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Electron-Phonon Bound States in Graphene in a Perpendicular Magnetic Field
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The spectrum of electron-phonon complexes in monolayer graphene is investigated in the presence of a
perpendicular quantizing magnetic field. Despite the small electron-phonon coupling, usual perturbation
theory is inapplicable for the calculation of the scattering amplitude near the threshold of optical phonon
emission. Our findings, beyond perturbation theory, show that the true spectrum near the phonon-emission
threshold is completely governed by new branches, corresponding to bound states of an electron and an
optical phonon with a binding energy of the order of aw,, where « is the electron-phonon coupling and

w, the phonon energy.
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Introduction.—QObservation of the quantum Hall effect
[1,2] in graphene [3] has stimulated extensive investiga-
tions of the quantized motion of massless Dirac fermions
in a perpendicular magnetic field [4-8]. Particularly,
electron-phonon interaction phenomena have become a
subject of active theoretical [9-12] and experimental
[13-16] study. The density of states of both electrons in
Landau levels and optical phonons with their weak disper-
sion shows strong delta-function peaks, which result in
sharp resonance structures in the absorption spectra, tuna-
ble with the magnetic field, and useful for future device
applications.

A unique feature of the graphene single-particle spec-
trum is that the carrier Fermi velocity vy = 1.15 X
10° m/s is independent of its energy. As a result, the
application of a perpendicular magnetic field B quantizes
the electronic Dirac spectrum into nonequidistant chiral
Landau levels, &, = u~/nwg, which include also a char-
acteristic zero-energy state [17-19]. Here u = *1 denotes
the electron chirality and n = 0, 1, 2, ... the Landau quan-
tum number; wp = ~2hvp/{p is the magnetic energy and
{5 the magnetic length that determines the localization
scale of the electron cyclotron motion. This picture of
Landau quantization in graphene is well established, e.g.,
by direct observation using scanning tunneling spectros-
copy [7,8,13].

In addition to these Landau levels, Ref. [20] recently
proposed a new sequence of discrete states in graphene at
energies &,, = w,, corresponding to the emission or ab-
sorption of optical phonons with energy w,. According to
this concept and based on perturbation theory, phonon-
assisted electron transitions between two different
Landau levels can manifest themselves as peaks in the
density of states at frequencies &,/,, — &,, * w,. These
transitions involve optical phonons, which exist but do not
interact with electrons. In this Letter we show that even for
small electron-phonon coupling, «, the true spectrum in
graphene in a perpendicular quantizing magnetic field
develops a fine structure in the neighborhood of the
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phonon-emission threshold, &i,, = unwg + g, due to
the formation of new spectral branches, corresponding to
bound states of an electron and of an optical phonon.
Therefore, electronic transitions should involve these
bound states and should not occur at the phonon-emission
threshold energy &, but above and below it at the char-
acteristic scale of the binding energy, W,, = aw, [see
Fig. 1 (left)] [21]. The bound states of electron and optical
phonon were first proposed for bulk semiconductors in
Ref. [22], and it is important to note that no resonance
situation is required for the formation of the bound states.
In graphene the electron-phonon binding energies are of
both signs because no continuum exists in the electron +
phonon system in the presence of the magnetic field
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FIG. 1 (color online). (left) The electron energy spectrum in
graphene, exposed to a perpendicular quantizing magnetic field.
The dashed line represents the phonon-emission threshold en-

ergy &i,. Here, it corresponds to the Landau level g,, with

pm = —1 and n = 1. In contrast to the prediction from Ref. [20],
no state corresponds exactly to the energy &{,,. Instead, the true

spectrum includes a sequence of electron-phonon bound states,
which coagulates to the threshold &f,,,. The most distant bound
states with the binding energies W , of opposite signs are shown
in a larger scale by the bold, solid lines below and above ¢ ;.
(right) Schematic diagram of the absorption spectrum in gra-
phene. The cyclotron-phonon resonance is governed by the
peaks corresponding to the electron-phonon bound states, which
constitute an asymmetric doublet around v = w.
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and the bound states appear both below and above the
phonon-emission ‘“‘threshold.” The strength of electron-
phonon coupling in graphene is a ~ 0.02 [23], the phonon
energy wo =~ 196 meV, and we find that the binding en-
ergy should be of the order of Wy, ~ 4 meV. Because of its
different functional dependence on the coupling con-
stant «, the binding energy in graphene is much larger
than that in bulk samples [24] or in graphene samples in
the absence of a magnetic field [25]. In conventional
two-dimensional electron systems, the scale of the bind-
ing energy in a magnetic field has the same functional
dependence on « [26]; however, because of the larger
phonon energy, W, is substantially larger in graphene than
binding energies in InSb (W,p = 0.5 meV) and GaAs
(Wyp = 2.5 meV) structures, extensively studied in experi-
ments [27,28]. Our calculations show that the dependence
of the binding energy in graphene on the magnetic field is
weaker than that in conventional systems, and for wg ~ w
the actual binding energies vary within 5-15 meV, which is
measurable. Moreover, in graphene in such moderate
fields, the bound states can be located between the zero
and first Landau levels with u = +1 [see Fig. 1 (left)] and
this creates an additional possibility that the splitting of the
absorption peak can also be observed in a combined-
resonance absorption from the zero Landau level. In this
case, the light frequency w can substantially differ from the
frequency of transverse optical phonons where the lattice
reflection is important [29,30]. This, in turn, will facilitate
the experimental observation of the bound states in
graphene.

In an experiment the bound states will manifest them-
selves in the absorption spectrum of the cyclotron-phonon
resonance [31,32]. Upon absorbing a photon of frequency
close to v = g1,y — €,, + ), an electron is transferred
from the initial Landau level wn to the final state w'n’, and
simultaneously it creates an optical phonon, which is
bound to the electron in its final state. This process results
in a fine structure of the cyclotron-phonon resonance spec-
trum S(»), which forn = n’ and u = u’ is shown in Fig. 1,
on the right side. Instead of a single delta-function peak at
v = w, the absorption spectrum constitutes an asymmet-
ric doublet around the phonon frequency w, with a split-
ting of the peak determined by v — wy ~ W, [33].

Threshold approximation and diagrammatic technique.—
We calculate the spectrum of the electron-phonon
bound states from the poles of the electron-phonon
scattering amplitude 2 (g) with respect to the energy pa-
rameter g, corresponding to the total energy of the electron
and phonon [34]. Despite the weak bare electron-phonon
coupling, the effective electron-phonon interaction is
strong in the energy range close to the phonon-emission
threshold &, where the density of final states of the
electron + phonon system diverges. Therefore, the calcu-
lation of 3(g) by means of perturbation theory is not
applicable [see the review papers in Ref. [30]]. The exact

electron-phonon scattering amplitude satisfies a Dyson-
type integral equation, drawn in Fig. 2, in which we have
explicitly separated a ‘“‘dangerous” intersection near the
threshold with respect to one electron and one phonon line.
Such an intersection corresponds to the emission of an
almost real optical phonon and results in a singular term,
which is responsible for the enhancement of the effective
electron-phonon coupling and for the formation of the
electron-phonon bound states.

The diagrammatic equations in Fig. 2 are depicted
in a gauge-invariant diagrammatic technique (details about
this technique can be found in the Supplemental Material
[35] and in Refs. [30,36]). The filled and open squares
correspond to the exact, %,, ,»(¢lq,q’), and the bare,
O, un(€ld, q'), electron-phonon scattering amplitudes,
the internal solid and dashed lines to the exact electron
and phonon Green functions, G,,(¢) and D(w, q). All
these quantities do not depend on the electron gauge non-
invariant quantum number k,, i.e. on the choice of the
vector-potential gauge. In the ‘“‘dangerous” intersection
in the second term of the r.h.s. of the diagrammatic equa-
tion for X (&) in Fig. 2, we can, at low temperatures, replace
the exact phonon Green function by a free-phonon propa-
gator. After taking the integration over the phonon ener-
getic parameter w, it is replaced by the phonon energy wy.
Then, the integral equation for % (¢) in Fig. 2 can be written
analytically as

Ep,n,u’n’(glqr q/) = D/Ln,,u’n/(qr q/)

+ D,u.n,[/,ﬁ(q’ (_l)G[Lﬁ(S - (1)0)
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€
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FIG. 2 (color online). Equations for the electron-phonon scat-
tering amplitude. (top) The exact scattering amplitude 2.(g) with
a “dangerous” intersection with respect to one electron and one
phonon line. (bottom) The irreducible four vertex part Cl(e),
approximated by the bare amplitude. The solid and dashed lines
correspond to the electron and phonon Green functions, the bold
dots to the bare electron-phonon vertices. The vertical dotted line
shows the “dangerous” intersection.
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Here the exponential factor appears due to the gauge non-
invariant part of the electron-phonon vertex (see Eq. (3)
and the Supplemental Material [35] for details). The phase
Ax = {€3[q — q,q — q']/2, where the square brackets
denote the out-of-plane component of the vector product.

In the energy range of our interest & = &, the energy
parameter € — w, of the electron Green function in the
second term of the r.h.s. of Eq. (1) is far from the threshold
€4, therefore, the exact electron Green function can be
taken without allowance for interaction with phonons and
be replaced by the bare function GY (g — wg). In the
Landau representation, G‘;m(s) is diagonal and is given

by its usual pole form
GY,(e) = (¢ — &,, + i0sgne) . ()

Therefore, in the sum in Eq. (1) over the electron internal
quantum numbers f, i1, only the singular term with it = u
and 77 = n should be retained in the neighborhood of the
phonon-emission threshold & = &,,,.

The central quantity in Eq. (1) is the bare amplitude
O,.27(q, @), which has no dangerous intersection with
respect to the one phonon and the one electron line and,
therefore, can be calculated within perturbation theory. In
the lowest order in «, the two diagrams shown in Fig. 2
contribute to [J,, 5 :(q, q). The bold dots represent the
bare electron-phonon vertices y(q), which we calculate
in the Supplemental Material [35]. For longitudinal optical
phonons, we find

hv .
F)/,unky;/ﬂn’k;, (q) = \/ETF 5k"‘,,ky+qx exp[ld)q(n - nl)]

X exp[iqx(ky + kgv)/z]P,un,,u’n/(t)r 3)

where £ is the normalization length, ¢ = ¢ the polar
angles of the vector q. The gauge-invariant part of the
vertex is

P,U'H,,Uf/n/(t) = (_1)n7n/cncn/[:u“/Qn,n/fl(t) - MQn*l,n/(t)]
“4)

with ¢ =1 and ¢, = 1/+/2 for n = 1. For n = m, the
form  factor  Q,,, (1) = m!/nle /2{n=m/2 n=m(r)
where L7,(t) is the Laguerre polynomial and ¢ = ¢*€%/2.
For n<m, one can use the identity Q,, ()=
(=1 ™Q,..(2). For either n = 0 or m = 0 the form factor
Q,.»(t) with a negative index is identically zero, which
means that in graphene the electron-phonon matrix ele-
ments between the zero-energy Landau states vanish iden-
tically, P, ,0(t) = 0.

As seen from Eq. (3), the gauge noninvariant part of the
electron-phonon interaction vertex in graphene is the same
as the one in conventional electron systems with parabolic
dispersion [37]. Consequently, it allows us to apply the
rules of the gauge-invariant diagrammatic technique for
conventional systems from Ref. [36] when calculating the

electron-phonon scattering amplitude X(g) in graphene.
We just replace the gauge-invariant form factor Q,,,(r)
by P,u,n,,u,’n’(t)-

Dispersion equation of electron-phonon bound states.—
To find the spectrum of the bound states it suffices to
consider the amplitude 3(g) with the w = ' and n = n’
external electron lines. After the above simplifications we
can also eliminate the phase factor Ay in Eq. (1) by
introducing a symmetric definition for the scattering am-
plitude 3'(elq, q') = exp(—i%[q, ¢'DS(elq, q') [simi-
larly for [1'(q,q’)]. These primed quantities will
depend only on the difference of the polar angles ¢ =
¢y — ¢ of the vectors q and q'. Therefore, we find that
the Fourier components 37 (e;1t') = [§7d¢p/(2m) X
exp(—il¢)%,,(¢lq, q') of the new amplitudes with differ-
ent [ =0, =1, *2, ... satisfy the independent integral
equations

Ry(elt, 1) = K, (6, 1) + A, (e)
x f " diKL, (1, DR, (17 1), (5)
0

Here, we define the dimensionless amplitudes
R, (el ¢) = (wy/awy) 2], (elt, ) and K., (elt 1) =
(my/a@wy))L, (1, 1), where y = g,8,L?/27(} is the ca-
pacitance of the Landau level allowing for two-spin ori-
entations g, = 2, and for the valley degeneracy g, = 2.
We introduce also the function

Apn(e) =

o [2h)

, 6
dm e — &y, ©)

which determines the effective electron-phonon interaction
in the energy region near the threshold e, with the
renormalized coupling strength & = awg/w,. As seen,
the amplitude R', (¢, ') is the resolvent of the inhomog-
enous Fredholm integral equation (5) with the kernel
K!,,(1, "), which we can write explicitly as

KL,@et)=

m=0,v==*x1
< [ Jl+m7n(2\/ﬁ) + Bl,mfn ]
(vm—pn)+o (vfm—pufn)—ol
(7
Here, o0 = w(/wp, Ji(t) is the Bessel function, and &;,, is
the Kronecker delta. Hence, the resolvent R!, (¢, 1) has a
pole in & when A, (e) = AL,,, where A, are eigenval-
ues of the kernel (7), numbered by the index r = 1,2,...
for a given [. Thus, the energies of the electron-phonon
bound states are given by

(_ 1)57nP;m,Vm(t)PVm,,u,n(t/)

~ Wo _
Simr = sim - A = Sfm - W,{LVH”’ ®)
umnr
where me, defines the binding energy of the bound states,

which refer to the threshold &{,,. As far as there is no
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TABLE 1. Eigenvalues of x. = (—1)'«; " in strong magnetic
fields.

KL r=1 2 3 4 5 6
=0 097 —5.08 9.96 —23.49 53.68 —126.5
1 —3.27 519 —10.24 21.22 —46.19 103.4
2 3.42 —6.38 1323 —28.68 64.14 —146.6

continuum in the bare spectrum, we find that the new
branches of the spectrum are not damped and appear
in the spectrum both below (W;ll,nr >0) and above
(W,lm, < 0) the threshold energy &y, i.e., the binding
energies are determined by the kernel eigenvalues )‘iwr
of both signs. The bound states are identified by the total
angular momentum [/ of the electron rotation around the
magnetic field, which takes both non-negative and negative
integer values. For a given [, there exists a sequence of
bound states labeled by the index r. The latter emerges due
to the integral nature of the equation for the scattering
amplitude X (g). Because the dispersion of the optical
phonon is negligibly small, the energy in the dangerous
intersection does not depend on the phonon momentum g:
all intersections with different g are singular and
phonons with any ¢ participate in the formation of the
bound states.

Binding energies of electron-phonon bound states.—The
analysis of the eigenvalue problem for the kernel (7) shows
that in high magnetic fields (o < 1) the leading order in
o~ ! contribution to the sum in (7) comes from the term
with » = u and m = n. Hence, in this regime the effective
electron-phonon coupling for electrons from the n =1
Landau level, P, ,(¢), (recall for n =0 the electron-

phonon vertex P, ,o(1) = 0) determines the kernel

Kt 1) = 010000 QVIT) — 5,01 ©)

which is independent of the chirality w. The eigenvalues
even of this simplified kernel cannot be found analytically.
However, the parameter o enters in the kernel as a factor,
so its eigenvalues are given by AL, = oxl where .
are the eigenvalues of the kernel /17 exp[—(z + ')/2]
[J ,(2\/7 ) — 8;0l, which we calculate numerically and
summarize in Table I. Thus, in this strong field regime
the binding energies are given by W! = aw,/(0?k.),
which increase linearly with B and decrease rapidly with
r, asymmetrically on both sides of the threshold. In weak
magnetic fields (o> 1) the spacing (Vm+1—
Jm)wg ~ wy/20? between adjacent Landau levels m
and m + 1 around the phonon-emission threshold becomes
smaller than the scale of the binding energy W ~ aw,.
Therefore, in graphene already for 1/ Va <o~ Jm
Landau levels form a quasicontinuum, which hinders the
formation of the bound states in such weak fields.

By

30
25 ¢
20 f
15
10 |

1t W0, [meV]

1.0 1.5 20 3.0 5.0
B [Bo]

FIG. 3 (color online). The binding energies W0, for the bound

mnr
states, which refer to the threshold &, withn = 1 and p = —1.

The solid and dashed curves correspond to the r =1 and 2
bound states, which are most distant from the threshold.

For arbitrary magnetic fields we calculate the binding
energy of bound states numerically from the full kernel (7).
Near the resonances ¢,y — &,, = *w, between the bare
graphene Landau levels, electron-phonon hybrid states are
formed in the spectrum, which have a much larger binding
energy scale of the order of \/aw,. These resonance states
can be obtained within perturbation theory from the poles
of the single- or two-particle Green function (but from the
poles of the scattering amplitude) and determine the struc-
ture of the magnetophonon resonance. This effect has been
recently studied in Refs. [9,10] and is here excluded from
the consideration. Far from the resonances the spectrum is
completely governed by the electron-phonon bound states
(8), which determine the fine structure of the cyclotron-
phonon resonance [cf. Fig. 1 (right)]. In Fig. 3 we plot the
binding energies W |, as a function of the magnetic field
strength B for the most distant r = 1 and 2 electron-
phonon bound states with [ = 0, referring to the threshold
€ ,. The divergences of the binding energy correspond to
the hybrid states at the resonance fields B = B, B = By,
and B = B,. Here By = 22.04 T, B; = 1.87B,, and B, =
5.83B, are given, respectively, by the resonance conditions
wy = wg, wy = (/3 — Dwg, and wy = (V2 — Dwg. Itis
seen that for intermediate magnetic fields far from the
resonances By, By, and B, the actual binding energies of
the electron-phonon bound states vary approximate from
5 meV to 15 meV and are measurable in light absorption
experiments.

In conclusion, we calculated the electronic spectrum in a
monolayer graphene in a perpendicular magnetic field. It is
shown that the true spectrum near the optical phonon
emission threshold consists of new branches of electron-
phonon bound states, which will manifest themselves in
the absorption spectrum as an asymmetric doublet around
the threshold energy.
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