|
Record |
Links |
|
Author |
Pilehvar, S.; Rather, J.A.; Dardenne, F.; Robbens, J.; Blust, R.; De Wael, K. |
|
|
Title |
Carbon nanotubes based electrochemical aptasensing platform for the detection of hydroxylated polychlorinated biphenyl in human blood serum |
Type |
A1 Journal article |
|
Year |
2014 |
Publication |
Biosensors and bioelectronics |
Abbreviated Journal |
Biosens Bioelectron |
|
|
Volume |
54 |
Issue |
|
Pages |
78-84 |
|
|
Keywords |
A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation) |
|
|
Abstract |
A novel strategy to sense target molecules in human blood serum is achieved by immobilizing aptamers (APTs) on multiwalled carbon nanotubes (MWCNT) modified electrodes. In this work, the aminated aptamer selected for hydroxylated polychlorinated biphenyl (OHPCB) was covalently immobilized on the surface of the MWCNTCOOH modified glassy carbon electrode through amide linkage. The aptamers function as recognition probes for OHPCB by the binding induced folding of the aptamer. The developed aptasensing device was characterized by Electrochemical Impedance Spectroscopy (EIS), Atomic Force Microscopy (AFM) and Fourier Transform Infrared Spectroscopy (FTIR). The aptasensor displayed excellent performance for OHPCB detection with a linear range from 0.16 to 7.5 μM. The sensitivity of the developed aptasensing platform is improved (1×10−8 M) compared to the published report (1×10−6 M) for the determination of OH-PCB (Turner et al., 2007). The better performance of the sensor is due to the unique platform, i.e. the presence of APTs onto electrodes and the combination with nanomaterials. The aptamer density on the electrode surface was estimated by chronocoulometry and was found to be 1.4×1013 molecules cm−2. The validity of the method and applicability of the aptasensor was successfully evaluated by the detection of OHPCB in a blood serum sample. The described approach for aptasensing opens up new perspectives in the field of biomonitoring providing a device with acceptable stability, high sensitivity, good accuracy and precision. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000333071500012 |
Publication Date |
2013-11-01 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0956-5663 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
7.78 |
Times cited |
40 |
Open Access |
|
|
|
Notes |
; We are thankful to UA-DOCPRO and BELSPO for financial support (respectively S. Pilehvar and J. Ahmad Rather). We also thank Prof. A. Covaci (UA) for the kind gift of human blood serum samples. Special thanks to Prof. L Van Vaeck and Y. Vercammen (UA) for AFM imaging and Prof. V. Meynen and M. Kus (LADCA, UA) for performing IR measurements. ; |
Approved |
Most recent IF: 7.78; 2014 IF: 6.409 |
|
|
Call Number |
UA @ admin @ c:irua:111262 |
Serial |
5495 |
|
Permanent link to this record |