energy group distribution at a gap of 10 µm and a three-energy group distribution at larger gaps such as 200 µm and 1000 µm, emphasizing the importance of the gap spacing in dc microdischarges.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000343150500011 Publication Date 2014-10-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.588 Times cited 10 Open Access
  Notes Approved Most recent IF: 2.588; 2014 IF: 2.721
  Call Number UA @ lucian @ c:irua:119152 Serial 1759
Permanent link to this record
 

 
Author Ji, G.; Tan, Z.; Shabadi, R.; Li, Z.; Grünewald, W.; Addad, A.; Schryvers, D.; Zhang, D.
  Title Triple ion beam cutting of diamond/Al composites for interface characterization Type A1 Journal article
  Year 2014 Publication Materials characterization Abbreviated Journal Mater Charact
  Volume 89 Issue Pages 132-137
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) A novel triple ion beam cutting technique was employed to prepare high-quality surfaces of diamond/Al composites for interfacial characterization, which has been unachievable so far. Near-perfect and artifact-free surfaces were obtained without mechanical pre-polishing. Hence, the as-prepared surfaces are readily available for further study and also, ready to be employed in a focus ion beam system for preferential selection of transmission electron microscopy samples. Dramatically different diamond/Al interface configurations – sub-micrometer Al2O3 particles and clean interfaces were unambiguously revealed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York Editor
  Language Wos 000333513400015 Publication Date 2014-01-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.714 Times cited 9 Open Access
  Notes Fwo Approved Most recent IF: 2.714; 2014 IF: 1.845
  Call Number UA @ lucian @ c:irua:113394 Serial 3735
Permanent link to this record
 

 
Author Pilehvar, S.; Rather, J.A.; Dardenne, F.; Robbens, J.; Blust, R.; De Wael, K.
  Title Carbon nanotubes based electrochemical aptasensing platform for the detection of hydroxylated polychlorinated biphenyl in human blood serum Type A1 Journal article
  Year 2014 Publication Biosensors and bioelectronics Abbreviated Journal Biosens Bioelectron
  Volume 54 Issue Pages 78-84
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract (down) A novel strategy to sense target molecules in human blood serum is achieved by immobilizing aptamers (APTs) on multiwalled carbon nanotubes (MWCNT) modified electrodes. In this work, the aminated aptamer selected for hydroxylated polychlorinated biphenyl (OHPCB) was covalently immobilized on the surface of the MWCNTCOOH modified glassy carbon electrode through amide linkage. The aptamers function as recognition probes for OHPCB by the binding induced folding of the aptamer. The developed aptasensing device was characterized by Electrochemical Impedance Spectroscopy (EIS), Atomic Force Microscopy (AFM) and Fourier Transform Infrared Spectroscopy (FTIR). The aptasensor displayed excellent performance for OHPCB detection with a linear range from 0.16 to 7.5 μM. The sensitivity of the developed aptasensing platform is improved (1×10−8 M) compared to the published report (1×10−6 M) for the determination of OH-PCB (Turner et al., 2007). The better performance of the sensor is due to the unique platform, i.e. the presence of APTs onto electrodes and the combination with nanomaterials. The aptamer density on the electrode surface was estimated by chronocoulometry and was found to be 1.4×1013 molecules cm−2. The validity of the method and applicability of the aptasensor was successfully evaluated by the detection of OHPCB in a blood serum sample. The described approach for aptasensing opens up new perspectives in the field of biomonitoring providing a device with acceptable stability, high sensitivity, good accuracy and precision.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000333071500012 Publication Date 2013-11-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.78 Times cited 40 Open Access
  Notes ; We are thankful to UA-DOCPRO and BELSPO for financial support (respectively S. Pilehvar and J. Ahmad Rather). We also thank Prof. A. Covaci (UA) for the kind gift of human blood serum samples. Special thanks to Prof. L Van Vaeck and Y. Vercammen (UA) for AFM imaging and Prof. V. Meynen and M. Kus (LADCA, UA) for performing IR measurements. ; Approved Most recent IF: 7.78; 2014 IF: 6.409
  Call Number UA @ admin @ c:irua:111262 Serial 5495
Permanent link to this record
 

 
Author Kerkhofs, S.; Leroux, F.; Allouche, L.; Mellaerts, R.; Jammaer, J.; Aerts, A.; Kirschhock, C.E.A.; Magusin, P.C.M.M.; Taulelle, F.; Bals, S.; Van Tendeloo, G.; Martens, J.A.;
  Title Single-step alcohol-free synthesis of coreshell nanoparticles of \gamma-casein micelles and silica Type A1 Journal article
  Year 2014 Publication RSC advances Abbreviated Journal Rsc Adv
  Volume 4 Issue 49 Pages 25650-25657
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) A new, single-step protocol for wrapping individual nanosized β-casein micelles with silica is presented. This biomolecule-friendly synthesis proceeds at low protein concentration at almost neutral pH, and makes use of sodium silicate instead of the common silicon alkoxides. This way, formation of potentially protein-denaturizing alcohols can be avoided. The pH of the citrate-buffered synthesis medium is close to the isoelectric point of β-casein, which favours micelle formation. A limited amount of sodium silicate is added to the protein micelle suspension, to form a thin silica coating around the β-casein micelles. The size distribution of the resulting proteinsilica structures was characterized using DLS and SAXS, as well as 1H NMR DOSY with a dedicated pulsed-field gradient cryo-probehead to cope with the low protein concentration. The degree of silica-condensation was investigated by 29Si MAS NMR, and the nanostructure was revealed by advanced electron microscopy techniques such as ESEM and HAADF-STEM. As indicated by the combined characterization results, a silica shell of 2 nm is formed around individual β-casein micelles giving rise to separate protein coresilica shell nanoparticles of 17 nm diameter. This alcohol-free method at mild temperature and pH is potentially suited for packing protein molecules into bio-compatible silica nanocapsules for a variety of applications in biosensing, therapeutic protein delivery and biocatalysis.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000338434500025 Publication Date 2014-05-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2046-2069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.108 Times cited 3 Open Access OpenAccess
  Notes Fwo; 262348 Esmi; 335078 Colouratom; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:can); Approved Most recent IF: 3.108; 2014 IF: 3.840
  Call Number UA @ lucian @ c:irua:125382 Serial 3027
Permanent link to this record
 

 
Author Batuk, M.; Batuk, D.; Abakumov, A.M.; Hadermann, J.
  Title Pb5Fe3TiO11Cl : a rare example of Ti(IV) in a square pyramidal oxygen coordination Type A1 Journal article
  Year 2014 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 215 Issue Pages 245-252
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) A new oxychloride Pb5Fe3TiO11Cl has been synthesized using the solid state method. Its crystal and magnetic structure was investigated in the 1.5550 K temperature range using electron diffraction, high angle annular dark field scanning transmission electron microscopy, atomic resolution energy dispersive X-ray spectroscopy, neutron and X-ray powder diffraction. At room temperature Pb5Fe3TiO11Cl crystallizes in the P4/mmm space group with the unit cell parameters a=3.91803(3) Å and c=19.3345(2) Å. Pb5Fe3TiO11Cl is a new n=4 member of the oxychloride perovskite-based homologous series An+1BnO3n−1Cl. The structure is built of truncated Pb3Fe3TiO11 quadruple perovskite blocks separated by CsCl-type Pb2Cl slabs. The perovskite blocks consist of two layers of (Fe,Ti)O6 octahedra sandwiched between two layers of (Fe,Ti)O5 square pyramids. The Ti4+ cations are preferentially located in the octahedral layers, however, the presence of a noticeable amount of Ti4+ in a five-fold coordination environment has been undoubtedly proven using neutron powder diffraction and atomic resolution compositional mapping. Pb5Fe3TiO11Cl is antiferromagnetically ordered below 450(10) K. The ordered Fe magnetic moments at 1.5 K are 4.06(4) μB and 3.86(5) μB on the octahedral and square-pyramidal sites, respectively.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000336891300037 Publication Date 2014-04-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 4 Open Access
  Notes Fwo G.0184.09n. Approved Most recent IF: 2.299; 2014 IF: 2.133
  Call Number UA @ lucian @ c:irua:117066 Serial 3551
Permanent link to this record
 

 
Author Shan, L.; Punniyakoti, S.; Van Bael, M.J.; Temst, K.; Van Bael, M.K.; Ke, X.; Bals, S.; Van Tendeloo, G.; D'Olieslaeger, M.; Wagner, P.; Haenen, K.; Boyen, H.G.;
  Title Homopolymers as nanocarriers for the loading of block copolymer micelles with metal salts : a facile way to large-scale ordered arrays of transition-metal nanoparticles Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
  Volume 2 Issue 4 Pages 701-707
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) A new and facile approach is presented for generating quasi-regular patterns of transition metal-based nanoparticles on flat substrates exploiting polystyrene-block-poly2vinyl pyridine (PS-b-P2VP) micelles as intermediate templates. Direct loading of such micellar nanoreactors by polar transition metal salts in solution usually results in nanoparticle ensembles exhibiting only short range order accompanied by broad distributions of particle size and inter-particle distance. Here, we demonstrate that the use of P2VP homopolymers of appropriate length as molecular carriers to transport precursor salts into the micellar cores can significantly increase the degree of lateral order within the final nanoparticle arrays combined with a decrease in spreading in particle size. Thus, a significantly extended range of materials is now available which can be exploited to study fundamental properties at the transition from clusters to solids by means of well-organized, well-separated, size-selected metal and metal oxide nanostructures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000329069900015 Publication Date 2013-11-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.256 Times cited 5 Open Access Not_Open_Access
  Notes FWO projects G.0456.12; 50 G.0346.09N; Methusalem project "NANO Approved Most recent IF: 5.256; 2014 IF: 4.696
  Call Number UA @ lucian @ c:irua:113734 Serial 1489
Permanent link to this record
 

 
Author Gorlé, C.; Larsson, J.; Emory, M.; Iaccarino, G.
  Title The deviation from parallel shear flow as an indicator of linear eddy-viscosity model inaccuracy Type A1 Journal article
  Year 2014 Publication Physics of fluids Abbreviated Journal Phys Fluids
  Volume 26 Issue 5 Pages 051702
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract (down) A marker function designed to indicate in which regions of a generic flow field the results from linear eddy-viscosity turbulence models are plausibly inaccurate is introduced. The marker is defined to identify regions that deviate from parallel shear flow. For two different flow fields it is shown that these regions largely coincide with regions where the prediction of the Reynolds stress divergence is inaccurate. The marker therefore offers a guideline for interpreting results obtained from Reynolds-averaged Navier-Stokes simulations and provides a basis for the further development of turbulence model-form uncertainty quantification methods. (C) 2014 AIP Publishing LLC.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Woodbury, N.Y. Editor
  Language Wos 000337103900002 Publication Date 2014-05-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1070-6631;1089-7666; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.232 Times cited 19 Open Access
  Notes Approved Most recent IF: 2.232; 2014 IF: 2.031
  Call Number UA @ lucian @ c:irua:118385 Serial 684
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: