toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Ghosh, P.K.; Misko, V.R.; Marchesoni, F.; Nori, F. url  doi
openurl 
  Title Self-propelled Janus particles in a ratchet : numerical simulations Type A1 Journal article
  Year (down) 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 110 Issue 26 Pages 1-5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Brownian transport of self-propelled overdamped microswimmers (like Janus particles) in a two-dimensional periodically compartmentalized channel is numerically investigated for different compartment geometries, boundary collisional dynamics, and particle rotational diffusion. The resulting time-correlated active Brownian motion is subject to rectification in the presence of spatial asymmetry. We prove that ratcheting of Janus particles can be orders of magnitude stronger than for ordinary thermal potential ratchets and thus experimentally accessible. In particular, autonomous pumping of a large mixture of passive particles can be induced by just adding a small fraction of Janus particles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000320956500017 Publication Date 2013-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 143 Open Access  
  Notes ; We thank RICC for computational resources. P. K. G. acknowledges financial support from JSPS through fellowship No. P11502. V. R. M. acknowledges support from the Odysseus Program of the Flemish Government and FWO-VI. F. M. acknowledges partial support from the European Commission, Grant No. 256959 (NanoPower). F. N. was supported in part by the ARO, RIKEN iTHES Project, JSPS-RFBR Contract No. 12-02-92100, Grant-in-Aid for Scientific Research (S), MEXT Kakenhi on Quantum Cybernetics, and the JSPS via its FIRST program. ; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:109833 Serial 2979  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: