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The phase problem can be considered as one of the cornerstones of quantum mechanics intimately

connected to the detection process and the uncertainty relation. The latter impose fundamental limits on

the manifold phase reconstruction schemes invented to date, in particular, at small magnitudes of the

quantum wave. Here, we show that a rigorous solution of the transport of intensity reconstruction (TIE)

scheme in terms of a linear elliptic partial differential equation for the phase provides reconstructions even

in the presence of wave zeros if particular boundary conditions are given. We furthermore discuss how

partial coherence hampers phase reconstruction and show that a modified version of the TIE reconstructs

the curl-free current density at arbitrary (in)coherence. Our results open the way for TIE-based phase

retrieval of arbitrary wave fields, eventually containing zeros such as phase vortices.
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Ever since the introduction of quantum mechanical
wave equations the loss of phase information in the
detection process of particles has stirred scientists to the
invention of numerous methods to retrieve the missing
information. Most notably, a variety of holographic
schemes [1] based on coherently superimposing known
reference waves to the wave field has been applied success-
fully to recover phases of matter and photon waves [2].
One particular holographic scheme is referred to as trans-
port of intensity equation (TIE) reconstruction [3]. Because
of its simple and flexible experimental setup TIE phase
retrievals have been reported for waves consisting of atoms
[4], neutrons [5], x rays [6], electrons [7], and visible light
[8]. Similar to all holographic schemes, two fundamental
limits prevail: First, partial coherence obscures the mean-
ing of reconstructed phases [9,10] and second, due to
density-phase uncertainty relations, holographic recon-
structions at loci of small density suffer from increased
phase noise [11]. The TIE method can be considered as the
infinitesimal version of Gabor’s original inline holography
[12] and therefore has the advantage to not rely on off-axis
reference waves. It is furthermore a linear reconstruction
scheme and requires a partial differential equation to be
solved. The TIE scheme is based on the equation of
continuity [3]
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derived from the stationary paraxial wave equation
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valid for a large variety of scattering phenomena of, e.g.,
electrons, photons, or atoms, moving within a small solid

angle around the z axis [13]. Here, k is the wave number,
r ¼ ðx; yÞT the 2D position vector, r ¼ ð@x; @yÞT the 2D

gradient, 4 the 2D Laplace operator, and � ¼ j�j2 the
particle density. Our 2D current density j deviates slightly
from the usual definition by a factor me=@. In order to
recover the phase ’ one records at least two slightly
defocused images—�ðz� �zÞ and �ðzþ �zÞ where the
wave optical defocus corresponds to propagation along
z—and approximates
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and

�ðzÞ ¼ �ðzþ �zÞ þ �ðz� �zÞ
2

þOð�z2Þ (2b)

in Eq. (1). It has been noted that the Oð�z2Þ errors to
the approximations (2) remain small if the Fresnel para-
meter NF ¼ h2ðk=�zÞ � 1 for a typical object feature
h [12,14,15]. However, we show below that the influence
of the errors on the reconstructed phase can still grow
large.
Previously, for solving the TIE one assumed either

Dirichlet boundary conditions (BCs) where the phase at
the boundary is set to a fixed value, mostly zero [16] or
periodic boundary conditions BCs, reducing Eq. (1) to an
algebraic problem in Fourier space [14,17–19]. Most of the
solutions were furthermore based on the rather restrictive
assumptions of a pure phase object � ¼ const [17] or a
conservative current density, where j ¼ r� is the gradient
of a scalar potential � and Eq. (1) reduces to a Poisson
equation [3,18,19]. Most notably, � ¼ 0 loci were either
completely excluded [13,14,17,19], stated to yield nonun-
ique results [9,20], or discussed by Helmholtz decompos-
ing r’ [21]. While the first two statements are correct
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within their context, the latter has to be treated with caution
because r’ remains undefined at � ¼ 0.

Zeros in the wave field such as phase singularities
(vortices) are a general feature [22], for instance, a com-
plicated pattern of phase vortices already occurs upon
interference of only three plane waves [23,24]. In particu-
lar, optically created photonic and electron vortex beams
attracted considerable attention for their interesting physi-
cal properties and potential applications [25,26]. In the
following we will show how to reconstruct the phase of
an experimental electron vortex beam (and of a compli-
cated numeric test wave; see Supplemental Material [27])
as a proof-of-principle of an unrestricted TIE reconstruc-
tion. Also, we discuss implications arising from partial
coherence and experimental noise without touching the
field of possible regularization schemes to the latter
problem.

The TIE (1) with a given density � and density deriva-
tive @�=@z is an inhomogeneous linear elliptic PDE for the
phase ’. The corresponding theory based on the Lax-
Milgram theorem ensures existence and uniqueness of
weak solutions within simply connected domains with
� > 0 and mixed Dirichlet, von Neumann (fixed derivative
rn’ normal to the boundary), or periodic BCs [28]. The
latter two BCs do not fix a constant phase offset. The
substitution �r’ ¼ r� [3], transforming (1) into a
Poisson problem for �, is only valid if the 2D rotation or
vorticity of the current density, denoted by the wedge
product r^j¼ð@xjy;�@yjxÞ, vanishes [29,30]. This par-
ticularly excludes phase singularities r ^ r’ � 0 [31]. In
contrast to ’, the current j is well defined everywhere—
even at � ¼ 0—implying that a 2D Helmholtz decompo-
sition j ¼ r�þ ð1; 1ÞT ^ r� with some scalar functions
�, � is well defined [32]. When inserting this decomposi-
tion into the TIE we obtain (see also Supplemental
Material [27])

@�ðr; zÞ
@z

¼ � 1

k
4 �ðr; zÞ: (3)

Consequently, the Poisson formulation of the TIE can be
used to reconstruct the curl-free current density j� ¼ r�
instead of the phase. In contrast to the phase the current
density is exactly defined even for arbitrary mixed states,
that is, even in the presence of partial coherence. This
can be useful, for instance, to find vortices in a partially
coherent wave field.

The TIE (1) knows nothing about multivalued or unde-
fined phases. Indeed, the latter has to be taken into account
by providing the appropriate BCs for the phase at loci
where � ¼ 0 or phase sheet changes to the adjacent 2�
phase interval occur. In addition to the outer BCs denoted
with A, three different inner BCs have to be considered
therefore (Fig. 1): B at manifolds of normal zeros of �
without phase singularities, C at phase singularities with
winding number w ¼ 1=2�

H
ds � r’ � 0 around the sin-

gularity, and D at lines where the phase passes to the next

phase sheet. While the phase jumpsm ¼ ð0;�1Þ� at B and
w2� at D are obvious, the BCs at A and C of the von
Neumann type are chosen in the following because unlike
the other BC types they do not restrict the wave topology.
Furthermore, cuts have to be introduced from each isolated
zero to the boundary in order to render the domain simply
connected again. Here, the BCs at the cut determine the
topology of the zero.
In order to facilitate an independent choice of the wind-

ing numbers wn around all N singularities in the wave field
one therefore has to define N lines starting at N vortices
and ending at the outer boundary. As an analogon, we note
that similar BCs occur for the displacement field around
dislocations in solids and are referred to as Volterra con-
struction in that context [33]. Below, we therefore adapt
numerical schemes from the elastic theory based on the
finite element analysis to solve the TIE [34]. We also
note that simple zeros and vortices might superimpose in
arbitrary ways.
The central obstacle towards TIE phase reconstruction is

now finding the correct BCs to the unknown phase. Our
solution to that problem is based on three observations:
(i) As a consequence of the linear nature of the TIE,
solutions to close-to-the-exact BCs are close to the exact
solution. Therefore, approximate von Neumann BCs for
type A and C are acceptable in the examples that follow.
The remaining degree of freedom of the BCs is now
reduced to all possible combinations of phase jumps mk

for a given set of K normal zero manifolds and winding
numbers wn for a given set of N singularities and cuts
connecting them to the outer boundary. (ii) Although dif-
ferent BCs yield acceptable solutions to Eq. (1) they show
a different behavior at large defoci. This facilitates a con-
sistency check with a reference density �ðzþa�zÞ, jaj�1
singling out the correct solution. In practice, one would
start to test the smallmk andwn first, which usually leads to
the solution rather quickly, particularly if taking into
account that higher order vortices are usually unstable
and dissolve into first order ones [35,36]. (iii) Since TIE

FIG. 1 (color online). Scheme of BC types with arrows indi-
cating the defined directional derivatives. A—outer von
Neumann BC, B—normal zero with constant derivative and
possible m ¼ 0, �1 phase jump, C—von Neumann BC around
a vortex, and D—phase sheet change with constant derivative
and w2� phase jump. ’l;r denote the phases on the left- and

right-hand side of the boundary (the latter is only defined at
interior boundaries B and D).
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solutions can be equivalently obtained at different defoci, z
can be tuned to reduce the set of normal zeros and, con-
sequently, the combinatorial problem. A larger set of dif-
ferently defocused images also helps in finding phase
singularities because—in contrast to normal zeros—they
are topologically protected and thus cannot be destroyed.
Consequently, vortices show up as stable minima of both
the density and the reconstructed curl-free current in the
defocus series and can be identified accordingly.

In the following, we discuss an experimental adaptation
of the outlined scheme to electron wave reconstruction
using an electron vortex beam as an example. The electron
vortex beam was generated by inserting a Fresnel zone
plate containing an edge dislocation (fork aperture) into
the condenser aperture of a non-hardware-aberration-
corrected Philips CM30 TEM [26]. The beam was focused
in the sample plane with a semi convergence angle of
0:36� 0:02 mrad and the defocus series encompassed
�17 to 17 �m with a 1 �m step size (see Supplemental
Material [27]).

Figure 2 outlines the general workflow of the phase
reconstruction. In the left column the experimental data
are sketched—in this example a set of electron micro-
graphs. As a consequence of the discussion above, one
typically records a whole series of images over a larger

range of defoci to have a bigger choice of z planes for the
actual TIE reconstruction at hand. While recording such a
series the image might fluctuate in overall intensity, shift
and rotate. Aligning the images and eventually removing
additional distortions requires an additional preprocessing
step prior to the actual reconstruction (see Supplemental
Material [27]). The actual phase reconstruction starts by
finding all zeros in the wave field in order to define the
corresponding BCs. This can be very tricky experimentally
because of noise, partial coherence, and sampling, which
obscure the original zeros in the wave field. The example of
the focused vortex beam at z ¼ 0 �m depicted in Fig. 2
shows a missing central zero hampering a TIE reconstruc-
tion. At larger defoci the central zero is preserved and can
be easily detected based on the single stable minimum
observable in both curl-free current and density. Thus we
used two defocused images at 12 and 13 �m for defining a
single 0D central zero.
Equation (1) with corresponding BCs can now be solved

with the help of finite element analysis similar to the
method used by Gracie et al. [34]. In this work, we used
COMSOL MULTIPHYSICS� to conveniently generate a sim-

plex mesh on the structured domain containing holes
around the 0D phase singularities and the corresponding
cuts from the singularities to the outer boundary.

FIG. 2 (color online). TIE reconstruction scheme of a vortex beam. The experiment column on the left shows selected recorded
densities from a defocus series. For the BC parameter search, a set of possible defocused solutions to w ¼ . . . ; 0; 1; 2; . . . vortices is
computed and propagated to another defocus. All propagated solutions are compared to the experimental image recorded at this
particular defocus value with w ¼ 1 fitting best according to R factor consistency. The result column on the right shows the
reconstructed phase with a w ¼ 1 singularity and finally the phase of the numerically focused reconstructed wave. The scale bar in the
in focus micrograph applies for all images in the scheme.
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Subsequently, �ðzÞ and �ðzþ �zÞ have been interpolated
on that simplex grid. The solver then generated solutions to
a possible set of BCs, in our example, w 2 ½�3; 3�. Then,
each generated solution is propagated numerically to a
predefined defocus value and compared to an experimental
image at this defocus (z ¼ �17 �m in our example) in
order to single out the correct solution. Partial coherence is
incorporated phenomenologically by convolving the
reconstructed densities with the demagnified source size.
We quantify the deviation from the experimentally defo-
cused image by the R ¼ Pð�exp � �recÞ2=Pð�expÞ2 factor.
Accordingly, w ¼ 1 fits best although w ¼ �1 is also
possible and theoretically has the same shape under perfect
rotational symmetry. This is consistent with the input due
to the ‘‘fork aperture’’only slightly breaking the symmetry.
The remaining deviations between the propagated TIE
wave and the experimentally defocused image mainly
stem from the influence of partial coherence and noise
(see below).

We can now analyze the reconstructed wave w ¼ 1 at
the reconstruction plane z ¼ 12:5 �m and the focal plane
z ¼ 0 �m typically used for application as shown in the
result column on the right of Fig. 2. In the reconstruction
plane a defocus producing a spiraling vortex structure in
the phase is clearly apparent. In focus the desired annular
vortex structure is approximated (see Ref. [36] for analytic
expressions) with small deviations being visible, e.g., due
to noncorrected spherical aberration.

Finally, we turn to the important discussion of the influ-
ence of partial coherence or mixed states, and on the same
footing noise and the Oð�z2Þ correction terms in Eqs. (2)
on the TIE reconstruction. Strictly speaking, the notion of a
single pure state phase is not applicable to mixed states
anymore. Instead, phases of mixed states are defined by the
particular holographic reconstruction which can differ sub-
stantially from the pure state one. Consequently, we have
to consider the impact of small incoherent fluctuations ��
around a pure state �p ¼ j�pj2 with corresponding phase

’p in the TIE reconstruction

@ð�p þ ��Þ
@z

¼ � 1

k
r � ð�p þ ��Þrð’p þ �’Þ: (4)

Subtracting Eq. (1) with � ¼ �p and ’ ¼ ’p one obtains

an elliptic PDE for the phase deviation �’

@ð��Þ
@z

þ 1

k
r � ��r’p ¼ � 1

k
r � �pr�’; (5)

with the right-hand side being equivalent to the pure state
one described with Eq. (1). The phase deviation is now
solved similarly to the TIE, however, with homogeneous
Dirichlet BCs at the boundaries and strictly periodic BCs at
inner cuts in order to not modify the BCs of the total TIE
(4). Considering the affine structure of the solutions of an
inhomogeneous linear PDE, �’ can grow large if the
inhomogeneous perturbation term on the left surmounts

the pure state one, which can easily happen, e.g., at vortices
where @�p=@z � 1. Indeed, Fig. 3 shows that for our

example the TIE phase reconstructed directly from the in
focus images z ¼ �1 �m and z ¼ 0 �m significantly
deviates from the in focus phase computed via the defo-
cused images, confirming the analytic argument. This
shows that TIE phase reconstructions from partially coher-
ent mixed states require a certain degree of coherence in
order to be interpreted as a pure state phase.
In conclusion, we have demonstrated that a rigorous

treatment of the transport of intensity equation scheme as
an elliptic partial differential equation with appropriate
BCs extends its applicability to arbitrary wave functions
containing zeros and singularities. The correct BCs can be
found based on topological arguments and a consistency
check with reference intensities at larger defoci. We also
showed how TIE reconstructed phases are obscured in the
presence of partial coherence. The prospects of TIE phase
reconstruction are expected to highly benefit from the
extended scope: For example, atomic scale electron wave
functions are known to contain vortices [36,37] and apply-
ing TIE without taking this into account leads to wrong
results. Also in studying vortex beams, this refinement of
TIE is crucial as in this case, vortices are present by design.
Provided sufficient beam coherence, e.g., by employing
field emission electron sources in TEMs or LASERs in
photonics, the biggest challenge for the method will be to
further refine the BC definition consisting of reliable zero
determination and the fast implementation of the combi-
natorial testing of all possible BCs. Within this context we

FIG. 3 (color online). Influence of partial coherence on the TIE
reconstruction result. In the experimental column, the starting
points for a TIE reconstruction are indicated at in focus and
strong defocus. The in focus set is reconstructed directly into a
phase map while the defocused set is reconstructed and propa-
gated numerically into focus. The differences between the results
are due to the partial coherence violating the reconstruction of
the in focus image set. The scale bar in the in focus micrograph
applies for all images in the scheme.
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also mention that accurate TIE solutions can be used as a
starting condition for the widely used iterative nonlinear
inline reconstruction schemes [38,39] which then suffer
less from stalling and nonuniqueness problems if the itera-
tion starts close to the true solution [16].
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