toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Meire, M.; Verbruggen, S.W.; Lenaerts, S.; Lommens, P.; Van Der Voort, P.; Van Driessche, I. pdf  url
doi  openurl
  Title Microwave-assisted synthesis of mesoporous titania with increased crystallinity, specific surface area, and photocatalytic activity Type A1 Journal article
  Year 2016 Publication Journal of materials science Abbreviated Journal J Mater Sci  
  Volume 51 Issue 21 Pages 9822-9829  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (up) Mesoporous titanium dioxide is a material finding its use in a wide range of applications. For many of these, it is important to achieve a high degree of crystallinity in the material. It is generally accepted that the use of the soft templating approach to synthesize mesoporous titania, results in a compromise between crystallinity and specific surface area due to thermal instability of the used templates. In this paper, we explore how the use of microwave irradiation can influence the crystallinity, specific surface area, and the electronic properties of mesoporous titania. Therefore, we combined microwave radiation with an evaporation-induced self-assembly (EISA) synthesis. We show that additional microwave treatment at carefully chosen synthesis steps can enhance the crystallinity with 20 % without causing significant loss of surface area (>360 m2/g). Surface photovoltage measurements were used to investigate the electronic properties. The photocatalytic activity of the samples was evaluated in aqueous media by following the degradation of an industrial dye, methylene blue, and the herbicide isoproturon under UV irradiation and in gaseous media looking at the degradation of acetaldehyde, a common indoor pollutant under UVA irradiation. In all cases, the microwave treatment results in more active materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000381182200023 Publication Date 2016-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2461 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.599 Times cited 8 Open Access  
  Notes ; M. Meire and S. W. Verbruggen acknowledge the FWO-Flanders (Fund for Scientific Research-Flanders) for financial support. We want to thank T. Planckaert for the N<INF>2</INF> sorption measurements, J. Watte for the XRD measurements, and professor K. De Buysser for the quantitative Rietveld refinements. ; Approved Most recent IF: 2.599  
  Call Number UA @ admin @ c:irua:140098 Serial 5970  
Permanent link to this record
 

 
Author Gao, Y.-J.; Jin, H.; Esteban, D.A.; Weng, B.; Saha, R.A.; Yang, M.-Q.; Bals, S.; Steele, J.A.; Huang, H.; Roeffaers, M.B.J. url  doi
openurl 
  Title 3D-cavity-confined CsPbBr₃ quantum dots for visible-light-driven photocatalytic C(sp³)-H bond activation Type A1 Journal article
  Year 2024 Publication Carbon Energy Abbreviated Journal  
  Volume Issue Pages e559  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Metal halide perovskite (MHP) quantum dots (QDs) offer immense potential for several areas of photonics research due to their easy and low-cost fabrication and excellent optoelectronic properties. However, practical applications of MHP QDs are limited by their poor stability and, in particular, their tendency to aggregate. Here, we develop a two-step double-solvent strategy to grow and confine CsPbBr3 QDs within the three-dimensional (3D) cavities of a mesoporous SBA-16 silica scaffold (CsPbBr3@SBA-16). Strong confinement and separation of the MHP QDs lead to a relatively uniform size distribution, narrow luminescence, and good ambient stability over 2 months. In addition, the CsPbBr3@SBA-16 presents a high activity and stability for visible-light-driven photocatalytic toluene C(sp(3))-H bond activation to produce benzaldehyde with similar to 730 mu mol g(-1) h(-1) yield rate and near-unity selectivity. Similarly, the structural stability of CsPbBr3@SBA-16 QDs is superior to that of both pure CsPbBr3 QDs and those confined in MCM-41 with 1D channels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001223583600001 Publication Date 2024-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-9368 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:206000 Serial 9133  
Permanent link to this record
 

 
Author Locardi, F.; Samoli, M.; Martinelli, A.; Erdem, O.; Vale Magalhaes, D.; Bals, S.; Hens, Z. url  doi
openurl 
  Title Cyan emission in two-dimensional colloidal Cs2CdCl4:SB3+ Ruddlesden-Popper phase nanoplatelets Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 15 Issue 11 Pages 17729-17737  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Metal halide perovskites are one of the most investigated materials in optoelectronics, with their lead-based counterparts being renowned for their enhanced optoelectronic performance. The 3D CsPbX3 structure has set the standard with many studies currently attempting to substitute lead with other metals while retaining the properties of this material. This effort has led to the fabrication of metal halides with lower dimensionality, wherein particular 2D layered perovskite structures have captured attention as inspiration for the next generation of colloidal semiconductors. Here we report the synthesis of the Ruddlesden-Popper Cs2CdCl4:Sb3+ phase as colloidal nanoplatelets (NPs) using a facile hot injection approach under atmospheric conditions. Through strict adjustment of the synthesis parameters with emphasis on the ligand ratio, we obtained NPs with a relatively uniform size and good morphological control. The particles were characterized through transmission electron microscopy, synchrotron X-ray diffraction, and pair distribution function analysis. The spectroscopic characterization revealed most strikingly an intense cyan emission under UV excitation with a measured PLQY of similar to 20%. The emission was attributed to the Sb3+-doping within the structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000747115200053 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 34 Open Access OpenAccess  
  Notes The authors acknowledge the European Synchrotron Radiation Facility for provision of synchrotron radiation facilities and they would like to thank Andrew Fitch for assistance in using beamline ID22 (proposal HC-4098). Z.H. and S.B acknowledge funding from the Research Foundation − Flanders (FWO-Vlaanderen under the SBO − PROCEED project (No: S0002019N). Z.H. acknowledges Ghent University for funding (BOF-GOA 01G01019). S.B. is grateful to the European Research Council (ERC Consolidator Grant 815128, REALNANO). F.L. thanks Emanuela Sartori and Stefano Toso for the fruitful discussions. M.S. would like to thank Olivier Janssens for collecting XRPD data and Gabriele Pippia for helpful insights and discussions. Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:186465 Serial 7059  
Permanent link to this record
 

 
Author Alexander, C.T.; Abakumov, A.M.; Forslund, R.P.; Johnston, K.P.; Stevenson, K.J. url  doi
openurl 
  Title Role of the carbon support on the oxygen reduction and evolution activities in LaNiO3 composite electrodes in alkaline solution Type A1 Journal article
  Year 2018 Publication ACS applied energy materials Abbreviated Journal  
  Volume 1 Issue 4 Pages 1549-1558  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Metal-air batteries and fuel cells show a great deal of promise in advancing low-cost, high-energy-density charge storage solutions for sustainable energy applications. To improve the activities and stabilities of electrocatalysts for the critical oxygen reduction and evolution reactions (ORR and OER, respectively), a greater understanding is needed of the catalyst/carbon interactions and carbon stability. Herein, we report how LaNiO3 (LNO) supported on nitrogen-doped carbon nanotubes (N-CNT) made from a high-yield synthesis lowers the overpotential for both the OER and ORR markedly to enable a low bifunctional window of 0.81 V at only a 51 mu g cm(-2) mass loading. Furthermore, the addition of LNO to the N-CNTs improves the galvanostatic stability for the OER by almost 2 orders of magnitude. The nanoscale geometries of the perovskites and the CNTs enhance the number of metal-support and charge transfer interactions and thus the activity. We use rotating ring disk electrodes (RRDEs) combined with Tafel slope analysis and ICP-OES to quantitatively separate current contributions from the OER, carbon oxidation, and even anodic iron leaching from carbon nanotubes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458705400020 Publication Date 2018-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-0962 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:157642 Serial 8487  
Permanent link to this record
 

 
Author Iungin, O.; Shydlovska, O.; Moshynets, O.; Vasylenko, V.; Sidorenko, M.; Mickevicius, S.; Potters, G. doi  openurl
  Title Metal-based nanoparticles : an alternative treatment for biofilm infection in hard-to-heal wounds Type A1 Journal article
  Year 2024 Publication Journal of wound care Abbreviated Journal  
  Volume 33 Issue s:[4A] Pages 99-110  
  Keywords A1 Journal article; Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract (up) Metal-based nanoparticles (MNPs) are promoted as effective compounds in the treatment of bacterial infections and as possible alternatives to antibiotics. These MNPs are known to affect a broad spectrum of microorganisms using a multitude of strategies, including the induction of reactive oxygen species and interaction with the inner structures of the bacterial cells. The aim of this review was to summarise the latest studies about the effect of metal-based nanoparticles on pathogenic bacterial biofilm formed in wounds, using the examples of Gram-positive bacterium Staphylococcus aureus and Gram-negative bacterium Pseudomonas aeruginosa, as well as provide an overview of possible clinical applications. Declaration of interest: The authors have no conflicts of interest.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001208810700003 Publication Date 2024-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-0700 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.9 Times cited Open Access  
  Notes Approved Most recent IF: 1.9; 2024 IF: 1.446  
  Call Number UA @ admin @ c:irua:205959 Serial 9159  
Permanent link to this record
 

 
Author Dey, A.; Ye, J.; De, A.; Debroye, E.; Ha, S.K.; Bladt, E.; Kshirsagar, A.S.; Wang, Z.; Yin, J.; Wang, Y.; Quan, L.N.; Yan, F.; Gao, M.; Li, X.; Shamsi, J.; Debnath, T.; Cao, M.; Scheel, M.A.; Kumar, S.; Steele, J.A.; Gerhard, M.; Chouhan, L.; Xu, K.; Wu, X.-gang; Li, Y.; Zhang, Y.; Dutta, A.; Han, C.; Vincon, I.; Rogach, A.L.; Nag, A.; Samanta, A.; Korgel, B.A.; Shih, C.-J.; Gamelin, D.R.; Son, D.H.; Zeng, H.; Zhong, H.; Sun, H.; Demir, H.V.; Scheblykin, I.G.; Mora-Sero, I.; Stolarczyk, J.K.; Zhang, J.Z.; Feldmann, J.; Hofkens, J.; Luther, J.M.; Perez-Prieto, J.; Li, L.; Manna, L.; Bodnarchuk, M., I; Kovalenko, M., V; Roeffaers, M.B.J.; Pradhan, N.; Mohammed, O.F.; Bakr, O.M.; Yang, P.; Muller-Buschbaum, P.; Kamat, P., V; Bao, Q.; Zhang, Q.; Krahne, R.; Galian, R.E.; Stranks, S.D.; Bals, S.; Biju, V.; Tisdale, W.A.; Yan, Y.; Hoye, R.L.Z.; Polavarapu, L. pdf  url
doi  openurl
  Title State of the art and prospects for Halide Perovskite Nanocrystals Type A1 Journal article
  Year 2021 Publication Acs Nano Abbreviated Journal Acs Nano  
  Volume 15 Issue 7 Pages 10775-10981  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Metal-halide perovskites have rapidly emerged as one of the most promising materials of the 21st century, with many exciting properties and great potential for a broad range of applications, from photovoltaics to optoelectronics and photocatalysis. The ease with which metal-halide perovskites can be synthesized in the form of brightly luminescent colloidal nanocrystals, as well as their tunable and intriguing optical and electronic properties, has attracted researchers from different disciplines of science and technology. In the last few years, there has been a significant progress in the shape-controlled synthesis of perovskite nanocrystals and understanding of their properties and applications. In this comprehensive review, researchers having expertise in different fields (chemistry, physics, and device engineering) of metal-halide perovskite nanocrystals have joined together to provide a state of the art overview and future prospects of metal-halide perovskite nanocrystal research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000679406500006 Publication Date 2021-06-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 538 Open Access OpenAccess  
  Notes E.D. and J.H. acknowledge financial support from the Research FoundationFlanders (FWO Grant Nos. S002019N, G.0B39.15, G.0B49.15, G.0962.13, G098319N, and ZW15_09-GOH6316), the Research Foundation Flanders postdoctoral fellowships to J.A.S. and E.D. (FWO Grant Nos. 12Y7218N and 12O3719N, respectively), Approved Most recent IF: 13.942  
  Call Number UA @ admin @ c:irua:180553 Serial 6846  
Permanent link to this record
 

 
Author Roesler, C.; Aijaz, A.; Turner, S.; Filippousi, M.; Shahabi, A.; Xia, W.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A. pdf  doi
openurl 
  Title Hollow Zn/Co Zeolitic Imidazolate Framework (ZIF) and Yolk-Shell Metal@Zn/Co ZIF nanostructures Type A1 Journal article
  Year 2016 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J  
  Volume 22 Issue 22 Pages 3304-3311  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Metal-organic frameworks (MOFs) feature a great possibility for a broad spectrum of applications. Hollow MOF structures with tunable porosity and multifunctionality at the nanoscale with beneficial properties are desired as hosts for catalytically active species. Herein, we demonstrate the formation of well-defined hollow Zn/Co-based zeolitic imidazolate frameworks (ZIFs) by use of epitaxial growth of Zn-MOF (ZIF-8) on preformed Co-MOF (ZIF-67) nanocrystals that involve in situ self-sacrifice/excavation of the Co-MOF. Moreover, any type of metal nanoparticles can be accommodated in Zn/Co-ZIF shells to generate yolk-shell metal@ZIF structures. Transmission electron microscopy and tomography studies revealed the inclusion of these nanoparticles within hollow Zn/Co-ZIF with dominance of the Zn-MOF as shell. Our findings lead to a generalization of such hollow systems that are working effectively to other types of ZIFs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000371419200001 Publication Date 2016-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.317 Times cited 43 Open Access  
  Notes Approved Most recent IF: 5.317  
  Call Number UA @ lucian @ c:irua:132347 Serial 4192  
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Peeters, F.M. doi  openurl
  Title Engineering electronic properties of metal-MoSe2 interfaces using self-assembled monolayers Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 2 Issue 46 Pages 9842-9849  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Metallic contacts are critical components of electronic devices and the presence of a large Schottky barrier is detrimental for an optimal device operation. Here, we show by using first-principles calculations that a self-assembled monolayer (SAM) of polar molecules between the metal electrode and MoSe2 monolayer is able to convert the Schottky contact into an almost Ohmic contact. We choose -CH3 and -CF3 terminated short-chain alkylthiolate (i.e. SCH3 and fluorinated alkylthiolates (SCF3)) based SAMs to test our approach. We consider both high (Au) and low (Sc) work function metals in order to thoroughly elucidate the role of the metal work function. In the case of Sc, the Fermi level even moves into the conduction band of the MoSe2 monolayer upon SAM insertion between the metal surface and the MoSe2 monolayer, and hence possibly switches the contact type from Schottky to Ohmic. The usual Fermi level pinning at the metal-transition metal dichalcogenide (TMD) contact is shown to be completely removed upon the deposition of a SAM. Systematic analysis indicates that the work function of the metal surface and the energy level alignment between the metal electrode and the TMD monolayer can be tuned significantly by using SAMs as a buffer layer. These results clearly indicate the vast potential of the proposed interface engineering to modify the physical and chemical properties of MoSe2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344998700007 Publication Date 2014-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 22 Open Access  
  Notes ; Part of this work is supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish Government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). D. C. is supported by a FWO Pegasus-short Marie Curie Fellowship. C. S. acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK 113F096), Anadolu University (BAP-1306F281, -1404F158) and Turkish Academy of Science (TUBA). ; Approved Most recent IF: 5.256; 2014 IF: 4.696  
  Call Number UA @ lucian @ c:irua:122157 Serial 1046  
Permanent link to this record
 

 
Author Bertoni, G.; Fabbri, F.; Villani, M.; Lazzarini, L.; Turner, S.; Van Tendeloo, G.; Calestani, D.; Gradečak, S.; Zappettini, A.; Salviati, G. pdf  url
doi  openurl
  Title Nanoscale mapping of plasmon and exciton in ZnO tetrapods coupled with Au nanoparticles Type A1 Journal article
  Year 2016 Publication Scientific reports Abbreviated Journal Sci Rep-Uk  
  Volume 6 Issue 6 Pages 19168  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Metallic nanoparticles can be used to enhance optical absorption or emission in semiconductors, thanks to a strong interaction of collective excitations of free charges (plasmons) with electromagnetic fields. Herein we present the direct imaging at the nanoscale of plasmon-exciton coupling in Au/ZnO nanostructures by combining scanning transmission electron energy loss and cathodoluminescence spectroscopy and mapping. The Au nanoparticles (~30 nm in diameter) are grown in-situ on ZnO nanotetrapods by means of a photochemical process without the need of binding agents or capping molecules. This results in clean interfaces, enabling to prove the occurrence of the plasmon-exciton coupling and the straightforward mapping of its spatial localization. Interestingly, the Au plasmon resonance is localized at the Au/vacuum interface, rather than presenting an isotropic distribution around the nanoparticle. On the contrary, a strong localization of the ZnO excitons, has been observed inside the Au nanoparticle, revealing the existence of the plasmon-exciton coupling, as also confirmed by numerical simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368111900001 Publication Date 2016-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.259 Times cited 15 Open Access  
  Notes The research leading to these results has received funding from the European Union FP7 Grant Agreement n. 265073 ITN-Nanowiring, and FP7 Grant Agreement n. 312483 ESTEEM2 for Integrated Infrastructure Initiative – I3. S.T. gratefully acknowledges the FWO Vlaanderen. G.V.T. acknowledges the European Research Council (ERC grant N°246791 – COUNTATOMS). The authors thank Alessandra Catellani and Arrigo Calzolari for helpful discussions.; Esteem2_jra3 Approved Most recent IF: 4.259  
  Call Number c:irua:130406 c:irua:130406 Serial 3999  
Permanent link to this record
 

 
Author Meilikhov, M.; Yusenko, K.; Esken, D.; Turner, S.; Van Tendeloo, G.; Fischer, R.A. pdf  doi
openurl 
  Title Metals@MOFs – loading MOFs with metal nanoparticles for hybrid functions Type A1 Journal article
  Year 2010 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume 2010 Issue 24 Pages 3701-3714  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Metalorganic frameworks (MOFs) as well as porous coordination polymers (PCPs) are porous, organicinorganic hybrid solids with zeolite-like structures and properties. Due to their extraordinarily high surface area and well defined pore structure MOFs can be used for the stabilization of metal nanoparticles with adjustable size. The embedded metal nanoparticles are still accessible for other reagents due to the high porosity of the MOF systems. This fact makes metal@MOF systems especially interesting for heterogeneous catalysis, gas storage and chemical sensing. This review compiles the cases of metal nanoparticles supported by or embedded into MOFs reported so far and the main aspects and problems associated with these novel nanocomposite systems. The determination of the dispersion and the location of the particles at the MOF support, the control of the loading degree and its effect on the catalytic activity of the system are discussed as well as the partial degradation of the MOF structure upon particle formation. Examples of the introduction of stabilizing groups into the MOF network that direct the loading and can influence the size and shape of the embedded particles are still rare and point into the possible direction of future investigations. Finally, the formation of bimetallic nanoparticles, which are stabilized and supported by a MOF network, will also be reviewed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000281684300001 Publication Date 2010-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 366 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 2.444; 2010 IF: 2.910  
  Call Number UA @ lucian @ c:irua:85495 Serial 2014  
Permanent link to this record
 

 
Author Lubyshev, D.; Fastenau, J.M.; Fang, X.-M.; Wu, Y.; Doss, C.; Snyder, A.; Liu, W.K.; Lamb, M.S.M.; Bals, S.; Song, C. pdf  doi
openurl 
  Title Comparison of As- and P-based metamorphic buffers for high performance InP heterojunction bipolar transistor and high electron mobility transistor applications Type A1 Journal article
  Year 2004 Publication Journal of vacuum science & technology. B. Microelectronics and nanometer structures. Processing, measurement and phenomena Abbreviated Journal  
  Volume 22 Issue 3 Pages 1565-1569  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Metamorphic buffers (M-buffers) consisting of graded InAlAs or bulk InP were employed for the production of InP-based epiwafers on GaAs substrates by molecular-beam epitaxy. The graded InAlAs is the standard for production metamorphic high electron mobility transistors (M-HEMTs), while the bulk InP offers superior thermal properties for higher current density circuits. The surface morphology and crystal structure of the two M-buffers showed different relaxation mechanisms. The graded InAlAs gave a cross-hatched pattern with nearly full relaxation and very effective dislocation filtering, while the bulk InP had a uniform isotropic surface with dislocations propagating further up towards the active layers. Both types of M-buffers had atomic force microscopy root-mean-square roughness values around 2030 Å. The Hall transport properties of high electron mobility transistors (HEMTs) grown on the InAlAs M-buffer, and a baseline HEMT grown lattice matched on InP, both had room-temperature mobilities >10 000 cm2/V s, while the M-HEMT on the InP M-buffer showed a decrease to 9000 cm2/V  s. Similarly, the dc parameters of a double heterojunction bipolar transistor (DHBT) grown on the InAlAs M-buffer were much closer to the baseline heterojunction bipolar transistor than a DHBT grown on the InP M-buffer. A high breakdown voltage of 11.3 V was achieved on an M-DHBT with the InAlAs M-buffer. We speculate that the degradation in device characteristics on the InP M-buffer was related to the incomplete dislocation filtering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000222481400141 Publication Date 2004-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-211X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 25 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:87596 Serial 427  
Permanent link to this record
 

 
Author Drăgan, A.-M.; Parrilla, M.; Sleegers, N.; Slosse, A.; Van Durme, F.; van Nuijs, A.; Oprean, R.; Cristea, C.; De Wael, K. pdf  doi
openurl 
  Title Investigating the electrochemical profile of methamphetamine to enable fast on-site detection in forensic analysis Type A1 Journal article
  Year 2023 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal  
  Volume 255 Issue Pages 124208-124211  
  Keywords A1 Journal article; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract (up) Methamphetamine (MA) is a synthetic psychoactive drug which is consumed both licitly and illicitly. In some countries it is prescribed for attention-deficit and hyperactivity disorder, and short-term treatment of obesity. More often though, it is abused for its psychostimulant properties. Unfortunately, the spread and abuse of this synthetic drug have increased globally, being reported as the most widely consumed synthetic psychoactive drug in the world in 2019. Attempting to overcome the shortcomings of the currently used on-site methods for MA detection in suspected cargos, the present study explores the potential of electrochemical identification of MA by means of square wave voltammetry on disposable graphite screen-printed electrodes. Hence, the analytical characterization of the method was evaluated under optimal conditions exhibiting a linear range between 50 mu M and 2.5 mM MA, a LOD of 16.7 mu M, a LOQ of 50.0 mu M and a sensitivity of 5.3 mu A mM-1. Interestingly, two zones in the potential window were identified for the detection of MA, depending on its concentration in solution. Furthermore, the oxidative pathway of MA was elucidated employing liquid chromatography – mass spectrometry to understand the change in the electrochemical profile. Thereafter, the selectivity of the method towards MA in mixtures with other drugs of abuse as well as common adulterants/cutting agents was evaluated. Finally, the described method was employed for the analysis of MA in confiscated samples and compared with forensic methods, displaying its potential as a fast and easy-to-use method for on-site analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000925076200001 Publication Date 2023-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.1 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.1; 2023 IF: 4.162  
  Call Number UA @ admin @ c:irua:194314 Serial 8890  
Permanent link to this record
 

 
Author Truta, F.; Drăgan, A.-M.; Tertis, M.; Parrilla, M.; Slosse, A.; Van Durme, F.; De Wael, K.; Cristea, C. url  doi
openurl 
  Title Electrochemical rapid detection of methamphetamine from confiscated samples using a graphene-based printed platform Type A1 Journal article
  Year 2023 Publication Sensors Abbreviated Journal  
  Volume 23 Issue 13 Pages 6193-18  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract (up) Methamphetamine (MAP) is a highly addictive and illegal stimulant drug that has a significant impact on the central nervous system. Its detection in biological and street samples is crucial for various organizations involved in forensic medicine, anti-drug efforts, and clinical diagnosis. In recent years, nanotechnology and nanomaterials have played a significant role in the development of analytical sensors for MAP detection. In this study, a fast, simple, and cost-effective electrochemical sensor is presented that is used for the sensitive detection of MAP in confiscated street samples with a complex matrix. The optimized screen-printed sensor based on a carbon working electrode modified with graphene demonstrated an excellent limit of detection, good sensitivity, and a wide dynamic range (1–500 μM) for the target illicit drug both for standard solutions and real samples (seized samples, tap water, and wastewater samples). It can detect MAP at concentrations as low as 300 nM in real samples. This limit of detection is suitable for the rapid preliminary screening of suspicious samples in customs, ports, airports, and on the street. Furthermore, the sensor exhibits a good recovery rate, indicating its reliability and repeatability. This quality is crucial for ensuring consistent and accurate results during screening processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001033277900001 Publication Date 2023-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198181 Serial 8857  
Permanent link to this record
 

 
Author Cao, M.; Xiong, D.-B.; Tan, Z.; Ji, G.; Amin-Ahmadi, B.; Guo, Q.; Fan, G.; Guo, C.; Li, Z.; Zhang, D. pdf  url
doi  openurl
  Title Aligning graphene in bulk copper : nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity Type A1 Journal article
  Year 2017 Publication Carbon Abbreviated Journal  
  Volume 117 Issue Pages 65-74  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) Methods used to strengthen metals generally also cause a pronounced decrease in ductility and electrical conductivity. In this work a bioinspired strategy is applied to surmount the dilemma. By assembling copper submicron flakes cladded with in-situ grown graphene, graphene/copper matrix composites with a nanolaminated architecture inspired by a natural nacre have been prepared. Owing to a combined effect-from the bioinspired nanolaminated architecture and improved interfacial bonding, a synergy has been achieved between mechanical strength and ductility as well as electrical conductivity in the graphene/copper matrix composites. With a low volume fraction of only 2.5% of graphene, the composite shows a yield strength and elastic modulus similar to 177% and similar to 25% higher than that of unreinforced copper matrix, respectively, while retains ductility and electrical conductivity comparable to that of pure copper. The bioinspired nanolaminated architecture enhances the efficiencies of two-dimensional (2D) graphene in mechanical strengthening and electrical conducting by aligning graphene to maximize performance for required loading and carrier transporting conditions, and toughens the composites by crack deflection. Meanwhile, in-situ growth of graphene is beneficial for improving interfacial bonding and structural quality of graphene. The strategy sheds light on the development of composites with good combined structural and functional properties. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000400212100008 Publication Date 2017-02-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:152635 Serial 7435  
Permanent link to this record
 

 
Author Verheyen, E.; Jo, C.; Kurttepeli, M.; Vanbutsele, G.; Gobechiya, E.; Korányi, T.I.; Bals, S.; Van Tendeloo, G.; Ryoo, R.; Kirschhock, C.E.A.; Martens, J.A.; pdf  doi
openurl 
  Title Molecular shape-selectivity of MFI zeolite nanosheets in n-decane isomerization and hydrocracking Type A1 Journal article
  Year 2013 Publication Journal of catalysis Abbreviated Journal J Catal  
  Volume 300 Issue Pages 70-80  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (up) MFI zeolite nanosheets with thickness of 2 and 8 nm were synthesized, transformed into bifunctional catalysts by loading with platinum and tested in n-decane isomerization and hydrocracking. Detailed analysis of skeletal isomers and hydrocracked products revealed that the MFI nanosheets display transition-state shape-selectivity similar to bulk MFI zeolite crystals. The suppressed formation of bulky skeletal isomers and C5 cracking products are observed both in the nanosheets and the bulk crystals grown in three dimensions. This is typical for restricted transition-state shape-selectivity, characteristic for the MFI type pores. It is a first clear example of transition-state shape-selectivity inside a zeolitic nanosheet. Owing to the short diffusion path across the sheets, expression of diffusion-based discrimination of reaction products in the MFI nanosheets was limited. The 2-methylnonane formation among monobranched C10 isomers and 2,7-dimethyloctane among dibranched C10 isomers, which in MFI zeolite are favored by product diffusion, was much less favored on the nanosheets compared to the reference bulk ZSM-5 material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication San Diego, Calif. Editor  
  Language Wos 000317558000009 Publication Date 2013-02-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9517; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.844 Times cited 121 Open Access  
  Notes Methusalem; IAP; Countatoms Approved Most recent IF: 6.844; 2013 IF: 6.073  
  Call Number UA @ lucian @ c:irua:106186 Serial 2181  
Permanent link to this record
 

 
Author Calizzi, M.; Venturi, F.; Ponthieu, M.; Cuevas, F.; Morandi, V.; Perkisas, T.; Bals, S.; Pasquini, L. pdf  doi
openurl 
  Title Gas-phase synthesis of Mg-Ti nanoparticles for solid-state hydrogen storage Type A1 Journal article
  Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 18 Issue 18 Pages 141-148  
  Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract (up) Mg-Ti nanostructured samples with different Ti contents were prepared via compaction of nanoparticles grown by inert gas condensation with independent Mg and Ti vapour sources. The growth set-up offered the option to perform in situ hydrogen absorption before compaction. Structural and morphological characterisation was carried out by X-ray diffraction, energy dispersive spectroscopy and electron microscopy. The formation of an extended metastable solid solution of Ti in hcp Mg was detected up to 15 at% Ti in the as-grown nanoparticles, while after in situ hydrogen absorption, phase separation between MgH2 and TiH2 was observed. At a Ti content of 22 at%, a metastable Mg-Ti-H fcc phase was observed after in situ hydrogen absorption. The co-evaporation of Mg and Ti inhibited nanoparticle coalescence and crystallite growth in comparison with the evaporation of Mg only. In situ hydrogen absorption was beneficial to subsequent hydrogen behaviour, studied by high pressure differential scanning calorimetry and isothermal kinetics. A transformed fraction of 90% was reached within 100 s at 300 degrees C during both hydrogen absorption and desorption. The enthalpy of hydride formation was not observed to differ from bulk MgH2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000368755500014 Publication Date 2015-11-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 31 Open Access Not_Open_Access  
  Notes ; Part of this work was supported by the COST Action MP1103 “Nanostructured materials for solid-state hydrogen storage”. ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:131589 Serial 4184  
Permanent link to this record
 

 
Author Byrnes, I.; Rossbach, L.M.; Jaroszewicz, J.; Grolimund, D.; Sanchez, D.F.; Gomez-Gonzalez, M.A.; Nuyts, G.; Reinoso-Maset, E.; Janssens, K.; Salbu, B.; Brede, D.A.; Lind, O.C. url  doi
openurl 
  Title Synchrotron XRF and histological analyses identify damage to digestive tract of uranium NP-exposed Daphnia magna Type A1 Journal article
  Year 2023 Publication Environmental science and technology Abbreviated Journal  
  Volume 57 Issue 2 Pages 1071-1079  
  Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS)  
  Abstract (up) Micro-and nanoscopic X-ray techniques were used to investigate the relationship between uranium (U) tissue distributions and adverse effects to the digestive tract of aquatic model organism Daphnia magna following uranium nanoparticle (UNP) exposure. X-ray absorption computed tomography measure-ments of intact daphnids exposed to sublethal concentrations of UNPs or a U reference solution (URef) showed adverse morphological changes to the midgut and the hepatic ceca. Histological analyses of exposed organisms revealed a high proportion of abnormal and irregularly shaped intestinal epithelial cells. Disruption of the hepatic ceca and midgut epithelial tissues implied digestive functions and intestinal barriers were compro-mised. Synchrotron-based micro X-ray fluorescence (XRF) elemental mapping identified U co-localized with morphological changes, with substantial accumulation of U in the lumen as well as in the epithelial tissues. Utilizing high-resolution nano-XRF, 400-1000 nm sized U particulates could be identified throughout the midgut and within hepatic ceca cells, coinciding with tissue damages. The results highlight disruption of intestinal function as an important mode of action of acute U toxicity in D. magna and that midgut epithelial cells as well as the hepatic ceca are key target organs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000910915100001 Publication Date 2023-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 11.4; 2023 IF: 6.198  
  Call Number UA @ admin @ c:irua:193478 Serial 7342  
Permanent link to this record
 

 
Author Sui, Y.; Muys, M.; Van de Waal, D.; D'Adamo, S.; Vermeir, P.; Fernandes, T.V.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title Enhancement of co-production of nutritional protein and carotenoids in Dunaliella salina using a two-phase cultivation assisted by nitrogen level and light intensity Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 287 Issue Pages 121398  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (up) Microalga Dunaliella salina is known for its carotenogenesis. At the same time, it can also produce high-quality protein. The optimal conditions for D. salina to co-produce intracellular pools of both compounds, however, are yet unknown. This study investigated a two-phase cultivation strategy to optimize combined high-quality protein and carotenoid production of D. salina. In phase-one, a gradient of nitrogen concentrations was tested. In phase-two, effects of nitrogen pulse and high illumination were tested. Results reveal optimized protein quantity, quality (expressed as essential amino acid index EAAI) and carotenoids content in a two-phase cultivation, where short nitrogen starvation in phase-one was followed by high illumination during phase-two. Adopting this strategy, productivities of protein, EAA and carotenoids reached 22, 7 and 3 mg/L/d, respectively, with an EAAI of 1.1. The quality of this biomass surpasses FAO/WHO standard for human nutrition, and the observed level of β-carotene presents high antioxidant pro-vitamin A activity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000469414500008 Publication Date 2019-04-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:159661 Serial 7916  
Permanent link to this record
 

 
Author Muys, M.; Sui, Y.; Schwaiger, B.; Lesueur, C.; Vandenheuvel, D.; Vermeir, P.; Vlaeminck, S.E. pdf  url
doi  openurl
  Title High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies Type A1 Journal article
  Year 2019 Publication Bioresource technology Abbreviated Journal  
  Volume 275 Issue Pages 247-257  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (up) Microalgal biomass production is a resource-efficient answer to the exponentially increasing demand for protein, yet variability in biomass quality is largely unexplored. Nutritional value and safety were determined for Chlorella and Spirulina biomass from different producers, production batches and the same production batch. Chlorella presented a similar protein content (47 ± 8%) compared to Spirulina (48 ± 4%). However, protein quality, expressed as essential amino acid index, and digestibility were lower for Chlorella (1.1 ± 0.1 and 51 ± 9%, respectively) compared to Spirulina (1.3 ± 0.1 and 61 ± 4%, respectively). Generally, variability was lower between batches and within a batch. Heavy metals, pesticides, mycotoxins, antibiotics and nitrate did not violate regulatory limits, while polycyclic aromatic hydrocarbon levels exceeded the norm for some samples, indicating the need for continuous monitoring. This first systematic screening of commercial microalgal biomass revealed a high nutritional variability, necessitating further optimization of cultivation and post-processing conditions. Based on price and quality, Spirulina was preferred above Chlorella.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000456405000030 Publication Date 2018-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155979 Serial 8040  
Permanent link to this record
 

 
Author Kontogiannidou, E.; Karavasili, C.; Kouskoura, M.G.; Filippousi, M.; Van Tendeloo, G.; Andreadis, I.I.; Eleftheriadis, G.K.; Kontopoulou, I.; Markopoulou, C.K.; Bouropoulos, N.; Fatouros, D.G. pdf  url
doi  openurl
  Title In vitro and ex vivo assessment of microporous Faujasite zeolite (NaX-FAU) as a carrier for the oral delivery of danazol Type A1 Journal article
  Year 2019 Publication Journal of drug delivery science and technology Abbreviated Journal J Drug Deliv Sci Tec  
  Volume 51 Issue 51 Pages 177-184  
  Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)  
  Abstract (up) Microporous zeolite NaX-FAU has been systemically evaluated for the oral delivery of the poorly water-soluble compound danazol. For this purpose, danazol-loaded zeolitic particles were prepared by the incipient wetness method and were characterized by means of N-2 physisorption, X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and high-resolution transmission electron microscopy (HRTEM). The zeolitic formulation shows a high drug payload and drug stability over a period of six months under accelerated storage conditions. The dissolution profile of danazol-loaded zeolitic particles was assessed in simulated gastric fluid (SGF) pH 1.2; fasted state simulated intestinal fluids (FaSSIF) and fed state simulated intestinal fluid (FeSSIF) showing a gradual and increasing drug dissolution in the different media. Ex vivo studies using the everted gut sac model show an increased drug transport across rat intestinal epithelium when loaded in the zeolitic particles. Our results suggest that microporous Faujasite zeolite (NaX-FAU) could be used as a drug delivery system to facilitate the oral delivery of poorly water soluble compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000468750300018 Publication Date 2019-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1773-2247; 2588-8943 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.194 Times cited 3 Open Access Not_Open_Access: Available from 27.08.2020  
  Notes ; This research was supported by General Secretariat for Research and Technology, Greece – Research Program “Excellence II, 4766”. The authors acknowledge financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI). ; Approved Most recent IF: 1.194  
  Call Number UA @ admin @ c:irua:160279 Serial 5252  
Permanent link to this record
 

 
Author Yang, W.; Misko, V.R.; Nelissen, K.; Kong, M.; Peeters, F.M. doi  openurl
  Title Using self-driven microswimmers for particle separation Type A1 Journal article
  Year 2012 Publication Soft matter Abbreviated Journal Soft Matter  
  Volume 8 Issue 19 Pages 5175-5179  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (up) Microscopic self-propelled swimmers capable of autonomous navigation through complex environments provide appealing opportunities for localization, pick-up and delivery of micro and nanoscopic objects. Inspired by motile cells and bacteria, man-made microswimmers have been fabricated, and their motion in patterned surroundings has been experimentally studied. We propose to use self-driven artificial microswimmers for the separation of binary mixtures of colloids. We revealed different regimes of separation, including one with a velocity inversion. Our findings could be of use for various biological and medical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000303208700009 Publication Date 2012-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1744-683X;1744-6848; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.889 Times cited 45 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-V1) (Belgium), the National Natural Science Foundation of China (No. 11047111), the State Key Program of National Natural Science of China (No. 51135007), the Research Fund for the Doctoral Program of Higher Education of China (No. 20111415120002), and the Major State Basic Research Development Program of China (973) (No. 2009CB724201). ; Approved Most recent IF: 3.889; 2012 IF: 3.909  
  Call Number UA @ lucian @ c:irua:98326 Serial 3826  
Permanent link to this record
 

 
Author Pourbabak, S.; Montero-Sistiaga, M.L.; Schryvers, D.; Van Humbeeck, J.; Vanmeensel, K. pdf  url
doi  openurl
  Title Microscopic investigation of as built and hot isostatic pressed Hastelloy X processed by Selective Laser Melting Type A1 Journal article
  Year 2019 Publication Materials characterization Abbreviated Journal Mater Charact  
  Volume 153 Issue Pages 366-371  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Microstructural characteristics of Hastelloy X produced by Selective Laser Melting have been investigated by various microscopic techniques in the as built (AB) condition and after hot isostatic pressing (HIP). At sub-grain level the AB material consists of columnar high density dislocation cells while the HIP sample consists of columnar sub-grains with lower dislocation density that originate from the original dislocation cells, contradicting existing models. The sub-grains contain nanoscale precipitates enriched in Al, Ti, Cr and O, located at sub-grain boundaries in the AB condition and within the grains after HIP. At some grain boundaries, micrometer sized chromium carbides are detected after HIP. Micro hardness within the grains was found to decrease after HIP, which was attributed to the decrease in dislocation density due to recovery annealing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472696900040 Publication Date 2019-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 2 Open Access Not_Open_Access  
  Notes S.P. likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. The authors acknowledge ENGIE Research and Technology Division for the use of the SLM280HL machine and financial support. This work was also made possible through the AUHA13009 grant “TopSPIN for TEM nanostatistics” of the Flemish HERCULES foundation. Approved Most recent IF: 2.714  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159974 Serial 5178  
Permanent link to this record
 

 
Author Meledina, M.; Turner, S.; Filippousi, M.; Leus, K.; Lobato, I.; Ramachandran, R.K.; Dendooven, J.; Detavernier, C.; Van Der Voort, P.; Van Tendeloo, G. pdf  doi
openurl 
  Title Direct Imaging of ALD Deposited Pt Nanoclusters inside the Giant Pores of MIL-101 Type A1 Journal article
  Year 2016 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char  
  Volume 33 Issue 33 Pages 382-387  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) MIL-101 giant-pore metal-organic framework (MOF) materials have been loaded with Pt nanoparticles using atomic layer deposition. The final structure has been investigated by aberration-corrected annular dark-field scanning transmission electron microscopy under strictly controlled low dose conditions. By combining the acquired experimental data with image simulations, the position of the small clusters within the individual pores of a metal-organic framework has been determined. The embedding of the Pt nanoparticles is confirmed by electron tomography, which shows a distinct ordering of the highly uniform Pt nanoparticles. The results show that atomic layer deposition is particularly well-suited for the deposition of individual nanoparticles inside MOF framework pores and that, upon proper regulation of the incident electron dose, annular dark-field scanning transmission electron microscopy is a powerful tool for the characterization of this type of materials at a local scale.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379970000006 Publication Date 2016-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0934-0866 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.474 Times cited 11 Open Access  
  Notes S.T. and J.D. gratefully acknowledge the FWO Vlaanderen for a postdoctoral scholarship. The Titan microscope used for this investigation was partially funded by the Hercules foundation of the Flemish government. This work was supported by the Belgian IAP-PAI network. K.L. acknowledges the financial support from the Ghent University BOF postdoctoral Grant 01P06813T and UGent GOA Grant 01G00710. C.D. thanks the FWO Vlaanderen, BOF-UGent (GOA 01G01513), and the Hercules Foundation (AUGE/09/014) for financial support. Approved Most recent IF: 4.474  
  Call Number c:irua:131913 Serial 4028  
Permanent link to this record
 

 
Author Reynaud, M.; Rousse, G.; Abakumov, A.M.; Sougrati, M.T.; Van Tendeloo, G.; Chotard, J.-N.; Tarascon, J.-M. doi  openurl
  Title Design of new electrode materials for Li-ion and Na-ion batteries from the bloedite mineral Na2Mg(SO4)2\cdot4H2O Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A  
  Volume 2 Issue 8 Pages 2671-2680  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Mineralogy offers a large database to search for Li- or Na-based compounds having suitable structural features for acting as electrode materials, LiFePO4 being one example. Here we further explore this avenue and report on the electrochemical properties of the bloedite type compounds Na2M(SO4)(2)center dot 4H(2)O (M = Mg, Fe, Co, Ni, Zn) and their dehydrated phases Na2M(SO4)(2) (M = Fe, Co), whose structures have been solved via complementary synchrotron X-ray diffraction, neutron powder diffraction and transmission electron microscopy. Among these compounds, the hydrated and anhydrous iron-based phases show electrochemical activity with the reversible release/uptake of 1 Na+ or 1 Li+ at high voltages of similar to 3.3 V vs. Na+/Na-0 and similar to 3.6 V vs. Li+/Li-0, respectively. Although the reversible capacities remain lower than 100 mA h g(-1), we hope this work will stress further the importance of mineralogy as a source of inspiration for designing eco-efficient electrode materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000331247500031 Publication Date 2013-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.867 Times cited 56 Open Access  
  Notes Approved Most recent IF: 8.867; 2014 IF: 7.443  
  Call Number UA @ lucian @ c:irua:115807 Serial 659  
Permanent link to this record
 

 
Author Voordeckers, D.; Lauriks, T.; Baetens, D.; Ysebaert, T.; Denys, S.; Billen, P.; Tytgat, T.; Van Acker, M. pdf  doi
openurl 
  Title Numerical study on the impact of traffic lane adjustments and low boundary walls on pedestrian exposure to NO2 in street canyons Type A1 Journal article
  Year 2023 Publication Landscape and urban planning Abbreviated Journal  
  Volume 243 Issue Pages 104974-13  
  Keywords A1 Journal article; Economics; Law; Engineering sciences. Technology; Art; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract (up) Mitigating the adverse effects of air pollution, especially on human health, is one of the greater contemporary challenges for cities. Street canyons have herein been identified as bottleneck areas in urbanized environments. Focusing on the necessity of fast-response interventions, strategies to control source-receptor pathways (e.g. implementing low boundary walls (LBWs)) are gaining interest. A potential strategy which is greatly overlooked is the adjustment (reduction or displacement) of traffic lanes in order to increase the distance between source (traffic) and recipient (pedestrians). Within our study, computation fluid dynamics (CFD) is used to simulate the impact of alternations to traffic lanes (whether or not combined with LBWs) on the pedestrian exposure to NO2 for a specific case-study (Belgie center dot lei, Antwerp) under two prevailing wind directions. The average differences in NO2 concentrations for the entire pedestrian area ranged between +1.0 % to-3.6 %. On specific locations, reduction up to-8.0 % were reached. In case of perpendicular winds, a lateral displacement of all traffic lanes towards the windward facade including LBWs was found most beneficial to reduce pedestrian exposure. LBWs also showed to be efficient in reducing potential adverse effects of lane displacement under less frequent wind directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001134403700001 Publication Date 2023-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-2046 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 9.1 Times cited Open Access  
  Notes Approved Most recent IF: 9.1; 2023 IF: 4.563  
  Call Number UA @ admin @ c:irua:201400 Serial 9065  
Permanent link to this record
 

 
Author Ranjbari, E.; Hadjmohammadi, M.R.; Kiekens, F.; De Wael, K. pdf  url
doi  openurl
  Title Mixed hemi/ad-micelle sodium dodecyl sulfate-coated magnetic iron oxide nanoparticles for the efficient removal and trace determination of rhodamine-B and rhodamine-6G Type A1 Journal article
  Year 2015 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 87 Issue 15 Pages 7894-7901  
  Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract (up) Mixed hemi/ad-micelle sodium dodecyl sulfate (SDS)-coated magnetic iron oxide nanoparticles (MHAMS-MIONPs) were used as an efficient adsorbent for both removal and preconcentration of two important carcinogenic xanthine dyes named rhodamine-B (RB) and rhodamine-6G (RG). To gain insight in the configuration of SDS molecules on the surface of MIONPs, zeta potential measurements were performed in different [SDS]/[MIONP] ratios. Zeta potential data indicated that mixed hemi/ad-micelle MHAM was formed in [SDS]/[MIONP] ratios over the range of 1.1 to 7.3. Parameters affecting the adsorption of dyes were optimized as removal efficiency by one variable at-a-time and response surface methodology; the obtained removal efficiencies were ∼100%. Adsorption kinetic and equilibrium studies, under the optimum condition (pH = 2; amount of MIONPs = 87.15 mg; [SDS]/[MIONP] ratio = 2.9), showed that adsorption of both dyes are based on the pseudo-second-order and the Langmuir isotherm models, respectively. The maximum adsorption capacities for RB and RG were 385 and 323 mg g1, respectively. MHAMS-MIONPs were also applied for extraction of RB and RG. Under optimum conditions (pH = 2; amount of damped MHAMS-MIONPs = 90 mg; eluent solvent volume = 2.6 mL of 3% acetic acid in acetonitrile), extraction recoveries for 0.5 mg L1 of RB and RG were 98% and 99%, with preconcentration factors of 327 and 330, respectively. Limit of detection obtained for rhodamine dyes were <0.7 ng mL1. Finally, MHAMS-MIONPs were successfully applied for both removal and trace determination of RB and RG in environmental and wastewater samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000359277900056 Publication Date 2015-07-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 36 Open Access  
  Notes ; ; Approved Most recent IF: 6.32; 2015 IF: 5.636  
  Call Number UA @ admin @ c:irua:126583 Serial 5730  
Permanent link to this record
 

 
Author Cerruti, M.; Stevens, B.; Ebrahimi, S.; Alloul, A.; Vlaeminck, S.E.; Weissbrodt, D.G. url  doi
openurl 
  Title Enrichment and aggregation of purple non-sulfur bacteria in a mixed-culture sequencing-batch photobioreactor for biological nutrient removal from wastewater Type A1 Journal article
  Year 2020 Publication Frontiers in Bioengineering and Biotechnology Abbreviated Journal  
  Volume 8 Issue Pages 557234  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract (up) Mixed-culture biotechnologies are widely used to capture nutrients from wastewater. Purple non-sulfur bacteria (PNSB), a guild of anoxygenic photomixotrophic organisms, rise interest for their ability to directly assimilate nutrients in the biomass. One challenge targets the aggregation and accumulation of PNSB biomass to separate it from the treated water. Our aim was to enrich and produce a concentrated, fast-settling PNSB biomass with high nutrient removal capacity in a 1.5-L, stirred-tank, anaerobic sequencing-batch photobioreactor (SBR). PNSB were rapidly enriched after inoculation with activated sludge at 0.1 gVSS L–1 in a first batch of 24 h under continuous irradiance of infrared (IR) light (>700 nm) at 375 W m–2, with Rhodobacter reaching 54% of amplicon sequencing read counts. SBR operations with decreasing hydraulic retention times (48 to 16 h, i.e., 1–3 cycles d–1) and increasing volumetric organic loading rates (0.2–1.3 kg COD d–1 m–3) stimulated biomass aggregation, settling, and accumulation in the system, reaching as high as 3.8 g VSS L–1. The sludge retention time (SRT) increased freely from 2.5 to 11 days. Acetate, ammonium, and orthophosphate were removed up to 96% at a rate of 1.1 kg COD d–1 m–3, 77% at 113 g N d–1 m–3, and 73% at 15 g P d–1 m–3, respectively, with COD:N:P assimilation ratio of 100:6.7:0.9 m/m/m. SBR regime shifts sequentially selected for Rhodobacter (90%) under shorter SRT and non-limiting concentration of acetate during reaction phases, for Rhodopseudomonas (70%) under longer SRT and acetate limitation during reaction, and Blastochloris (10%) under higher biomass concentrations, underlying competition for substrate and photons in the PNSB guild. With SBR operations we produced a fast-settling biomass, highly (>90%) enriched in PNSB. A high nutrient removal was achieved by biomass assimilation, reaching the European nutrient discharge limits. We opened further insights on the microbial ecology of PNSB-based processes for water resource recovery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000603626100001 Publication Date 2021-06-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-4185 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.7 Times cited Open Access  
  Notes Approved Most recent IF: 5.7; 2020 IF: NA  
  Call Number UA @ admin @ c:irua:174085 Serial 7921  
Permanent link to this record
 

 
Author Gengler, R.Y.N.; Toma, L.M.; Pardo, E.; Lloret, F.; Ke, X.; Van Tendeloo, G.; Gournis, D.; Rudolf, P. doi  openurl
  Title Prussian blue analogues of reduced dimensionality Type A1 Journal article
  Year 2012 Publication Small Abbreviated Journal Small  
  Volume 8 Issue 16 Pages 2532-2540  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Mixed-valence polycyanides (Prussian Blue analogues) possess a rich palette of properties spanning from room-temperature ferromagnetism to zero thermal expansion, which can be tuned by chemical modifications or the application of external stimuli (temperature, pressure, light irradiation). While molecule-based materials can combine physical and chemical properties associated with molecular-scale building blocks, their successful integration into real devices depends primarily on higher-order properties such as crystal size, shape, morphology, and organization. Herein a study of a new reduced-dimensionality system based on Prussian Blue analogues (PBAs) is presented. The system is built up by means of a modified Langmuir-Blodgett technique, where the PBA is synthesized from precursors in a self-limited reaction on a clay mineral surface. The focus of this work is understanding the magnetic properties of the PBAs in different periodic, low-dimensional arrangements, and the influence of the “on surface” synthesis on the final properties and dimensionality of the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000307390300012 Publication Date 2012-07-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.643 Times cited 17 Open Access  
  Notes Approved Most recent IF: 8.643; 2012 IF: 7.823  
  Call Number UA @ lucian @ c:irua:101104 Serial 2736  
Permanent link to this record
 

 
Author Li, M.R.; Croft, M.; Stephens, P.W.; Ye, M.; Vanderbilt, D.; Retuerto, M.; Deng, Z.; Grams, C.P.; Hemberger, J.; Hadermann, J.; Li, W.M.; Jin, C.Q.; Saouma, F.O.; Jang, J.I.; Akamatsu, H.; Gopalan, V.; Walker, D.; Greenblatt, M.; pdf  doi
openurl 
  Title Mn2FeWO6 : a new Ni3TeO6-type polar and magnetic oxide Type A1 Journal article
  Year 2015 Publication Advanced materials Abbreviated Journal Adv Mater  
  Volume 27 Issue 27 Pages 2177-2181  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract (up) Mn22+Fe2+W6+O6, a new polar magnetic phase, adopts the corundum-derived Ni3TeO6-type structure with large spontaneous polarization (P-S) of 67.8 mu C cm-2, complex antiferromagnetic order below approximate to 75 K, and field-induced first-order transition to a ferrimagnetic phase below approximate to 30 K. First-principles calculations predict a ferrimagnetic (udu) ground state, optimal switching path along the c-axis, and transition to a lower energy udu-udd magnetic double cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000352548900004 Publication Date 2015-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 19.791 Times cited 32 Open Access  
  Notes Approved Most recent IF: 19.791; 2015 IF: 17.493  
  Call Number c:irua:126002 Serial 3545  
Permanent link to this record
 

 
Author Bogaerts, A.; Khosravian, N.; Van der Paal, J.; Verlackt, C.C.W.; Yusupov, M.; Kamaraj, B.; Neyts, E.C. pdf  url
doi  openurl
  Title Multi-level molecular modelling for plasma medicine Type A1 Journal article
  Year 2016 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys  
  Volume 49 Issue 49 Pages 054002  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract (up) Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma–biomolecule interactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368944100003 Publication Date 2015-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.588 Times cited 11 Open Access  
  Notes This work is financially supported by the Fund for Scientific Research Flanders (FWO) and the Francqui Foundation. The calculations were carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. Approved Most recent IF: 2.588  
  Call Number c:irua:131571 Serial 3985  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: