|
Record |
Links |
|
Author |
Ghosh, P.K.; Misko, V.R.; Marchesoni, F.; Nori, F. |
|
|
Title |
Self-propelled Janus particles in a ratchet : numerical simulations |
Type |
A1 Journal article |
|
Year |
2013 |
Publication |
Physical review letters |
Abbreviated Journal |
Phys Rev Lett |
|
|
Volume |
110 |
Issue |
26 |
Pages |
1-5 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
Brownian transport of self-propelled overdamped microswimmers (like Janus particles) in a two-dimensional periodically compartmentalized channel is numerically investigated for different compartment geometries, boundary collisional dynamics, and particle rotational diffusion. The resulting time-correlated active Brownian motion is subject to rectification in the presence of spatial asymmetry. We prove that ratcheting of Janus particles can be orders of magnitude stronger than for ordinary thermal potential ratchets and thus experimentally accessible. In particular, autonomous pumping of a large mixture of passive particles can be induced by just adding a small fraction of Janus particles. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
New York, N.Y. |
Editor |
|
|
|
Language |
|
Wos |
000320956500017 |
Publication Date |
2013-06-25 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-9007;1079-7114; |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
8.462 |
Times cited |
143 |
Open Access |
|
|
|
Notes |
; We thank RICC for computational resources. P. K. G. acknowledges financial support from JSPS through fellowship No. P11502. V. R. M. acknowledges support from the Odysseus Program of the Flemish Government and FWO-VI. F. M. acknowledges partial support from the European Commission, Grant No. 256959 (NanoPower). F. N. was supported in part by the ARO, RIKEN iTHES Project, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program. ; |
Approved |
Most recent IF: 8.462; 2013 IF: 7.728 |
|
|
Call Number |
UA @ lucian @ c:irua:109833 |
Serial |
2979 |
|
Permanent link to this record |