|
Record |
Links |
|
Author |
Wang, J.T.W.; Cabana, L.; Bourgognon, M.; Kafa, H.; Protti, A.; Venner, K.; Shah, A.M.; Sosabowski, J.K.; Mather, S.J.; Roig, A.; Ke, X.; Van Tendeloo, G.; de Rosales, R.T.M.; Tobias, G.; Al-Jamal, K.T. |
|
|
Title |
Magnetically decorated multiwalled carbon nanotubes as dual MRI and SPECT contrast agents |
Type |
A1 Journal article |
|
Year |
2014 |
Publication |
Advanced functional materials |
Abbreviated Journal |
Adv Funct Mater |
|
|
Volume |
24 |
Issue |
13 |
Pages |
1880-1894 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT) |
|
|
Abstract |
Carbon nanotubes (CNTs) are one of the most promising nanomaterials to be used in biomedicine for drug/gene delivery as well as biomedical imaging. This study develops radio-labeled, iron oxide-decorated multiwalled CNTs (MWNTs) as dual magnetic resonance (MR) and single photon emission computed tomography (SPECT) contrast agents. Hybrids containing different amounts of iron oxide are synthesized by in situ generation. Physicochemical characterisations reveal the presence of superparamagnetic iron oxide nanoparticles (SPION) granted the magnetic properties of the hybrids. Further comprehensive examinations including high resolution transmission electron microscopy (HRTEM), fast Fourier transform simulations, X-ray diffraction, and X-ray photoelectron spectroscopy assure the conformation of prepared SPION as γ-Fe2O3. High r2 relaxivities are obtained in both phantom and in vivo MRI compared to the clinically approved SPION Endorem. The hybrids are successfully radio labeled with technetium-99m through a functionalized bisphosphonate and enable SPECT/CT imaging and γ-scintigraphy to quantitatively analyze the biodistribution in mice. No abnormality is found by histological examination and the presence of SPION and MWNT are identified by Perls stain and Neutral Red stain, respectively. TEM images of liver and spleen tissues show the co-localization of SPION and MWNTs within the same intracellular vesicles, indicating the in vivo stability of the hybrids after intravenous injection. The results demonstrate the capability of the present SPIONMWNT hybrids as dual MRI and SPECT contrast agents for in vivo use. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
Weinheim |
Editor |
|
|
|
Language |
|
Wos |
000333674100007 |
Publication Date |
2013-11-19 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1616-301X; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
12.124 |
Times cited |
50 |
Open Access |
|
|
|
Notes |
Countatoms; Fp7; Esteem2; esteem2_ta |
Approved |
Most recent IF: 12.124; 2014 IF: 11.805 |
|
|
Call Number |
UA @ lucian @ c:irua:111589 |
Serial |
1891 |
|
Permanent link to this record |