toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Voordeckers, D.; Lauriks, T.; Baetens, D.; Ysebaert, T.; Denys, S.; Billen, P.; Tytgat, T.; Van Acker, M. pdf  doi
openurl 
  Title Numerical study on the impact of traffic lane adjustments and low boundary walls on pedestrian exposure to NO2 in street canyons Type A1 Journal article
  Year (down) 2023 Publication Landscape and urban planning Abbreviated Journal  
  Volume 243 Issue Pages 104974-13  
  Keywords A1 Journal article; Economics; Law; Engineering sciences. Technology; Art; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Mitigating the adverse effects of air pollution, especially on human health, is one of the greater contemporary challenges for cities. Street canyons have herein been identified as bottleneck areas in urbanized environments. Focusing on the necessity of fast-response interventions, strategies to control source-receptor pathways (e.g. implementing low boundary walls (LBWs)) are gaining interest. A potential strategy which is greatly overlooked is the adjustment (reduction or displacement) of traffic lanes in order to increase the distance between source (traffic) and recipient (pedestrians). Within our study, computation fluid dynamics (CFD) is used to simulate the impact of alternations to traffic lanes (whether or not combined with LBWs) on the pedestrian exposure to NO2 for a specific case-study (Belgie center dot lei, Antwerp) under two prevailing wind directions. The average differences in NO2 concentrations for the entire pedestrian area ranged between +1.0 % to-3.6 %. On specific locations, reduction up to-8.0 % were reached. In case of perpendicular winds, a lateral displacement of all traffic lanes towards the windward facade including LBWs was found most beneficial to reduce pedestrian exposure. LBWs also showed to be efficient in reducing potential adverse effects of lane displacement under less frequent wind directions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001134403700001 Publication Date 2023-12-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-2046 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:201400 Serial 9065  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: