|   | 
Details
   web
Records
Author Schattschneider, P.; Löffler, S.; Verbeeck, J.
Title Comment on “Quantized orbital angular momentum transfer and magnetic dichroism in the interaction of electron vortices with matter” Type Editorial
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 110 Issue 18 Pages 189501-189502
Keywords Editorial; Electron microscopy for materials research (EMAT)
Abstract (up)
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000319019300019 Publication Date 2013-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 8 Open Access
Notes Countatoms; Vortex; Esteem2; esteem2jra3 ECASJO; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:109014UA @ admin @ c:irua:109014 Serial 410
Permanent link to this record
 

 
Author Deo, P.S.; Schweigert, V.A.; Peeters, F.M.; Geim, A.K.
Title Magnetization of mesoscopic superconducting discs Type A1 Journal article
Year 1997 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 79 Issue Pages 4653-4656
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up)
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1997YK36500035 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 165 Open Access
Notes Approved Most recent IF: 8.462; 1997 IF: 6.140
Call Number UA @ lucian @ c:irua:19275 Serial 1896
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Peeters, F.M.; Neilson, D.
Title Multicomponent electron-hole superfluidity and the BCS-BEC crossover in double bilayer graphene Type A1 Journal article
Year 2017 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 119 Issue 25 Pages 257002
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) <script type='text/javascript'>document.write(unpmarked('Superfluidity in coupled electron-hole sheets of bilayer graphene is predicted here to be multicomponent because of the conduction and valence bands. We investigate the superfluid crossover properties as functions of the tunable carrier densities and the tunable energy band gap Eg. For small band gaps there is a significant boost in the two superfluid gaps, but the interaction-driven excitations from the valence to the conduction band can weaken the superfluidity, even blocking the system from entering the Bose-Einstein condensate (BEC) regime at low densities. At a given larger density, a band gap E-g similar to 80-120 meV can carry the system into the strong-pairing multiband BCS-BEC crossover regime, the optimal range for realization of high-Tc superfluidity.'));
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000418619100017 Publication Date 2017-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 18 Open Access
Notes ; We thank Mohammad Zarenia for useful discussions. Part of this work was supported by FWO-VI (Flemish Science Foundation) and the Methusalem program. ; Approved Most recent IF: 8.462
Call Number UA @ lucian @ c:irua:148509 Serial 4885
Permanent link to this record
 

 
Author Groenendijk, D.J.; Autieri, C.; Girovsky, J.; Martinez-Velarte, M.C.; Manca, N.; Mattoni, G.; Monteiro, A.M.R.V.L.; Gauquelin, N.; Verbeeck, J.; Otte, A.F.; Gabay, M.; Picozzi, S.; Caviglia, A.D.
Title Spin-orbit semimetal SrIrO3 in the two-dimensional limit Type A1 Journal article
Year 2017 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 119 Issue 25 Pages 256403
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) <script type='text/javascript'>document.write(unpmarked('We investigate the thickness-dependent electronic properties of ultrathin SrIrO3 and discover a transition from a semimetallic to a correlated insulating state below 4 unit cells. Low-temperature magnetoconductance measurements show that spin fluctuations in the semimetallic state are significantly enhanced while approaching the transition point. The electronic properties are further studied by scanning tunneling spectroscopy, showing that 4 unit cell SrIrO(3)d is on the verge of a gap opening. Our density functional theory calculations reproduce the critical thickness of the transition and show that the opening of a gap in ultrathin SrIrO3 requires antiferromagnetic order.'));
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000418619100014 Publication Date 2017-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 79 Open Access OpenAccess
Notes ; This work was supported by The Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience program (NanoFront), by the Dutch Foundation for Fundamental Research on Matter (FOM), and by the European Research Council under the European Union's H2020 programme/ERC Grant Agreement No. [677458]. The authors thank R. Claessen, P. Schutz, D. Di Sante, G. Sangiovanni, and A. Santander Syro for useful discussions. M. G. gratefully acknowledges support from the French National Research Agency (ANR) (Project LACUNES No. ANR-13-BS04-0006-01). C. A. and S. P. acknowledge financial support from Fondazione Cariplo via the project Magister (Project No. 2013-0726) and from CNR-SPIN via the Seed Project “CAMEO”. N. G. and J. V. acknowledge support from the GOA project “Solarpaint” of the University of Antwerp. The Qu-AntEM microscope was partly funded by the Hercules fund from the Flemish Government. ; Approved Most recent IF: 8.462
Call Number UA @ lucian @ c:irua:148510 Serial 4897
Permanent link to this record
 

 
Author Saniz, R.; Norman, M.R.; Freeman, A.J.
Title Orbital mixing and nesting in the bilayer manganites La2-2xSr1+2xMn2O7 Type A1 Journal article
Year 2008 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 101 Issue 23 Pages 236402-236404
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) A first principles study of La(2-2x)Sr(1+2x)Mn(2)O(7) compounds for doping levels 0.3 <= x <= 0.5 shows that the low energy electronic structure of the majority spin carriers is determined by strong momentum-dependent interactions between the Mn e(g) d(x)(2)-y(2) and d(3z)(2)-r(2) orbitals, which, in addition to an x-dependent Jahn-Teller distortion, differ in the ferromagnetic and antiferromagnetic phases. The Fermi surface exhibits nesting behavior that is reflected by peaks in the static susceptibility, whose positions as a function of momentum have a nontrivial dependence on x.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000261431200045 Publication Date 2008-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 14 Open Access
Notes Approved Most recent IF: 8.462; 2008 IF: 7.180
Call Number UA @ lucian @ c:irua:102602 Serial 2498
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Covaci, L.; Peeters, F.M.
Title Rectification by an imprinted phase in a Josephson junction Type A1 Journal article
Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 107 Issue 17 Pages 177008-177008,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) A Josephson phase shift can be induced in a Josephson junction by a strategically nearby pinned Abrikosov vortex (AV). For an asymmetric distribution of an imprinted phase along the junction (controlled by the position of the AV) such a simple system is capable of rectification of ac current in a broad and tunable frequency range. The resulting rectified voltage is a consequence of the directed motion of a Josephson antivortex which forms a pair with the AV when at local equilibrium. The proposed realization of the ratchet potential by an imprinted phase is more efficient than the asymmetric geometry of the junction itself, is easily realizable experimentally, and provides rectification even in the absence of an applied magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000296985000008 Publication Date 2011-10-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 28 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Belgian Science Policy (IAP). G. R. B. and L. C. acknowledge individual support from FWO-Vlaanderen. ; Approved Most recent IF: 8.462; 2011 IF: 7.370
Call Number UA @ lucian @ c:irua:93715 Serial 2847
Permanent link to this record
 

 
Author Fang, C.M.; Sluiter, M.H.F.; van Huis, M.; Ande, C.K.; Zandbergen, H.W.
Title Origin of predominance of cementite among iron carbides in steel at elevated temperature Type A1 Journal article
Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 105 Issue 5 Pages 4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) A long-standing challenge in physics is to understand why cementite is the predominant carbide in steel. Here we show that the prevalent formation of cementite can be explained only by considering its stability at elevated temperature. A systematic highly accurate quantum mechanical study was conducted on the stability of binary iron carbides. The calculations show that all the iron carbides are unstable relative to the elemental solids, -Fe and graphite. Apart from a cubic Fe23C6 phase, the energetically most favorable carbides exhibit hexagonal close-packed Fe sublattices. Finite-temperature analysis showed that contributions from lattice vibration and anomalous Curie-Weis magnetic ordering, rather than from the conventional lattice mismatch with the matrix, are the origin of the predominance of cementite during steel fabrication processes.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000280472900008 Publication Date 2010-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 65 Open Access
Notes Approved Most recent IF: 8.462; 2010 IF: 7.622
Call Number UA @ lucian @ c:irua:84064 Serial 2526
Permanent link to this record
 

 
Author Schattschneider, P.; Stoeger-Pollach, M.; Verbeeck, J.
Title Novel vortex generator and mode converter for electron beams Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 109 Issue 8 Pages 084801-1
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) A mode converter for electron vortex beams is described. Numerical simulations, confirmed by experiment, show that the converter transforms a vortex beam with a topological charge m = +/- 1 into beams closely resembling Hermite-Gaussian HG(10) and HG(01) modes. The converter can be used as a mode discriminator or filter for electron vortex beams. Combining the converter with a phase plate turns a plane wave into modes with topological charge m = +/- 1. This combination serves as a generator of electron vortex beams of high brilliance.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000307790900004 Publication Date 2012-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 74 Open Access
Notes Countatoms; Vortex ECASJO_; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:101103UA @ admin @ c:irua:101103 Serial 2384
Permanent link to this record
 

 
Author Clark, L.; Béché, A.; Guzzinati, G.; Lubk, A.; Mazilu, M.; Van Boxem, R.; Verbeeck, J.
Title Exploiting lens aberrations to create electron-vortex beams Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 6 Pages 064801-64805
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) A model for a new electron-vortex beam production method is proposed and experimentally demonstrated. The technique calls on the controlled manipulation of the degrees of freedom of the lens aberrations to achieve a helical phase front. These degrees of freedom are accessible by using the corrector lenses of a transmission electron microscope. The vortex beam is produced through a particular alignment of these lenses into a specifically designed astigmatic state and applying an annular aperture in the condenser plane. Experimental results are found to be in good agreement with simulations.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000322921200009 Publication Date 2013-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 66 Open Access
Notes Vortex; Esteem2; Countatoms; FWO; Esteem2jra3 ECASJO; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:109340UA @ admin @ c:irua:109340 Serial 1148
Permanent link to this record
 

 
Author Szumniak, P.; Bednarek, S.; Partoens, B.; Peeters, F.M.
Title Spin-orbit-mediated manipulation of heavy-hole spin qubits in gated semiconductor nanodevices Type A1 Journal article
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 109 Issue 10 Pages 107201
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) A novel spintronic nanodevice is proposed that is able to manipulate the single heavy-hole spin state in a coherent manner. It can act as a single quantum logic gate. The heavy-hole spin transformations are realized by transporting the hole around closed loops defined by metal gates deposited on top of the nanodevice. The device exploits Dresselhaus spin-orbit interaction, which translates the spatial motion of the hole into a rotation of the spin. The proposed quantum gate operates on subnanosecond time scales and requires only the application of a weak static voltage which allows for addressing heavy-hole spin qubits individually. Our results are supported by quantum mechanical time-dependent calculations within the four-band Luttinger-Kohn model.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000308295700015 Publication Date 2012-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 41 Open Access
Notes ; This work was supported by the Grant No. NN202 128337 from the Ministry of Science and Higher Education, as well as by the “Krakow Interdisciplinary PhD-Project in Nanoscience and Advances Nanostructures” operated within the Foundation for Polish Science MPD Programme and cofinanced by European Regional Development Fund, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-V1). ; Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ lucian @ c:irua:101849 Serial 3094
Permanent link to this record
 

 
Author Samal, D.; Tan, H.; Molegraaf, H.; Kuiper, B.; Siemons, W.; Bals, S.; Verbeeck, J.; Van Tendeloo, G.; Takamura, Y.; Arenholz, E.; Jenkins, C.A.; Rijnders, G.; Koster, G.
Title Experimental evidence for oxygen sublattice control in polar infinite layer SrCuO2 Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 9 Pages 096102-96105
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) A recent theoretical study [ Phys. Rev. B 85 121411(R) (2012)] predicted a thickness limit below which ideal polar cuprates turn nonpolar driven by the associated electrostatic instability. Here we demonstrate this possibility by inducing a structural transformation from the bulk planar to chainlike structure upon reducing the SrCuO2 repeat thickness in SrCuO2/SrTiO3 superlattices with unit-cell precision. Our results, based on structural investigation by x-ray diffraction and high resolution scanning transmission electron microscopy, demonstrate that the oxygen sublattice can essentially be built by design. In addition, the electronic structure of the chainlike structure, as studied by x-ray absorption spectroscopy, shows the signature for preferential hole occupation in the Cu 3d3z2-r2 orbital, which is different from the planar case.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000323610800023 Publication Date 2013-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 29 Open Access
Notes This work was carried out with financial support from AFOSR and EOARD project (Project No. FA8655-10-1-3077) and also supported by funding from the European Research Council under the 7th Framework Program (FP7), ERC Grant No. 246791-COUNTATOMS and ERC Starting Grant No. 278510 VORTEX. The Qu-Ant-EM microscope was partly funded by the Hercules fund from the Flemish Government. This work was partially funded by the European Union Council under the 7th Framework Program (FP7) Grant No. NMP3-LA-2010-246102 IFOX. The authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure No. 312483-ESTEEM2. Advanced Light Source is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231. Y. T. acknowledges support from the National Science Foundation (DMR-0747896). W. S. was supported by the US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division. D. S. thanks Z. Zhong from Vienna University of Technology, Austria for scientific discussion. ECASJO_; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:109452UA @ admin @ c:irua:109452 Serial 1140
Permanent link to this record
 

 
Author Lubk, A.; Béché, A.; Verbeeck, J.
Title Electron Microscopy of Probability Currents at Atomic Resolution Type A1 Journal article
Year 2015 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 115 Issue 115 Pages 176101
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) Atomic resolution transmission electron microscopy records the spatially resolved scattered electron density to infer positions, density, and species of atoms. These data are indispensable for studying the relation between structure and properties in solids. Here, we show how this signal can be augmented by the lateral probability current of the scattered electrons in the object plane at similar resolutions and fields of view. The currents are reconstructed from a series of three atomic resolution TEM images recorded under a slight difference of perpendicular line foci. The technique does not rely on the coherence of the electron beam and can be used to reveal electric, magnetic, and strain fields with incoherent electron beams as well as correlations in inelastic transitions, such as electron magnetic chiral dichroism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000363023700011 Publication Date 2015-10-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 12 Open Access
Notes J. V. and A. B. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 278510 VORTEX. The Qu-Ant- EM microscope was partly funded by the Hercules fund from the Flemish Government. All authors acknowledge financial support from the European Union under the Seventh Framework Program under a contract for an Integrated Infrastructure Initiative. Reference No. 312483- ESTEEM2. J. V. acknowledges funding from the FWO under Project No. G.0044.13N.; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 8.462; 2015 IF: 7.512
Call Number c:irua:129190 c:irua:129190UA @ admin @ c:irua:129190 Serial 3954
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Lin, S.-H.; Peeters, F.M.; Jankó, B.
Title Formation of multiple-flux-quantum vortices in mesoscopic superconductors from simulations of calorimetric, magnetic, and transport properties Type A1 Journal article
Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 107 Issue 5 Pages 057002,1-057002,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Because of strong flux confinement in mesoscopic superconductors, a giant vortex may appear in the ground state of the system in an applied magnetic field. This multiquanta vortex can then split into individual vortices (and vice versa) as a function of, e.g., applied current, magnetic field, or temperature. Here we show that such transitions can be identified by calorimetry, as the formation or splitting of a giant vortex results in a clear jump in measured heat capacity versus external drive. We attribute this phenomenon to an abrupt change in the density of states of the quasiparticle excitations in the vortex core(s), and further link it to a sharp change of the magnetic susceptibility at the transitionproving that the formation of a giant vortex can also be detected by magnetometry.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000293333100006 Publication Date 2011-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 26 Open Access
Notes ; We thank O. Bourgeois, T. Yokoyama, M. Eschrig, and M. Ichioka for discussions. This work was supported by FWO-Vlaanderen, the Belgian Science Policy (IAP), the bilateral project Flanders-USA, NSF NIRT, ECS-0609249, and Institute of Theoretical Sciences, Notre Dame. ; Approved Most recent IF: 8.462; 2011 IF: 7.370
Call Number UA @ lucian @ c:irua:91237 Serial 1263
Permanent link to this record
 

 
Author Ghosh, P.K.; Misko, V.R.; Marchesoni, F.; Nori, F.
Title Self-propelled Janus particles in a ratchet : numerical simulations Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 110 Issue 26 Pages 1-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Brownian transport of self-propelled overdamped microswimmers (like Janus particles) in a two-dimensional periodically compartmentalized channel is numerically investigated for different compartment geometries, boundary collisional dynamics, and particle rotational diffusion. The resulting time-correlated active Brownian motion is subject to rectification in the presence of spatial asymmetry. We prove that ratcheting of Janus particles can be orders of magnitude stronger than for ordinary thermal potential ratchets and thus experimentally accessible. In particular, autonomous pumping of a large mixture of passive particles can be induced by just adding a small fraction of Janus particles.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000320956500017 Publication Date 2013-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 143 Open Access
Notes ; We thank RICC for computational resources. P. K. G. acknowledges financial support from JSPS through fellowship No. P11502. V. R. M. acknowledges support from the Odysseus Program of the Flemish Government and FWO-VI. F. M. acknowledges partial support from the European Commission, Grant No. 256959 (NanoPower). F. N. was supported in part by the ARO, RIKEN iTHES Project, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program. ; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:109833 Serial 2979
Permanent link to this record
 

 
Author da Pieve, F.; Di Matteo, S.; Rangel, T.; Giantomassi, M.; Lamoen, D.; Rignanese, G.-M.; Gonze, X.
Title Origin of magnetism and quasiparticles properties in Cr-doped TiO2 Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 110 Issue 13 Pages 136402-136405
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) Combining the local spin density approximation (LSDA)+U and an analysis of superexchange interactions beyond density functional theory, we describe the magnetic ground state of Cr-doped TiO2, an intensively studied and debated dilute magnetic oxide. In parallel, we correct our LSDA+U (+ superexchange) ground state through GW corrections (GW@LSDA+U) that reproduce the position of the impurity states and the band gaps in satisfying agreement with experiments. Because of the different topological coordinations of Cr-Cr bonds in the ground states of rutile and anatase, superexchange interactions induce either ferromagnetic or antiferromagnetic couplings of Cr ions. In Cr-doped anatase, this interaction leads to a new mechanism which stabilizes a (nonrobust) ferromagnetic ground state, in keeping with experimental evidence, without the need to invoke F-center exchange. The interplay between structural defects and vacancies in contributing to the superexchange is also unveiled.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000316683500014 Publication Date 2013-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 15 Open Access
Notes Goa; Iwt Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:107281 Serial 2524
Permanent link to this record
 

 
Author Zarenia, M.; Hamilton, A.R.; Peeters, F.M.; Neilson, D.
Title Multiband mechanism for the sign reversal of Coulomb drag observed in double bilayer graphene heterostructures Type A1 Journal article
Year 2018 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 121 Issue 3 Pages 036601
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Coupled 2D sheets of electrons and holes are predicted to support novel quantum phases. Two experiments of Coulomb drag in electron-hole (e-h) double bilayer graphene (DBLG) have reported an unexplained and puzzling sign reversal of the drag signal. However, we show that this effect is due to the multiband character of DBLG. Our multiband Fermi liquid theory produces excellent agreement and captures the key features of the experimental drag resistance for all temperatures. This demonstrates the importance of multiband effects in DBLG: they have a strong effect not only on superfluidity, but also on the drag.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000438883600008 Publication Date 2018-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 7 Open Access
Notes ; We are grateful to Cory Dean, Emanuel Tutuc, and their research groups for discussing details of their experiments with us. This work was partially supported by the Flemish Science Foundation (FWO-Vl), the Methusalem program of the Flemish government, and the Australian Government through the Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies (Project No. CE170100039). D. N. acknowledges support from the University of Camerino FAR project CESEMN. ; Approved Most recent IF: 8.462
Call Number UA @ lucian @ c:irua:152416UA @ admin @ c:irua:152416 Serial 5116
Permanent link to this record
 

 
Author Guzzinati, G.; Schattschneider, P.; Bliokh, K.Y.; Nori, F.; Verbeeck, J.
Title Observation of the Larmor and Gouy rotations with electron vortex beams Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 110 Issue 9 Pages 093601
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) Electron vortex beams carrying intrinsic orbital angular momentum (OAM) are produced in electron microscopes where they are controlled and focused by using magnetic lenses. We observe various rotational phenomena arising from the interaction between the OAM and magnetic lenses. First, the Zeeman coupling, proportional to the OAM and magnetic field strength, produces an OAM-independent Larmor rotation of a mode superposition inside the lens. Second, when passing through the focal plane, the electron beam acquires an additional Gouy phase dependent on the absolute value of the OAM. This brings about the Gouy rotation of the superposition image proportional to the sign of the OAM. A combination of the Larmor and Gouy effects can result in the addition (or subtraction) of rotations, depending on the OAM sign. This behavior is unique to electron vortex beams and has no optical counterpart, as Larmor rotation occurs only for charged particles. Our experimental results are in agreement with recent theoretical predictions.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000315380800005 Publication Date 2013-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 91 Open Access
Notes Vortex; Countatoms ECASJO_; Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:106181UA @ admin @ c:irua:106181 Serial 2422
Permanent link to this record
 

 
Author Schweigert, I.V.; Schweigert, V.A.; Peeters, F.M.
Title Melting of the classical bilayer Wigner crystal: influence of the lattice symmetry Type A1 Journal article
Year 1999 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 82 Issue Pages 5293-5296
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) http://anet.uantwerpen.be/docman/irua/f3d874/7910.pdf
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000081152700029 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 64 Open Access
Notes Approved Most recent IF: 8.462; 1999 IF: 6.095
Call Number UA @ lucian @ c:irua:24151 Serial 1988
Permanent link to this record
 

 
Author Van Tendeloo, G.; Amelinckx, S.; Verheijen, M.A.; van Loosdrecht, P.H.M.; Meijer, G.
Title New orientationally ordered low-temperature superstructure in high-purity C60 Type A1 Journal article
Year 1992 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 69 Issue 7 Pages 1065-1068
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) http://dx.doi.org/doi:10.1103/PhysRevLett.69.1065
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1992JJ33000018 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.512 Times cited 69 Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:4445 Serial 2329
Permanent link to this record
 

 
Author Tso, H.C.; Vasilopoulos, P.; Peeters, F.M.
Title Coulomb coupling between spatially separated electron and hole layers: generalized random-phase approximation Type A1 Journal article
Year 1993 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 70 Issue Pages 2146-2149
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) http://dx.doi.org/doi:10.1103/PhysRevLett.70.2146
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1993KV97400024 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.512 Times cited 58 Open Access
Notes Approved PHYSICS, APPLIED 28/145 Q1 #
Call Number UA @ lucian @ c:irua:5786 Serial 531
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Novel commensurability effects in superconducting films with antidot arrays Type A1 Journal article
Year 2006 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 96 Issue Pages 1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) http://dx.doi.org/doi:10.1103/PhysRevLett.96.207001
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited Open Access
Notes Approved Most recent IF: 8.462; 2006 IF: 7.072
Call Number UA @ lucian @ c:irua:58360 Serial 2372
Permanent link to this record
 

 
Author Bekaert, J.; Petrov, M.; Aperis, A.; Oppeneer, P.M.; Milošević, M.V.
Title Hydrogen-induced high-temperature superconductivity in two-dimensional materials : the example of hydrogenated monolayer MgB2 Type A1 Journal article
Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 123 Issue 7 Pages 077001
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Hydrogen-based compounds under ultrahigh pressure, such as the polyhydrides H3S and LaH10, superconduct through the conventional electron-phonon coupling mechanism to attain the record critical temperatures known to date. Here we exploit the intrinsic advantages of hydrogen to strongly enhance phonon-mediated superconductivity in a completely different system, namely, a two-dimensional material with hydrogen adatoms. We find that van Hove singularities in the electronic structure, originating from atomiclike hydrogen states, lead to a strong increase of the electronic density of states at the Fermi level, and thus of the electron-phonon coupling. Additionally, the emergence of high-frequency hydrogen-related phonon modes in this system boosts the electron-phonon coupling further. As a concrete example, we demonstrate the effect of hydrogen adatoms on the superconducting properties of monolayer MgB2, by solving the fully anisotropic Eliashberg equations, in conjunction with a first-principles description of the electronic and vibrational states, and their coupling. We show that hydrogenation leads to a high critical temperature of 67 K, which can be boosted to over 100 K by biaxial tensile strain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480611900017 Publication Date 2019-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 42 Open Access
Notes ; This work was supported by TOPBOF-UAntwerp, Research Foundation-Flanders (FWO), the Swedish Research Council (VR), the Rontgen-Angstrom Cluster, and the EU-COST Action CA16218. J.B. acknowledges support of a postdoctoral fellowship of the FWO. The computational resources and services used for the first principles calculations in this work were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government-department EWI. Eliashberg theory calculations were supported through the Swedish National Infrastructure for Computing (SNIC). We would also like to acknowledge useful discussions with Bart Partoens, Jacques Tempere, and Matthieu Verstraete. ; Approved Most recent IF: 8.462
Call Number UA @ admin @ c:irua:161816 Serial 5415
Permanent link to this record
 

 
Author van Thiel, T. c.; Brzezicki, W.; Autieri, C.; Hortensius, J. r.; Afanasiev, D.; Gauquelin, N.; Jannis, D.; Janssen, N.; Groenendijk, D. j.; Fatermans, J.; Van Aert, S.; Verbeeck, J.; Cuoco, M.; Caviglia, A. d.
Title Coupling Charge and Topological Reconstructions at Polar Oxide Interfaces Type A1 Journal article
Year 2021 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 127 Issue 12 Pages 127202
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) In oxide heterostructures, different materials are integrated into a single artificial crystal, resulting in a breaking of inversion symmetry across the heterointerfaces. A notable example is the interface between polar and nonpolar materials, where valence discontinuities lead to otherwise inaccessible charge and spin states. This approach paved the way for the discovery of numerous unconventional properties absent in the bulk constituents. However, control of the geometric structure of the electronic wave functions in correlated oxides remains an open challenge. Here, we create heterostructures consisting of ultrathin SrRuO3, an itinerant ferromagnet hosting momentum-space sources of Berry curvature, and

LaAlO3, a polar wide-band-gap insulator. Transmission electron microscopy reveals an atomically sharp LaO/RuO2/SrO interface configuration, leading to excess charge being pinned near the LaAlO3/SrRuO3 interface. We demonstrate through magneto-optical characterization, theoretical calculations and transport measurements that the real-space charge reconstruction drives a reorganization of the topological charges in the band structure, thereby modifying the momentum-space Berry curvature in SrRuO3. Our results illustrate how the topological and magnetic features of oxides can be manipulated by engineering charge discontinuities at oxide interfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000704665000010 Publication Date 2021-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 17 Open Access OpenAccess
Notes The authors thank E. Lesne, M. Lee, H. Barakov, M. Matthiesen and U. Filippozzi for discussions. The authors are grateful to E.J.S. van Thiel for producing the illustration in Fig. 4a. This work was supported by the European Research Council under the European Unions Horizon 2020 programme/ERC Grant agreements No. [677458], [770887] and No. [731473] (Quantox of QuantERA ERA-NET Cofund in Quantum Technologies) and by the Netherlands Organisation for Scientific Research (NWO/OCW) as part of the Frontiers of Nanoscience (NanoFront) and VIDI program. The authors acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. [823717] – ESTEEM3. N. G., J. V., and S. V. A. acknowledge funding from the University of Antwerp through the Concerted Research Actions (GOA) project Solarpaint and the TOP project. C. A. and W. B. are supported by the Foundation for Polish Science through the International Research Agendas program co-financed by the European Union within the Smart Growth Operational Programme. C. A. acknowledges access to the computing facilities of the Interdisciplinary Center of Modeling at the University of Warsaw, Grant No. G73-23 and G75-10. W.B. acknowledges support from the Narodowe Centrum Nauk (NCN, National Science Centre, Poland) Project No. 2019/34/E/ST3/00404'; esteem3TA; esteem3reported Approved Most recent IF: 8.462
Call Number EMAT @ emat @c:irua:182595 Serial 6824
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Hernandez, A.D.; Peeters, F.M.
Title Confinement effects on intermediate-state flux patterns in mesoscopic type-I superconductors Type A1 Journal article
Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 103 Issue 26 Pages 267002,1-267002,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Intermediate-state flux structures in mesoscopic type-I superconductors are studied within the Ginzburg-Landau theory. In addition to well-established tubular and laminar structures, the strong confinement leads to the formation of (i) a phase of singly quantized vortices, which is typical for type-II superconductors and (ii) a ring of a normal domain at equilibrium. The stability region and the formation process of these intermediate-state structures are strongly influenced by the geometry of the sample.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000273232200042 Publication Date 2009-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 28 Open Access
Notes Approved Most recent IF: 8.462; 2009 IF: 7.328
Call Number UA @ lucian @ c:irua:80574 Serial 488
Permanent link to this record
 

 
Author Shi, W.; Callewaert, V.; Barbiellini, B.; Saniz, R.; Butterling, M.; Egger, W.; Dickmann, M.; Hugenschmidt, C.; Shakeri, B.; Meulenberg, R. W.; Brück, E.; Partoens, B.; Bansil, A.; Eijt, S.W. H.
Title Nature of the Positron State in CdSe Quantum Dots Type A1 Journal article
Year 2018 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 121 Issue 5 Pages 057401
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Previous studies have shown that positron-annihilation spectroscopy is a highly sensitive probe of the electronic structure and surface composition of ligand-capped semiconductor quantum dots (QDs) embedded in thin films. The nature of the associated positron state, however, whether the positron is confined inside the QDs or localized at their surfaces, has so far remained unresolved. Our positron-annihilation lifetime spectroscopy studies of CdSe QDs reveal the presence of a strong lifetime component in the narrow range of 358–371 ps, indicating abundant trapping and annihilation of positrons at the surfaces of the QDs. Furthermore, our ab initio calculations of the positron wave function and lifetime employing a recent formulation of the weighted density approximation demonstrate the presence of a positron surface state and predict positron lifetimes close to experimental values. Our study thus resolves the long-standing question regarding the nature of the positron state in semiconductor QDs and opens the way to extract quantitative information on surface composition and ligand-surface interactions of colloidal semiconductor QDs through highly sensitive positron-annihilation techniques.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440635300012 Publication Date 2018-08-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 6 Open Access
Notes The work at Delft University of Technology was supported by the China Scholarship Council (CSC) grant of W. S. We acknowledge financial support for this research from ADEM, A green Deal in Energy Materials of the Ministry of Economic Affairs of The Netherlands. The PALS study is based upon experiments performed at the PLEPS instrument of the NEPOMUC facility at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany, and was supported by the European Commission under the 7th Framework Program, Key Action: Strengthening the European Research Area, Research Infrastructures, Contract No. 226507, NMI3. The work at the University of Maine was supported by the National Science Foundation under Grant No. DMR-1206940. V. C. and R. S. were supported by the FWO-Vlaanderen through Project No. G. 0224.14N. Computational resources and services used in this work were in part provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government (EWI Department). The work at Northeastern University was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences Grant No. DE-FG02-07ER46352 (core research), and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), the National Energy Research Scientific Computing Center (NERSC) through DOE Grant No. DE-AC02-05CH11231, and support (functionals for modeling positron spectros- copies of layered materials) from the DOE EFRC: Center for the Computational Design of Functional Layered Materials (CCDM) under DE-SC0012575. Approved Most recent IF: 8.462
Call Number CMT @ cmt @c:irua:152999UA @ admin @ c:irua:152999 Serial 5009
Permanent link to this record
 

 
Author Shanenko, A.A.; Milošević, M.V.; Peeters, F.M.
Title Extended Ginzburg-Landau formalism for two-band superconductors Type A1 Journal article
Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 106 Issue 4 Pages 047005-047005,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract (up) Recent observation of unusual vortex patterns in MgB2 single crystals raised speculations about possible type-1.5 superconductivity in two-band materials, mixing the properties of both type-I and type-II superconductors. However, the strict application of the standard two-band Ginzburg-Landau (GL) theory results in simply proportional order parameters of the two bandsand does not support the type-1.5 behavior. Here we derive the extended GL formalism (accounting all terms of the next order over the small τ=1-T/Tc parameter) for a two-band clean s-wave superconductor and show that the two condensates generally have different spatial scales, with the difference disappearing only in the limit T→Tc. The extended version of the two-band GL formalism improves the validity of GL theory below Tc and suggests revisiting the earlier calculations based on the standard model.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000286734100010 Publication Date 2011-01-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 84 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), and the ESF-INSTANS network. Discussions with M. D. Croitoru are gratefully acknowledged. ; Approved Most recent IF: 8.462; 2011 IF: 7.370
Call Number UA @ lucian @ c:irua:88038 Serial 1154
Permanent link to this record
 

 
Author Li, C.; Sanli, E.S.; Barragan-Yani, D.; Stange, H.; Heinemann, M.-D.; Greiner, D.; Sigle, W.; Mainz, R.; Albe, K.; Abou-Ras, D.; van Aken, P. A.
Title Secondary-Phase-Assisted Grain Boundary Migration in CuInSe2 Type A1 Journal article
Year 2020 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett
Volume 124 Issue 9 Pages 095702
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) Significant structural evolution occurs during the deposition of CuInSe2 solar materials when the Cu content increases. We use in situ heating in a scanning transmission electron microscope to directly observe how grain boundaries migrate during heating, causing nondefected grains to consume highly defected grains. Cu substitutes for In in the near grain boundary regions, turning them into a Cu-Se phase topotactic with the CuInSe2 grain interiors. Together with density functional theory and molecular dynamics calculations, we reveal how this Cu-Se phase makes the grain boundaries highly mobile.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000518464200009 Publication Date 2020-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.6 Times cited Open Access OpenAccess
Notes Horizon 2020 Framework Programme, 823717—ESTEEM3 ; Max-Planck-Gesellschaft; Helmholtz Virtual Institute; Approved Most recent IF: 8.6; 2020 IF: 8.462
Call Number UA @ lucian @c:irua:167699 Serial 6393
Permanent link to this record
 

 
Author Fatermans, J.; den Dekker, A. J.; Müller-Caspary, K.; Lobato, I.; O’Leary, C. M.; Nellist, P. D.; Van Aert, S.
Title Single Atom Detection from Low Contrast-to-Noise Ratio Electron Microscopy Images Type A1 Journal article
Year 2018 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 121 Issue 5 Pages 056101
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract (up) Single atom detection is of key importance to solving a wide range of scientific and technological problems. The strong interaction of electrons with matter makes transmission electron microscopy one of the most promising techniques. In particular, aberration correction using scanning transmission electron microscopy has made a significant step forward toward detecting single atoms. However, to overcome radiation damage, related to the use of high-energy electrons, the incoming electron dose should be kept low enough. This results in images exhibiting a low signal-to-noise ratio and extremely weak contrast, especially for light-element nanomaterials. To overcome this problem, a combination of physics-based model fitting and the use of a model-order selection method is proposed, enabling one to detect single atoms with high reliability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000440143200007 Publication Date 2018-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 6 Open Access OpenAccess
Notes The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through Project fundings (No. WO.010.16N, No. G.0368.15N, No. G.0502.18N). The authors are grateful to M. Van Bael and P. Lievens (KU Leuven) and to L. M. Liz-Marzán (CIC biomaGUNE and Ikerbasque) for providing the samples. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 770887). Approved Most recent IF: 8.462
Call Number EMAT @ emat @c:irua:152819 Serial 5004
Permanent link to this record
 

 
Author Gou, H.; Dubrovinskaia, N.; Bykova, E.; Tsirlin, A.A.; Kasinathan, D.; Schnelle, W.; Richter, A.; Merlini, M.; Hanfland, M.; Abakumov, A.M.; Batuk, D.; Van Tendeloo, G.; Nakajima, Y.; Kolmogorov, A.N.; Dubrovinsky, L.;
Title Discovery of a superhard iron tetraboride superconductor Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 111 Issue 15 Pages 157002-157005
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract (up) Single crystals of novel orthorhombic (space group Pnnm) iron tetraboride FeB4 were synthesized at pressures above 8 GPa and high temperatures. Magnetic susceptibility and heat capacity measurements demonstrate bulk superconductivity below 2.9 K. The putative isotope effect on the superconducting critical temperature and the analysis of specific heat data indicate that the superconductivity in FeB4 is likely phonon mediated, which is rare for Fe-based superconductors. The discovered iron tetraboride is highly incompressible and has the nanoindentation hardness of 62(5) GPa; thus, it opens a new class of highly desirable materials combining advanced mechanical properties and superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000325371500011 Publication Date 2013-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 127 Open Access
Notes Countatoms Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:110820 Serial 729
Permanent link to this record
 

 
Author Cambré, S.; Schoeters, B.; Luyckx, S.; Goovaerts, E.; Wenseleers, W.
Title Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3) Type A1 Journal article
Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 104 Issue 20 Pages 207401,1-207401,4
Keywords A1 Journal article; Particle Physics Group; Nanostructured and organic optical and electronic materials (NANOrOPT); Condensed Matter Theory (CMT)
Abstract (up) Single-file transport of water into carbon nanotubes is experimentally demonstrated for the first time through the splitting of the radial breathing mode (RBM) vibration in Raman spectra of bile salt solubilized tubes when both empty (closed) and water-filled (open-ended) tubes are present. D2O filling is observed for a wide range of diameters, d, down to very thin tubes [e.g., (5,3) tube, d=0.548  nm] for which only a single water molecule fits in the cross section of the internal nanotube channel. The shift in RBM frequency upon filling is found to display a very complex dependence on nanotube diameter and chirality, in support of a different yet well-defined ordering and orientation of water molecules at room temperature. Large shifts of the electronic transitions are also observed.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000277945900051 Publication Date 2010-05-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 140 Open Access
Notes ; Financial support from the Fund for Scientific Research Flanders, Belgium (FWO-Vlaanderen) (Project No. G.0129.07), is gratefully acknowledged. ; Approved Most recent IF: 8.462; 2010 IF: 7.622
Call Number UA @ lucian @ c:irua:83383 Serial 1141
Permanent link to this record