toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Marchand, D.; Covaci, L.; Berciu, M.; Franz, M. doi  openurl
  Title Giant proximity effect in a phase-fluctuating superconductor Type A1 Journal article
  Year 2008 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 101 Issue 9 Pages 097004  
  Keywords A1 Journal article  
  Abstract (down) When a tunneling barrier between two superconductors is formed by a normal material that would be a superconductor in the absence of phase fluctuations, the resulting Josephson effect can undergo an enormous enhancement. We establish this novel proximity effect by a general argument as well as a numerical simulation and argue that it may underlie recent experimental observations of the giant proximity effect between two cuprate superconductors separated by a barrier made of the same material rendered normal by severe underdoping.  
  Address Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada V6T 1Z1  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000259195800055 Publication Date 2008-08-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links  
  Impact Factor 8.462 Times cited 17 Open Access  
  Notes Approved Most recent IF: 8.462; 2008 IF: 7.180  
  Call Number UA @ lucian @ Serial 4433  
Permanent link to this record
 

 
Author Kalina, R.; Szafran, B.; Bednarek, S.; Peeters, F.M. doi  openurl
  Title Magnetic-field asymmetry of electron wave packet transmission in bent channels capacitively coupled to a metal gate Type A1 Journal article
  Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 102 Issue 6 Pages 066807,1-066807,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We study the electron wave packet moving through a bent channel. We demonstrate that the packet transmission probability becomes an asymmetric function of the magnetic field when the electron packet is capacitively coupled to a metal plate. The coupling occurs through a nonlinear potential which translates a different kinetics of the transport for opposite magnetic-field orientations into a different potential felt by the scattered electron.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000263389500056 Publication Date 2009-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 14 Open Access  
  Notes Approved Most recent IF: 8.462; 2009 IF: 7.328  
  Call Number UA @ lucian @ c:irua:76315 Serial 1867  
Permanent link to this record
 

 
Author Covaci, L.; Berciu, M. doi  openurl
  Title Survival of the Dirac points in rippled graphene Type A1 Journal article
  Year 2008 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 100 Issue 25 Pages 256405  
  Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);  
  Abstract (down) We study the effects of the rippling of a graphene sheet on quasiparticle dispersion. This is achieved using a generalization to the honeycomb lattice of the momentum average approximation, which is accurate for all coupling strengths and at all energies. We show that even though the position of the Dirac points may move and the Fermi speed can be renormalized significantly, quasiparticles with very long lifetimes survive near the Dirac points even for very strong couplings.  
  Address Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000257230500047 Publication Date 2008-06-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links  
  Impact Factor 8.462 Times cited 15 Open Access  
  Notes Approved Most recent IF: 8.462; 2008 IF: 7.180  
  Call Number UA @ lucian @ Serial 4010  
Permanent link to this record
 

 
Author Covaci, L.; Berciu, M. doi  openurl
  Title Polaron formation in the presence of Rashba spin-orbit coupling: implications for spintronics Type A1 Journal article
  Year 2009 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 102 Issue 18 Pages 186403  
  Keywords A1 Journal article  
  Abstract (down) We study the effects of the Rashba spin-orbit coupling on polaron formation, using a suitable generalization of the momentum average approximation. While previous work on a parabolic band model found that spin-orbit coupling increases the effective mass, we show that the opposite holds for a tight-binding model, unless both the spin-orbit and the electron-phonon couplings are weak. It is thus possible to lower the effective mass of the polaron by increasing the spin-orbit coupling. We also show that when the spin-orbit coupling is large as compared to the phonon energy, the polaron retains only one of the spin-polarized bands in its coherent spectrum. This has major implications for the propagation of spin-polarized currents in such materials, and thus for spintronic applications.  
  Address Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z1  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000265948600049 Publication Date 2009-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links  
  Impact Factor 8.462 Times cited 25 Open Access  
  Notes Approved Most recent IF: 8.462; 2009 IF: 7.328  
  Call Number UA @ lucian @ Serial 4434  
Permanent link to this record
 

 
Author Goodvin, G.L.; Covaci, L.; Berciu, M. doi  openurl
  Title Holstein polarons near surfaces Type A1 Journal article
  Year 2009 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 103 Issue 17 Pages 176402  
  Keywords A1 Journal article  
  Abstract (down) We study the effects of a nearby surface on the spectral weight of a Holstein polaron, using the inhomogeneous momentum average approximation which is accurate over the entire range of electron-phonon (e-ph) coupling strengths. The broken translational symmetry is taken into account exactly. We find that the e-ph coupling gives rise to a large additional surface potential, with strong retardation effects, which may bind surface states even when they are not normally expected. The surface, therefore, has a significant effect and bulk properties are recovered only very far away from it. These results demonstrate that interpretation in terms of bulk quantities of spectroscopic data sensitive only to a few surface layers is not always appropriate.  
  Address Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000271164500042 Publication Date 2009-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links  
  Impact Factor 8.462 Times cited 8 Open Access  
  Notes Approved Most recent IF: 8.462; 2009 IF: 7.328  
  Call Number UA @ lucian @ Serial 4435  
Permanent link to this record
 

 
Author Komendová, L.; Chen, Y.; Shanenko, A.A.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Two-band superconductors : hidden criticality deep in the superconducting state Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 108 Issue 20 Pages 207002-207002,5  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We show that two-band superconductors harbor hidden criticality deep in the superconducting state, stemming from the critical temperature of the weaker band taken as an independent system. For sufficiently small interband coupling gamma the coherence length of the weaker band exhibits a remarkable deviation from the conventional monotonic increase with temperature, namely, a pronounced peak close to the hidden critical point. The magnitude of the peak scales as proportional to gamma(-mu), with the Landau critical exponent mu = 1/3, the same as found for the mean-field critical behavior with respect to the source field in ferromagnets and ferroelectrics. Here reported hidden criticality of multiband superconductors can be experimentally observed by, e.g., imaging of the variations of the vortex core in a broader temperature range. Similar effects are expected for the superconducting multilayers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000304064000017 Publication Date 2012-05-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 75 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Useful discussions with A. V. Vagov are acknowledged. ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:98945 Serial 3770  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Latimer, M.L.; Xiao, Z.L.; Kwok, W.K.; Peeters, F.M. url  doi
openurl 
  Title Large magnetoresistance oscillations in mesoscopic superconductors due to current-excited moving vortices Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 5 Pages 057004  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We show in the case of a superconducting Nb ladder that a mesoscopic superconductor typically exhibits magnetoresistance oscillations whose amplitude and temperature dependence are different from those stemming from the Little-Parks effect. We demonstrate that these large resistance oscillations (as well as the monotonic background on which they are superimposed) are due to current-excited moving vortices, where the applied current in competition with the oscillating Meissner currents imposes or removes the barriers for vortex motion in an increasing magnetic field. Because of the ever present current in transport measurements, this effect should be considered in parallel with the Little-Parks effect in low-critical temperature (T-c) samples, as well as with recently proposed thermal activation of dissipative vortex-antivortex pairs in high-T-c samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000306994900024 Publication Date 2012-07-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 65 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP) (theory) and by the U. S. Department of Energy (DOE) Award No. DE-FG02-06ER46334 (experiment). G. R. B. acknowledges individual grant from FWO-Vl. W. K. K. acknowledges support from DOE BES under Contract No. DE-AC02-06CH11357, which also funds Argonne's Center for Nanoscale Materials (CNM) where the focused-ion-beam milling was performed. ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:100832 Serial 1780  
Permanent link to this record
 

 
Author Müller-Caspary, K.; Grieb, T.; Müßener, J.; Gauquelin, N.; Hille, P.; Schörmann, J.; Verbeeck, J.; Van Aert, S.; Eickhoff, M.; Rosenauer, A. pdf  url
doi  openurl
  Title Electrical Polarization in AlN/GaN Nanodisks Measured by Momentum-Resolved 4D Scanning Transmission Electron Microscopy Type A1 Journal article
  Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 122 Issue 10 Pages 106102  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) We report the mapping of polarization-induced internal electric fields in AlN/GaN nanowire heterostructures at unit cell resolution as a key for the correlation of optical and structural phenomena in semiconductor optoelectronics. Momentum-resolved aberration-corrected scanning transmission electron microscopy is employed as a new imaging mode that simultaneously provides four-dimensional data in real and reciprocal space. We demonstrate how internal mesoscale and atomic electric fields can be separated in an experiment, which is verified by comprehensive dynamical simulations of multiple electron scattering. A mean difference of 5.3 +- 1.5 MV/cm is found for the polarization-induced electric fields in AlN and GaN, being in accordance with dedicated simulations and photoluminescence measurements in previous publications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000461067700007 Publication Date 2019-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 26 Open Access OpenAccess  
  Notes The authors gratefully acknowledge the help of Natalie Claes for analyzing the EDX data. K. M.-C. acknowledges funding from the Initiative and Network Fund of the Helmholtz Association within the Helmholtz Young Investigator Group moreSTEM under Contract No. VHNG- 1317 at Forschungszentrum Jülich in Germany. The direct electron detector (Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. N. G. and J. V. acknowledge funding from the Geconcentreerde Onderzoekacties project Solarpaint of the University of Antwerp. T. G. and A. R. acknowledge support from the Deutsche Forschungsgemeinschaft (Germany) under Contract No. RO2057/8-3. This work also received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Contract No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0368.15N).; Helmholtz Association, VH-NG-1317 ; Forschungszentrum Jülich; Flemish Government; Universiteit Antwerpen; Deutsche Forschungsgemeinschaft, RO2057/8-3 ; H2020 European Research Council, 770887 ; Fonds Wetenschappelijk Onderzoek, G.0368.15N ; Approved Most recent IF: 8.462  
  Call Number UA @ lucian @UA @ admin @ c:irua:158120 Serial 5157  
Permanent link to this record
 

 
Author Ackerman, M.L.; Kumar, P.; Neek-Amal, M.; Thibado, P.M.; Peeters, F.M.; Singh, S. url  doi
openurl 
  Title Anomalous dynamical behavior of freestanding graphene membranes Type A1 Journal article
  Year 2016 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 117 Issue 117 Pages 126801  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We report subnanometer, high-bandwidth measurements of the out-of-plane (vertical) motion of atoms in freestanding graphene using scanning tunneling microscopy. By tracking the vertical position over a long time period, a 1000-fold increase in the ability to measure space-time dynamics of atomically thin membranes is achieved over the current state-of-the-art imaging technologies. We observe that the vertical motion of a graphene membrane exhibits rare long-scale excursions characterized by both anomalous mean-squared displacements and Cauchy-Lorentz power law jump distributions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000383171800010 Publication Date 2016-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 46 Open Access  
  Notes ; The authors thank Theodore L. Einstein, Michael F. Shlesinger, and Woodrow L. Shew for their careful reading of the manuscript and insightful comments. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. P. M. T. was supported by the Office of Naval Research under Grant No. N00014-10-1-0181 and the National Science Foundation under Grant No. DMR-0855358. M.N.-A. was supported by Iran Science Elites Federation (ISEF) under Grant No. 11/66332. ; Approved Most recent IF: 8.462  
  Call Number UA @ lucian @ c:irua:137125 Serial 4347  
Permanent link to this record
 

 
Author Rios, P.L.; Perali, A.; Needs, R.J.; Neilson, D. doi  openurl
  Title Evidence from quantum Monte Carlo simulations of large-gap superfluidity and BCS-BEC crossover in double electron-hole layers Type A1 Journal article
  Year 2018 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 120 Issue 17 Pages 177701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We report quantum Monte Carlo evidence of the existence of large gap superfluidity in electron-hole double layers over wide density ranges. The superfluid parameters evolve from normal state to BEC with decreasing density, with the BCS state restricted to a tiny range of densities due to the strong screening of Coulomb interactions, which causes the gap to rapidly become large near the onset of superfluidity. The superfluid properties exhibit similarities to ultracold fermions and iron-based superconductors, suggesting an underlying universal behavior of BCS-BEC crossovers in pairing systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000430547800002 Publication Date 2018-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 11 Open Access  
  Notes ; The authors thank G. Baym, M. Bonitz, and G. Senatore for useful discussions. A. P. and D. N. acknowledge financial support from University of Camerino FAR project CESEMN and from the Italian MIUR through the PRIN 2015 program under Contract No. 2015C5SEJJ001. R. J. N. acknowledges financial support from the Engineering and Physical Sciences Research Council, U.K., under Grant No. EP/ P034616/1. P. L. R. acknowledges financial support from the Max-Planck Society. Computational resources have been provided by the High Performance Computing Service of the University of Cambridge and by the Max-Planck Institute for Solid State Research. ; Approved Most recent IF: 8.462  
  Call Number UA @ lucian @ c:irua:150750UA @ admin @ c:irua:150750 Serial 4967  
Permanent link to this record
 

 
Author Liu, Y.; Brelet, Y.; He, Z.; Yu, L.; Mitryukovskiy, S.; Houard, A.; Forestier, B.; Couairon, A.; Mysyrowicz, A. url  doi
openurl 
  Title Ciliary white light : optical aspect of ultrashort laser ablation on transparent dielectrics Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 110 Issue 9 Pages 097601-97605  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) We report on a novel nonlinear optical phenomenon, coined as ciliary white light, during laser ablation of transparent dielectrics. It is observed in 14 different transparent materials including glasses, crystals, and polymers. This phenomenon is also universal with respect to laser polarization, pulse duration, and focusing geometry. We interpret its formation in terms of the nonlinear diffraction of the laser generated white light by the ablation crater covered by nanostructures. It carries rich information on the damage profile and morphology dynamics of the ablated surface, providing a real time in situ observation of the laser ablation process. DOI: 10.1103/PhysRevLett.110.097601  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000317186000007 Publication Date 2013-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 10 Open Access  
  Notes Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:108509 Serial 360  
Permanent link to this record
 

 
Author Petrović, A. p.; Raju, M.; Tee, X. y.; Louat, A.; Maggio-Aprile, I.; Menezes, R. m.; Wyszyński, M. j.; Duong, N. k.; Reznikov, M.; Renner, C.; Milošević, M.V.; Panagopoulos, C. url  doi
openurl 
  Title Skyrmion-(Anti)Vortex Coupling in a Chiral Magnet-Superconductor Heterostructure Type A1 Journal article
  Year 2021 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 126 Issue 11 Pages 117205  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We report experimental coupling of chiral magnetism and superconductivity in [IrFeCoPt]/Nb heterostructures. The stray field of skyrmions with radius ~50nm is sufficient to nucleate antivortices in a 25nm Nb film, with unique signatures in the magnetization, critical current and flux dynamics, corroborated via simulations. We also detect a thermally-tunable Rashba-Edelstein exchange coupling in the isolated skyrmion phase. This realization of a strongly interacting skyrmion-(anti)vortex system opens a path towards controllable topological hybrid materials, unattainable to date.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000652825200011 Publication Date 2021-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 20 Open Access OpenAccess  
  Notes National Research Foundation Singapore, NRFNRFI2015-04 ; Ministry of Education – Singapore, MOE2018-T3-1-002 ; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 182652 ; Fonds Wetenschappelijk Onderzoek; Universiteit Antwerpen; Flemish Government; European Cooperation in Science and Technology, CA16218 ; CalcUA Flemish Supercomputer Center; Approved Most recent IF: 8.462  
  Call Number CMT @ cmt @c:irua:177505 Serial 6754  
Permanent link to this record
 

 
Author Latimer, M.L.; Berdiyorov, G.R.; Xiao, Z.L.; Peeters, F.M.; Kwok, W.K. url  doi
openurl 
  Title Realization of artificial ice systems for magnetic vortices in a superconducting MoGe thin film with patterned nanostructures Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 6 Pages 067001-67005  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We report an anomalous matching effect in MoGe thin films containing pairs of circular holes arranged in such a way that four of those pairs meet at each vertex point of a square lattice. A remarkably pronounced fractional matching was observed in the magnetic field dependences of both the resistance and the critical current. At the half matching field the critical current can be even higher than that at zero field. This has never been observed before for vortices in superconductors with pinning arrays. Numerical simulations within the nonlinear Ginzburg-Landau theory reveal a square vortex ice configuration in the ground state at the half matching field and demonstrate similar characteristic features in the field dependence of the critical current, confirming the experimental realization of an artificial ice system for vortices for the first time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000322799200013 Publication Date 2013-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 63 Open Access  
  Notes ; This work was supported by the US Department of Energy DOE BES under Contract No. DE-AC02-06CH11357 (transport measurements), the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government (numerical simulations). G. R. B. acknowledges an individual grant from FWO-Vl. The nanopatterning and morphological analysis were performed at Argonne's Center for Nanoscale Materials (CNM) which is funded by DOE BES under Contract No. DE-AC02-06CH11357. We are grateful to Dr. Charles Reichhardt in Los Alamos National Laboratory for stimulating discussions and critical comments. Z. L. X. acknowledges DOE BES Grant No. DE-FG02-06ER46334 (sample fabrication and imaging). M. L. L. was a recipient of the NIU/ANL Distinguished Graduate Fellowship grant. ; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:110750 Serial 2836  
Permanent link to this record
 

 
Author De wael, A.; De Backer, A.; Jones, L.; Varambhia, A.; Nellist, P.D.; Van Aert, S. pdf  url
doi  openurl
  Title Measuring Dynamic Structural Changes of Nanoparticles at the Atomic Scale Using Scanning Transmission Electron Microscopy Type A1 Journal article
  Year 2020 Publication Physical Review Letters Abbreviated Journal Phys Rev Lett  
  Volume 124 Issue 10 Pages 106105  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) We propose a new method to measure atomic scale dynamics of nanoparticles from experimental high-resolution annular dark field scanning transmission electron microscopy images. By using the so-called hidden Markov model, which explicitly models the possibility of structural changes, the number of atoms in each atomic column can be quantified over time. This newly proposed method outperforms the current atom-counting procedure and enables the determination of the probabilities and cross sections for surface diffusion. This method is therefore of great importance for revealing and quantifying the atomic structure when it evolves over time via adatom dynamics, surface diffusion, beam effects, or during in situ experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000519718100015 Publication Date 2020-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.6 Times cited Open Access OpenAccess  
  Notes This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 770887 and No. 823717 ESTEEM3). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through grants to A.D.w. and A.D.B. and projects G.0502.18N and EOS 30489208. L.J. acknowledges the SFI AMBER Centre for support. A.V. and P.D.N. acknowledge the UK Engineering and Physical Sciences Council (EPSRC) for support (EP/K040375/1 and 1772738). A.V. also acknowledges Johnson-Matthey for support. We would like to thank Brian Theobald and Jonathan Sharman from JMTC Sonning for provision of the Pt sample. Approved Most recent IF: 8.6; 2020 IF: 8.462  
  Call Number EMAT @ emat @c:irua:167148 Serial 6347  
Permanent link to this record
 

 
Author Covaci, L.; Peeters, F.M.; Berciu, M. url  doi
openurl 
  Title Efficient numerical approach to inhomogeneous superconductivity: the Chebyshev-Bogoliubov-de Gennes method Type A1 Journal article
  Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 105 Issue 16 Pages 167006,1-167006,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We propose a highly efficient numerical method to describe inhomogeneous superconductivity by using the kernel polynomial method in order to calculate the Greens functions of a superconductor. Broken translational invariance of any type (impurities, surfaces, or magnetic fields) can be easily incorporated. We show that limitations due to system size can be easily circumvented and therefore this method opens the way for the study of scenarios and/or geometries that were unaccessible before. The proposed method is highly efficient and amenable to large scale parallel computation. Although we only use it in the context of superconductivity, it is applicable to other inhomogeneous mean-field theories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000282816300018 Publication Date 2010-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 80 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), CIfAR, and NSERC. Discussions with Frank Marsiglio are gratefully acknowledged. ; Approved Most recent IF: 8.462; 2010 IF: 7.622  
  Call Number UA @ lucian @ c:irua:84899 Serial 875  
Permanent link to this record
 

 
Author Milošević, M.V.; Kanda, A.; Hatsumi, S.; Peeters, F.M.; Ootuka, Y. url  doi
openurl 
  Title Local current injection into mesoscopic superconductors for the manipulation of quantum states Type A1 Journal article
  Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 103 Issue 21 Pages 217003-217003,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We perform strategic current injection in a small mesoscopic superconductor and control the (non)equilibrium quantum states in an applied homogeneous magnetic field. In doing so, we realize a current-driven splitting of multiquanta vortices, current-induced transitions between states with different angular momenta, and current-controlled switching between otherwise degenerate quantum states. These fundamental phenomena form the basis for the electronic and logic applications discussed, and are confirmed in both theoretical simulations and multiple-small-tunnel-junction transport measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000272054300044 Publication Date 2009-12-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 48 Open Access  
  Notes Approved Most recent IF: 8.462; 2009 IF: 7.328  
  Call Number UA @ lucian @ c:irua:94498 Serial 1826  
Permanent link to this record
 

 
Author Payette, C.; Yu, G.; Gupta, J.A.; Austing, D.G.; Nair, S.V.; Partoens, B.; Amaha, S.; Tarucha, S. url  doi
openurl 
  Title Coherent three-level mixing in an electronic quantum dot Type A1 Journal article
  Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 102 Issue 2 Pages 026808,1-026808,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We observe magnetic-field-induced level mixing and quantum superposition phenomena between three approaching single-particle states in a quantum dot probed via the ground state of an adjacent quantum dot by single-electron resonant tunneling. The mixing is attributed to anisotropy and anharmonicity in realistic dot confining potentials. The pronounced anticrossing and transfer of strengths (both enhancement and suppression) between resonances can be understood with a simple coherent level mixing model. Superposition can lead to the formation of a dark state by complete cancellation of an otherwise strong resonance, an effect resembling coherent population trapping in a three-level-system of quantum and atom optics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000262535900060 Publication Date 2009-01-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 26 Open Access  
  Notes Approved Most recent IF: 8.462; 2009 IF: 7.328  
  Call Number UA @ lucian @ c:irua:76019 Serial 382  
Permanent link to this record
 

 
Author Michel, K.H.; Copley, J.R.D.; Neumann, D.A. url  doi
openurl 
  Title Microscopic theory of orientational disorder and the orientational phase transition in solid C60 Type A1 Journal article
  Year 1992 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 68 Issue 19 Pages 2929-2932  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We have developed a microscopic theory which describes the orientational dynamics of C60 molecules in the face-centered-cubic phase of C60 fullerite. The molecular interaction potential and the crystal-field potential are formulated in terms of symmetry-adapted rotator functions. The phase transition to the Pa3BAR structure is driven by an active multipolar mode of T2g symmetry belonging to the l = 10 manifold. The Birman criterion is satisfied. The transition is found to be of first order.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1992HT64800019 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.512 Times cited 94 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:95492 Serial 2032  
Permanent link to this record
 

 
Author Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; van den Broeck, C. url  doi
openurl 
  Title Diffusion of interacting particles in discrete geometries Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 11 Pages 110601  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We evaluate the self-diffusion and transport diffusion of interacting particles in a discrete geometry consisting of a linear chain of cavities, with interactions within a cavity described by a free-energy function. Exact analytical expressions are obtained in the absence of correlations, showing that the self-diffusion can exceed the transport diffusion if the free-energy function is concave. The effect of correlations is elucidated by comparison with numerical results. Quantitative agreement is obtained with recent experimental data for diffusion in a nanoporous zeolitic imidazolate framework material, ZIF-8.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000324233800001 Publication Date 2013-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 22 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:111176 Serial 699  
Permanent link to this record
 

 
Author Müller, A.; Milošević, M.V.; Dale, S.E.C.; Engbarth, M.A.; Bending, S.J. url  doi
openurl 
  Title Magnetization measurements and Ginzburg-Landau simulations of micron-size \beta-tin samples : evidence for an unusual critical behavior of mesoscopic type-I superconductors Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 19 Pages 197003  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We describe investigations of the largely unexplored field of mesoscopic type-I superconductors. Micromagnetometry and 3D Ginzburg-Landau simulations of our single crystal β-tin samples in this regime reveal size- and temperature-dependent supercritical fields whose behavior is radically different from the bulk critical field HcB. We find that complete suppression of the intermediate state in medium-size samples can result in a surprising reduction of the critical field significantly below HcB. We also reveal an evolution of the superconducting-to-normal phase transition from the expected irreversible first order at low temperatures through the previously unobserved reversible first-order to a second-order transition close to Tc, where the critical field can be many times larger than HcB. Finally, we have identified striking correlations between the mesoscopic Hc3 for nucleation of surface superconductivity and the thermodynamic Hc near Tc. All these observations are entirely unexpected in the conventional type-I picture.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000310853100017 Publication Date 2012-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 21 Open Access  
  Notes ; This work was supported by the EPSRC-UK under Grant No. EP/E039944/1, and the Flemish Science Foundation (FWO). ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:102401 Serial 1893  
Permanent link to this record
 

 
Author Garcia, J.H.; Covaci, L.; Rappoport, T.G. url  doi
openurl 
  Title Real-space calculation of the conductivity tensor for disordered topological matter Type A1 Journal article
  Year 2015 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 114 Issue 114 Pages 116602  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We describe an efficient numerical approach to calculate the longitudinal and transverse Kubo conductivities of large systems using Bastin's formulation. We expand the Green's functions in terms of Chebyshev polynomials and compute the conductivity tensor for any temperature and chemical potential in a single step. To illustrate the power and generality of the approach, we calculate the conductivity tensor for the quantum Hall effect in disordered graphene and analyze the effect of the disorder in a Chern insulator in Haldane's model on a honeycomb lattice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000351430600010 Publication Date 2015-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 69 Open Access  
  Notes ; We acknowledge A. R. Hernandez, A. Ferreira, and E. Mucciolo for discussions. T. G. R and J. H. G acknowledge the Brazilian agencies CNPq, FAPERJ, and INCT de Nanoestruturas de Carbono for financial support. L. C. acknowledges the Flemish Science Foundation (FWO-Vlaanderen) for financial support. ; Approved Most recent IF: 8.462; 2015 IF: 7.512  
  Call Number c:irua:125467 Serial 2827  
Permanent link to this record
 

 
Author Wu, Z.; Zhai, F.; Peeters, F.M.; Xu, H.Q.; Chang, K. url  doi
openurl 
  Title Valley-dependent brewster angles and Goos-Hänchen effect in strained graphene Type A1 Journal article
  Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 106 Issue 17 Pages 176802,1-176802,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We demonstrate theoretically how local strains in graphene can be tailored to generate a valley-polarized current. By suitable engineering of local strain profiles, we find that electrons in opposite valleys (K or K′) show different Brewster-like angles and Goos-Hänchen shifts, exhibiting a close analogy with light propagating behavior. In a strain-induced waveguide, electrons in K and K′ valleys have different group velocities, which can be used to construct a valley filter in graphene without the need for any external fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000290100300016 Publication Date 2011-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 235 Open Access  
  Notes ; This work was supported by the NSF of China and the MOST, the Swedish International Development Cooperation Agency (SIDA), and the Belgian Science Policy (IAP). ; Approved Most recent IF: 8.462; 2011 IF: 7.370  
  Call Number UA @ lucian @ c:irua:89715 Serial 3832  
Permanent link to this record
 

 
Author Silhanek, A.V.; Milošević, M.V.; Kramer, R.B.G.; Berdiyorov, G.R.; Vondel van de, J.; Luccas, R.F.; Puig, T.; Peeters, F.M.; Moshchalkov, V.V. url  doi
openurl 
  Title Formation of stripelike flux patterns obtained by freezing kinematic vortices in a superconducting Pb film Type A1 Journal article
  Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 104 Issue 1 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We demonstrate experimentally and theoretically that the dissipative state of superconducting samples with a periodic array of holes at high current densities consists of flux rivers resulting from a short-range attractive interaction between vortices. This dynamically induced vortex-vortex attraction results from the migration of quasiparticles out of the vortex core (kinematic vortices). We have directly visualized the formation of vortex chains by scanning Hall probe microscopy after freezing the dynamic state by a field cooling procedure at a constant bias current. Similar experiments carried out in a sample without holes show no hint of flux river formation. We shed light on this nonequilibrium phenomena modeled by time-dependent Ginzburg-Landau simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000273881900033 Publication Date 2010-01-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 60 Open Access  
  Notes ; This work was supported by Methusalem funding by the Flemish government, the Flemish Science Foundation (FWO-VI), the Belgian Science Policy, and the ESF NES network. A. V. S., G. R. B., and J. V. d. V. acknowledge support from FWO-VI R. F. L. acknowledges support from I3P CSIC program and MAT2008-01022. ; Approved Most recent IF: 8.462; 2010 IF: 7.622  
  Call Number UA @ lucian @ c:irua:81009 Serial 1265  
Permanent link to this record
 

 
Author Misko, V.R.; Savel'ev, S.; Rakhmanov, A.L.; Nori, F. url  doi
openurl 
  Title Nonuniform self-organized dynamical states in superconductors with periodic pinning Type A1 Journal article
  Year 2006 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 96 Issue 12 Pages 127004-127004,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) We consider magnetic flux moving in superconductors with periodic pinning arrays. We show that sample heating by moving vortices produces negative differential resistivity (NDR) of both N and S type (i.e., N- and S-shaped) in the voltage-current characteristic (VI curve). The uniform flux flow state is unstable in the NDR region of the VI curve. Domain structures appear during the NDR part of the VI curve of an N type, while a filamentary instability is observed for the NDR of an S type. The simultaneous existence of the NDR of both types gives rise to the appearance of striking self-organized (both stationary and nonstationary) two-dimensional dynamical structures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000236467000064 Publication Date 2006-03-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 31 Open Access  
  Notes Approved Most recent IF: 8.462; 2006 IF: 7.072  
  Call Number UA @ lucian @ c:irua:94690 Serial 2364  
Permanent link to this record
 

 
Author Zhang, L.-F.; Covaci, L.; Milošević, M.V.; Berdiyorov, G.R.; Peeters, F.M. url  doi
openurl 
  Title Unconventional vortex states in nanoscale superconductors due to shape-induced resonances in the inhomogeneous Cooper-pair condensate Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 10 Pages 107001  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) Vortex matter in mesoscopic superconductors is known to be strongly affected by the geometry of the sample. Here we show that in nanoscale superconductors with coherence length comparable to the Fermi wavelength the shape resonances of the order parameter results in an additional contribution to the quantum topological confinement-leading to unconventional vortex configurations. Our Bogoliubov-de Gennes calculations in a square geometry reveal a plethora of asymmetric, giant multivortex, and vortex-antivortex structures, stable over a wide range of parameters and which are very different from those predicted by the Ginzburg-Landau theory. These unconventional states are relevant for high-T-c nanograins, confined Bose-Einstein condensates, and graphene flakes with proximity-induced superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000308295700014 Publication Date 2012-09-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 31 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen). ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:101850 Serial 3801  
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yücelen, E.; Verbeeck, J.; Van Tendeloo, G. url  doi
openurl 
  Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy Type A1 Journal article
  Year 2011 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 107 Issue 10 Pages 107602  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Using a combination of high-angle annular dark-field scanning transmission electron microscopy and atomically resolved electron energy-loss spectroscopy in an aberration-corrected transmission electron microscope we demonstrate the possibility of 2D atom by atom valence mapping in the mixed valence compound Mn3O4. The Mn L2,3 energy-loss near-edge structures from Mn2+ and Mn3+ cation sites are similar to those of MnO and Mn2O3 references. Comparison with simulations shows that even though a local interpretation is valid here, intermixing of the inelastic signal plays a significant role. This type of experiment should be applicable to challenging topics in materials science, such as the investigation of charge ordering or single atom column oxidation states in, e.g., dislocations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000294406600018 Publication Date 2011-09-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 115 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 8.462; 2011 IF: 7.370  
  Call Number UA @ lucian @ c:irua:91265 c:irua:91265 c:irua:91265UA @ admin @ c:irua:91265 Serial 5  
Permanent link to this record
 

 
Author Van Aert, S.; De Backer, A.; Jones, L.; Martinez, G.T.; Béché, A.; Nellist, P.D. pdf  url
doi  openurl
  Title Control of Knock-On Damage for 3D Atomic Scale Quantification of Nanostructures: Making Every Electron Count in Scanning Transmission Electron Microscopy Type A1 Journal article
  Year 2019 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 122 Issue 6 Pages 066101  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) Understanding nanostructures down to the atomic level is the key to optimizing the design of advancedmaterials with revolutionary novel properties. This requires characterization methods capable of quantifying the three-dimensional (3D) atomic structure with the highest possible precision. A successful approach to reach this goal is to count the number of atoms in each atomic column from 2D annular dark field scanning transmission electron microscopy images. To count atoms with single atom sensitivity, a minimum electron dose has been shown to be necessary, while on the other hand beam damage, induced by the high energy electrons, puts a limit on the tolerable dose. An important challenge is therefore to develop experimental strategies to optimize the electron dose by balancing atom-counting fidelity vs the risk of knock-on damage. To achieve this goal, a statistical framework combined with physics-based modeling of the dose-dependent processes is here proposed and experimentally verified. This model enables an investigator to theoretically predict, in advance of an experimental measurement, the optimal electron dose resulting in an unambiguous quantification of nanostructures in their native state with the highest attainable precision.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458824200008 Publication Date 2019-02-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 3 Open Access OpenAccess  
  Notes This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement No. 770887). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (WO.010.16N, G.0934.17N, G.0502.18N, G.0267.18N), and a grant to A. D. B. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement No. 312483— ESTEEM2 (Integrated Infrastructure Initiative-I3) and the UK EPSRC (Grant No. EP/M010708/1). Approved Most recent IF: 8.462  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157175 Serial 5156  
Permanent link to this record
 

 
Author Zhu, J.; Badalyan, S.M.; Peeters, F.M. url  doi
openurl 
  Title Electron-phonon bound states in graphene in a perpendicular magnetic field Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 109 Issue 25 Pages 256602-256605  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract (down) The spectrum of electron-phonon complexes in monolayer graphene is investigated in the presence of a perpendicular quantizing magnetic field. Despite the small electron-phonon coupling, usual perturbation theory is inapplicable for the calculation of the scattering amplitude near the threshold of optical phonon emission. Our findings, beyond perturbation theory, show that the true spectrum near the phonon-emission threshold is completely governed by new branches, corresponding to bound states of an electron and an optical phonon with a binding energy of the order of alpha omega(0), where alpha is the electron-phonon coupling and omega(0) the phonon energy. DOI: 10.1103/PhysRevLett.109.256602  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000312841700011 Publication Date 2012-12-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 19 Open Access  
  Notes ; We acknowledge support from the Belgian Science Policy (BELSPO) and EU, the ESF EuroGRAPHENE project CONGRAN, and the Flemisch Science Foundation (FWO-Vl). ; Approved Most recent IF: 8.462; 2012 IF: 7.943  
  Call Number UA @ lucian @ c:irua:105962 Serial 983  
Permanent link to this record
 

 
Author Lubk, A.; Guzzinati, G.; Börrnert, F.; Verbeeck, J. url  doi
openurl 
  Title Transport of intensity phase retrieval of arbitrary wave fields including vortices Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 111 Issue 17 Pages 173902-173905  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) The phase problem can be considered as one of the cornerstones of quantum mechanics intimately connected to the detection process and the uncertainty relation. The latter impose fundamental limits on the manifold phase reconstruction schemes invented to date, in particular, at small magnitudes of the quantum wave. Here, we show that a rigorous solution of the transport of intensity reconstruction (TIE) scheme in terms of a linear elliptic partial differential equation for the phase provides reconstructions even in the presence of wave zeros if particular boundary conditions are given. We furthermore discuss how partial coherence hampers phase reconstruction and show that a modified version of the TIE reconstructs the curl-free current density at arbitrary (in)coherence. Our results open the way for TIE-based phase retrieval of arbitrary wave fields, eventually containing zeros such as phase vortices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000326148400006 Publication Date 2013-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 40 Open Access  
  Notes Esteem2; Vortex; esteem2ta ECASJO; Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:111093 Serial 3726  
Permanent link to this record
 

 
Author Poltavets, V.V.; Lokshin, K.A.; Nevidomskyy, A.H.; Croft, M.; Tyson, T.A.; Hadermann, J.; Van Tendeloo, G.; Egami, T.; Kotliar, G.; ApRoberts-Warren, N.; Dioguardi, A.P.; Curro, N.J.; Greenblatt, M.; url  doi
openurl 
  Title Bulk magnetic order in a two-dimensional Ni1+/Ni2+ (d9/d8) nickelate, isoelectronic with superconducting cuprates Type A1 Journal article
  Year 2010 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 104 Issue 20 Pages 206403  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract (down) The Ni(1+)/Ni(2+) states of nickelates have the identical (3d(9)/3d(8)) electronic configuration as Cu(2+)/Cu(3+) in the high temperature superconducting cuprates, and are expected to show interesting properties. An intriguing question is whether mimicking the electronic and structural features of cuprates would also result in superconductivity in nickelates. Here we report experimental evidence for a bulklike magnetic transition in La(4)Ni(3)O(8) at 105 K. Density functional theory calculations relate the transition to a spin density wave nesting instability of the Fermi surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000277945900033 Publication Date 2010-05-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 35 Open Access  
  Notes Approved Most recent IF: 8.462; 2010 IF: 7.622  
  Call Number UA @ lucian @ c:irua:95613 Serial 260  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: