toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baral, P.; Orekhov, A.; Dohmen, R.; Coulombier, M.; Raskin, J.P.; Cordier, P.; Idrissi, H.; Pardoen, T. url  doi
openurl 
  Title Rheology of amorphous olivine thin films characterized by nanoindentation Type A1 Journal article
  Year 2021 Publication Acta Materialia Abbreviated Journal (up) Acta Mater  
  Volume 219 Issue Pages 117257  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The rheological properties of amorphous olivine thin films deposited by pulsed laser deposition have been studied based on ambient temperature nanoindentation under constant strain-rate as well as re-laxation conditions. The amorphous olivine films exhibit a viscoelastic-viscoplastic behavior with a significant rate dependency. The strain-rate sensitivity m is equal to similar to 0 . 05 which is very high for silicates, indicating a complex out-of-equilibrium structure. The minimum apparent activation volume determined from nanoindentation experiments corresponds to Mg and Fe atomic metallic sites in the (Mg,Fe)(2)SiO4 crystalline lattice. The ambient temperature creep behavior of the amorphous olivine films differs very much from the one of single crystal olivine. This behavior directly connects to the recent demonstration of the activation of grain boundary sliding in polycrystalline olivine following grain boundary amorphization under high-stress. (C) 2021 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000706867800004 Publication Date 2021-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.301  
  Call Number UA @ admin @ c:irua:182592 Serial 6882  
Permanent link to this record
 

 
Author Yang, M.; Orekhov, A.; Hu, Z.-Y.; Feng, M.; Jin, S.; Sha, G.; Li, K.; Samaee, V.; Song, M.; Du, Y.; Van Tendeloo, G.; Schryvers, D. pdf  url
doi  openurl
  Title Shearing and rotation of β'' and β' precipitates in an Al-Mg-Si alloy under tensile deformation : in-situ and ex-situ studies Type A1 Journal article
  Year 2021 Publication Acta Materialia Abbreviated Journal (up) Acta Mater  
  Volume 220 Issue Pages 117310  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The interaction between dislocations and nano-precipitates during deformation directly influences hardening response of precipitation-strengthening metals such as Al-Mg-Si alloys. However, how coherent and semi-coherent nano-precipitates accommodate external deformation applied to an Al alloy remains to be elucidated. In-situ tensile experiments in a transmission electron microscope (TEM) were conducted to study the dynamic process of dislocations cutting through coherent needle-like beta '' precipitates with diameters of 3 similar to 8 nm. Comprehensive investigations using in-situ, ex-situ TEM and atom probe tomography uncovered that beta '' precipitates were firstly sheared into small fragments, and then the rotation of the fragments, via sliding along precipitate/matrix interfaces, destroyed their initially coherent interface with the Al matrix. In contrast, semi-coherent beta' precipitates with sizes similar to beta '' were more difficult to be fragmented and accumulation of dislocations at the interface increased interface misfit between beta' and the Al matrix. Consequently, beta' precipitates could basically maintain their needle-like shape after the tensile deformation. This research gains new insights into the interaction between nano-precipitates and dislocations. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000705535300005 Publication Date 2021-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.301 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.301  
  Call Number UA @ admin @ c:irua:182528 Serial 6884  
Permanent link to this record
 

 
Author Choisez, L.; Ding, L.; Marteleur, M.; Kashiwar, A.; Idrissi, H.; Jacques, P.J. pdf  url
doi  openurl
  Title Shear banding-activated dynamic recrystallization and phase transformation during quasi-static loading of β-metastable Ti – 12 wt % Mo alloy Type A1 Journal article
  Year 2022 Publication Acta materialia Abbreviated Journal (up) Acta Mater  
  Volume 235 Issue Pages 118088-13  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Dynamic recrystallization (DRX) within adiabatic shear bands forming during the fracture of TRIP-TWIP β−metastable Ti-12Mo (wt %) alloy was recently reported. The formation of 1-3 µm thick-adiabatic shear bands, and of dynamic recrystallization, was quite surprising as their occurrence generally requires high temperature and/or high strain rate loading while these samples were loaded in quasi-static conditions at room temperature. To better understand the fracture mechanism and associated microstructural evolution, thin foils representative of different stages of the fracture process were machined from the fracture surface by Focused Ion Beam (FIB) and analyzed by Transmission Electron Microscopy (TEM) and Automated Crystal Orientation mapping (ACOM-TEM). Complex microstructure transformations involving severe plastic deformed nano-structuration, crystalline rotation and local precipitation of the omega phase were identified. The spatial and temporal evolution of the microstructure during the propagation of the crack was explained through dynamic recovery and continuous dynamic recrystallization, and linked to the modelled distribution of temperature and strain level where TEM samples were extracted.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000814729300005 Publication Date 2022-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 9.4  
  Call Number UA @ admin @ c:irua:188505 Serial 7096  
Permanent link to this record
 

 
Author Arseenko, M.; Hannard, F.; Ding, L.; Zhao, L.; Maire, E.; Villanova, J.; Idrissi, H.; Simar, A. pdf  doi
openurl 
  Title A new healing strategy for metals : programmed damage and repair Type A1 Journal article
  Year 2022 Publication Acta materialia Abbreviated Journal (up) Acta Mater  
  Volume 238 Issue Pages 118241-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Self-healing strategies aim at avoiding part repair or even replacement, which is time consuming, expen-sive and generates waste. However, strategies for metallic systems are still under-developed and solid-state solutions for room temperature service are limited to nano-scale damage repair. Here we propose a new healing strategy of micron-sized damage requiring only short and low temperature heating. This new strategy is based on damage localization particles, which can be healed by fast diffusing atoms of the matrix activated during heat treatment. The healing concept was successfully validated with a com-mercial aluminum alloy and manufactured by Friction Stir Processing (FSP). Damage was demonstrated to initiate on particles that were added to the matrix during material processing. In situ 2D and 3D nano -imaging confirmed healing of the damaged material and showed that heating this material for 10 min at 400 degrees C is sufficient to heal incipient damage with complete filling of 70% of all damage (and up to 90% when their initial size is below 0.2 mu m). Furthermore, strength is retained and the work of fracture of the alloy is improved by about 40% after healing. The proposed Programmed Damage and Repair healing strategy could be extended to other metal based systems presenting precipitation. (C) 2022 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000843502700006 Publication Date 2022-08-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 9.4  
  Call Number UA @ admin @ c:irua:190561 Serial 7121  
Permanent link to this record
 

 
Author Idrissi, H.; Béché, A.; Gauquelin, N.; Ul-Haq, I.; Bollinger, C.; Demouchy, S.; Verbeeck, J.; Pardoen, T.; Schryvers, D.; Cordier, P. url  doi
openurl 
  Title On the formation mechanisms of intragranular shear bands in olivine by stress-induced amorphization Type A1 Journal article
  Year 2022 Publication Acta materialia Abbreviated Journal (up) Acta Mater  
  Volume 239 Issue Pages 118247-118249  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Intragranular amorphization shear lamellae are found in deformed olivine aggregates. The detailed trans-mission electron microscopy analysis of intragranular lamella arrested in the core of a grain provides novel information on the amorphization mechanism. The deformation field is complex and heteroge-neous, corresponding to a shear crack type instability involving mode I, II and III loading components. The formation and propagation of the amorphous lamella is accompanied by the formation of crystal defects ahead of the tip. These defects are geometrically necessary [001] dislocations, characteristics of high-stress deformation in olivine, and rotational nanodomains which are tentatively interpreted as disclinations. We show that these defects play an important role in dictating the path followed by the amorphous lamella. Stress-induced amorphization in olivine would thus result from a direct crystal-to -amorphous transformation associated with a shear instability and not from a mechanical destabilization due to the accumulation of high number of defects from an intense preliminary deformation. The pref-erential alignment of some lamellae along (010) is a proof of the lower ultimate mechanical strength of these planes.(c) 2022 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000861076600004 Publication Date 2022-08-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.4 Times cited 5 Open Access OpenAccess  
  Notes The QuanTEM microscope was partially funded by the Flemish government. The K2 camera was funded by FWO Hercules fund G0H4316N 'Direct electron detector for soft matter TEM'. A. Beche acknowledges funding from FWO project G093417N ('Compressed sensing enabling low dose imaging in transmission electron microscopy'). H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). This work was supported by the FNRS under Grant PDR – T011322F and by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 787,198 Time Man. J-L Rouviere is acknowledged for his support with the GPA softawre. Approved Most recent IF: 9.4  
  Call Number UA @ admin @ c:irua:191432 Serial 7186  
Permanent link to this record
 

 
Author Mary Joy, R.; Pobedinskas, P.; Baule, N.; Bai, S.; Jannis, D.; Gauquelin, N.; Pinault-Thaury, M.-A.; Jomard, F.; Sankaran, K.J.; Rouzbahani, R.; Lloret, F.; Desta, D.; D’Haen, J.; Verbeeck, J.; Becker, M.F.; Haenen, K. pdf  url
doi  openurl
  Title The effect of microstructure and film composition on the mechanical properties of linear antenna CVD diamond thin films Type A1 Journal Article
  Year 2024 Publication Acta materialia Abbreviated Journal (up) Acta Materialia  
  Volume 264 Issue Pages 119548  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This study reports the impact of film microstructure and composition on the Young’s modulus and residual stress in nanocrystalline diamond (NCD) thin films ( thick) grown on silicon substrates using a linear antenna microwave plasma-enhanced chemical vapor deposition (CVD) system. Combining laser acoustic wave spectroscopy to determine the elastic properties with simple wafer curvature measurements, a straightforward method to determine the intrinsic stress in NCD films is presented. Two deposition parameters are varied: (1) the substrate temperature from 400 °C to 900 °C, and (2) the [P]/[C] ratio from 0 ppm to 8090 ppm in the H2/CH4/CO2/PH3 diamond CVD plasma. The introduction of PH3 induces a transition in the morphology of the diamond film, shifting from NCD with larger grains to ultra-NCD with a smaller grain size, concurrently resulting in a decrease in Young’s modulus. Results show that the highest Young’s modulus of (113050) GPa for the undoped NCD deposited at 800 °C is comparable to single crystal diamond, indicating that NCD with excellent mechanical properties is achievable with our process for thin diamond films. Based on the film stress results, we propose the origins of tensile intrinsic stress in the diamond films. In NCD, the tensile intrinsic stress is attributed to larger grain size, while in ultra-NCD films the tensile intrinsic stress is due to grain boundaries and impurities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001126632800001 Publication Date 2023-11-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.4 Times cited Open Access Not_Open_Access  
  Notes This work was financially supported by the Special Research Fund (BOF) via Methusalem NANO network, the Research Foundation – Flanders (FWO) via Project G0D4920N, and the CORNET project nr 263-EN “ULTRAHARD: Ultrahard optical diamond coatings” (2020–2021). Approved Most recent IF: 9.4; 2024 IF: 5.301  
  Call Number EMAT @ emat @c:irua:202169 Serial 8989  
Permanent link to this record
 

 
Author Leon, M.; Merino, J.M.; Van Tendeloo, G. openurl 
  Title Structural analysis of CuInSe2, CuInTe2 and CuInSeTe by electron microscopy and X-ray techniques Type A1 Journal article
  Year 2009 Publication Acta Microscopica Abbreviated Journal (up) Acta Microsc  
  Volume 18 Issue 2 Pages 128-138  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A structural research of semiconductor compounds for photovoltaic applications CuInSe(2), CuInTe(2) and CuInSeTe, has been done by x-ray diffraction using the Rietveld analysis of experimental diagrams. Besides, in the CuInSeTe compound the electron diffraction and high resolution microscopy techniques have been used. All the studied compounds were polycrystals with chalcopyrite tetragonal structure, I. 42d. A model for the atomic occupancy in each compound has been proposed, and the results have been compared analyzing the Se-Te substitution effect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0798-4545 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.07 Times cited Open Access  
  Notes Approved Most recent IF: 0.07; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:95679 Serial 3189  
Permanent link to this record
 

 
Author Anisimovas, E.; Matulis, A.; Peeters, F.M. url  openurl
  Title Classical nature of quantum dots in a magnetic field Type A1 Journal article
  Year 2005 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal (up) Acta Phys Pol A  
  Volume 107 Issue 1 Pages 188-192  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A quasiclassical theory of few-electron quantum dots in a strong magnetic field is developed. The ground state energy and the corresponding many-electron wave function are obtained and used to derive a universal relation of critical magnetic fields and calculate the currents and the density-current correlation function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2005 IF: 0.394  
  Call Number UA @ lucian @ c:irua:94749 Serial 369  
Permanent link to this record
 

 
Author Dluzewski, P.; Pietraszko, A.; Kozlowski, M.; Szczepanska, A.; Gorecka, J.; Baran, M.; Leonyuk, L.; Babonas, G.J.; Lebedev, O.I.; Szymczak, R. pdf  openurl
  Title Electron microscopy and X-ray structural investigations of incommensurate spin-ladder Sr4.1Ca4.7Bi0.3Cu17O29 single crystals Type A1 Journal article
  Year 2000 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal (up) Acta Phys Pol A  
  Volume 98 Issue 6 Pages 729-737  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Transmission electron microscopy and X-ray diffraction proved chain/ladder incommensurate single crystal structure of investigated samples. The incommensurate ratio was determined from the X-ray and electron diffraction being equal to 0.704. Diffuse scattering intensities localised on the planes perpendicular to the c*-axis and passing through the spots originating from the periodicity of chain sublattice were detected. High-angle grain boundary or twinning formed by rotation of 33.3 degrees around [100] direction was observed. High-resolution electron microscopy images revealed the stacking faults in ac planes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos 000166377600007 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2000 IF: 0.409  
  Call Number UA @ lucian @ c:irua:104226 Serial 951  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. url  openurl
  Title Free-standing Si and Ge, and Ge/Si core-shell semiconductor nanowires Type A1 Journal article
  Year 2012 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics T2 – WELCOME Scientific Meeting on Hybrid Nanostructures, AUG 28-31, 2011, Torun, POLAND Abbreviated Journal (up) Acta Phys Pol A  
  Volume 122 Issue 2 Pages 294-298  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The properties of free-standing silicon and germanium nanowires oriented along the [110] direction are studied using different first principles methods. We show the corrections due to quasi-particles to the band structures obtained using the local-density approximation. The formation energies of B and P doped nanowires are calculated, both in the absence and presence of dangling bond defects and we link these to experimental results. Furthermore, we report on the phonon properties of pure Si and Ge nanowires, as well as Ge/Si core-shell nanowires, and discuss the differences between them.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record;  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2012 IF: 0.531  
  Call Number UA @ lucian @ c:irua:101896 Serial 1277  
Permanent link to this record
 

 
Author Arsoski, V.; Tadić, M.; Peeters, F.M. url  openurl
  Title Interband optical properties of concentric type-I nanorings in a normal magnetic field Type A1 Journal article
  Year 2010 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal (up) Acta Phys Pol A  
  Volume 117 Issue 5 Pages 733-737  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Two concentric two-dimensional GaAs/(Al,Ga)As nanorings in a normal magnetic field are theoretically studied. The single-band effective mass approximation is adopted for both the electron and the hole states, and the analytical solutions are given. We find that the electronic single particle states are arranged in pairs, which exhibit anticrossings and the orbital momentum transitions in the energy spectrum when magnetic field increases. Their period is essentially determined by the radius of the outer ring. The oscillator strength for interband transitions is strongly reduced close to each anticrossing. We show that an optical excitonic Aharonov-Bohm effect may occur in concentric nanorings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2010 IF: 0.467  
  Call Number UA @ lucian @ c:irua:83377 Serial 1690  
Permanent link to this record
 

 
Author Tadić, M.; Arsoski, V.; Čukarić, N.; Peeters, F.M. url  openurl
  Title The optical excitonic Aharonov-Bohm effect in a few nanometer wide type-I nanorings Type A1 Journal article
  Year 2010 Publication Acta physica Polonica: A: general physics, solid state physics, applied physics Abbreviated Journal (up) Acta Phys Pol A  
  Volume 117 Issue 6 Pages 974-977  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The optical excitonic Aharonov-Bohm effect in type-1 three-dimensional (In, Ga)As/GaAs nanorings in theoretically explored. The single-particle states of the electron and the hole are extracted from the effective mass theory in the presence of inhomogeneous strain, and an exact numerical diagonalization approach is used to compute the exciton states and the oscillator strength fx for exciton recombination. We studied both the large lithographically-defined and small self-assembled rings. Only in smaller self-assembled nanorings we found optical excitonic AharonovBohm effect. Those oscillations are established by anticrossings between the optically active exciton states with zero orbital momentum. In lithographically defined rings, whose average radius is 33 nm, fx shows no oscillations, whereas in the smaller self-assembled nanoring with average radius of 11.5 nm oscillations in fx for the ground exciton state are found as function of the magnetic field that is superposed on a linear dependence. These oscillations are smeared out at finite temperature, thus photoluminescence intensity exhibits step-like variation with magnetic field even at temperature as small as 4.2 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Warszawa Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0587-4246 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.469 Times cited Open Access  
  Notes Approved Most recent IF: 0.469; 2010 IF: 0.467  
  Call Number UA @ lucian @ c:irua:84080 Serial 2474  
Permanent link to this record
 

 
Author Jian-Ping, N.; Xiao-Dan, L.; Cheng-Li, Z.; You-Min, Q.; Ping-Ni, H.; Bogaerts, A.; Fu-Jun, G. openurl 
  Title Molecular dynamics simulation of temperature effects on CF(3)(+) etching of Si surface Type A1 Journal article
  Year 2010 Publication Wuli xuebao Abbreviated Journal (up) Acta Phys Sin-Ch Ed  
  Volume 59 Issue 10 Pages 7225-7231  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Molecular dynamics method was employed to investigate the effects of the reaction layer formed near the surface region on CF(3)(+) etching of Si at different temperatures. The simulation results show that the coverages of F and C are sensitive to the surface temperature. With increasing temperature, the physical etching is enhanced, while the chemical etching is weakened. It is found that with increasing surface temperature, the etching rate of Si increases. As to the etching products, the yields of SiF and SiF(2) increase with temperature, whereas the yield of SiF(3) is not sensitive to the surface temperature. And the increase of the etching yield is mainly due to the increased desorption of SiF and SiF(2). The comparison shows that the reactive layer plays an important part in the subsequeat impacting, which enhances the etching rate of Si and weakens the chemical etching intensity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1000-3290 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.624 Times cited Open Access  
  Notes Approved Most recent IF: 0.624; 2010 IF: 1.259  
  Call Number UA @ lucian @ c:irua:95564 Serial 2171  
Permanent link to this record
 

 
Author Yue-Feng, Z.; Chao, W.; Wang, W.-Z.; Li, L.; Hao, S.; Tao, S.; Jie, P. doi  openurl
  Title Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure Type A1 Journal article
  Year 2018 Publication Wuli xuebao Abbreviated Journal (up) Acta Phys Sin-Ch Ed  
  Volume 67 Issue 8 Pages 085202  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Methane needle-plane discharge has practical application prospect and scientific research significance since methane conversion heavy oil hydrogenation is formed by coupling methane needle-plane discharge with heavy oil hydrogenation, which can achieve high-efficient heavy oil hydrogenation and increase the yields of high value-added light olefins. In this paper, a two-dimensional fluid model is built up for numerically simulating the methane needle-plane discharge plasma at atmospheric pressure. Spatial and axial distributions of electric intensity, electron temperature and particle densities are obtained. Reaction yields are summarized and crucial pathways to produce various kinds of charged and neutral particles are found out. Simulation results indicate that axial evolutions of CH3+ and CH4+ densities, electric intensity and electron temperature are similar and closely related. The CH5+ and C2H5+ densities first increase and then decrease along the axial direction. The CH3 and H densities have nearly identical spatial and axial distributions. Particle density distributions of CH2, C2H4 and C2H5 are obviously different in the area near the cathode but comparatively resemblant in the positive column region. The CH3+ and CH4+ are produced by electron impact ionizations between electrons and CH4. The CH5+ and C2H5+ are respectively generated by molecular impact dissociations between CH3+ and CH4 and between CH4+ and CH4. Electron impact decomposition between electrons and CH4 is a dominated reaction to produce CH3, CH2, CH and H. The reactions between CH2 and CH4 and between electrons and C2H4 are critical pathways to produce C2H4 and C2H2, respectively. In addition, the yields of electron impact decomposition reactions between electrons and CH4 and reactions between CH2 and CH4 account for 52.15% and 47.85% of total yields of H-2 respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000443194600017 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1000-3290 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.624 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 0.624  
  Call Number UA @ lucian @ c:irua:153771 Serial 5120  
Permanent link to this record
 

 
Author Esquivel, M.R.; Zelaya, E. doi  openurl
  Title Synthesis and characterisation of lanthanide-based dioxide Type A1 Journal article
  Year 2011 Publication Advances in applied ceramics Abbreviated Journal (up) Adv Appl Ceram  
  Volume 110 Issue 4 Pages 219-224  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the present work, the microstructure and structure of La(0.25)Ce(0.52)Nd(0.17)Pr(0.06)(OH)(3) and La(0.25)Ce(0.52)Nd(0.17)Pr(0.06)O(2) is obtained from transmission electron microscopy and X-ray diffraction measurements. Space group P6(3)/m is assigned to the structure of La(0.25)Ce(0.52)Nd(0.17)Pr(0.06)(OH)(3). Lanthanides are assigned to Wyckoff positions 2c. Cell parameters are a=6.375(5) angstrom and c=3.753(5) angstrom. The thermal decomposition of this compound was studied by differential scanning calorimetry. The process is exothermal with an enthalpy change Delta H degrees value of -254 +/- 10 kJ mol(-1). The decomposition kinetics is complex and two global processes with E(a) values of 98 +/- 4 and 61 +/- 2 kJ mol 21 were observed. The product is a lanthanide dioxide. Space group Fm3m is assigned to the La(0.25)Ce(0.52)Nd(0.17)Pr(0.06)O(2). Lanthanides are distributed in Wyckoff positions 4a. The cell parameter is a=5.479(5) angstrom. Nanopores in the oxide surface are obtained using this method and characterised by STEM measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Leeds Editor  
  Language Wos 000291206700006 Publication Date 2011-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1743-6753;1743-6761; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.325 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.325; 2011 IF: 0.871  
  Call Number UA @ lucian @ c:irua:105588 Serial 3410  
Permanent link to this record
 

 
Author Bartolome, E.; Cayado, P.; Solano, E.; Mocuta, C.; Ricart, S.; Mundet, B.; Coll, M.; Gazquez, J.; Meledin, A.; Van Tendeloo, G.; Valvidares, S.M.; Herrero-Martin, J.; Gargiani, P.; Pellegrin, E.; Magen, C.; Puig, T.; Obradors, X. pdf  doi
openurl 
  Title Hybrid YBa2Cu3O7 superconducting-ferromagnetic nanocomposite thin films prepared from colloidal chemical solutions Type A1 Journal article
  Year 2017 Publication Advanced Electronic Materials Abbreviated Journal (up) Adv Electron Mater  
  Volume 3 Issue 7 Pages 1700037  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract High T-c superconductor-ferromagnetic heterostructures constitute an appealing playground to study the interplay between flux vortices and magnetic moments. Here, the capability of a solution-derived route to grow hybrid YBa2Cu3O7-ferromagnetic nanocomposite epitaxial thin films from preformed spinel ferrite (MFe2O4, M = Mn, Co) nanoparticles (NPs) is explored. The characterization, performed using a combination of structural and magnetic techniques, reveals the complexity of the resulting nanocomposites. Results show that during the YBCO growth process, most of the NPs evolve to ferromagnetic double-perovskite (DP) phases (YBaCu2-x-yFexCoyO5/YBaCoFeO5), while a residual fraction of preformed ferrite NPs may remain in the YBCO matrix. Magnetometry cycles reflect the presence of ferromagnetic structures associated to the DPs embedded in the superconducting films. In addition, a superparamagnetic signal that may be associated with a diluted system of ferromagnetic clusters around complex defects has been detected, as previously observed in standard YBCO films and nanocomposites. The hybrid nanocomposites described in this work will allow studying several fundamental issues like the nucleation of superconductivity and the mechanisms of magnetic vortex pinning in superconducting/ferromagnetic heterostructures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000405205300010 Publication Date 2017-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-160x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.193 Times cited 7 Open Access Not_Open_Access  
  Notes ; The authors acknowledge financial support from Spanish Ministry of Economy and Competitiveness through the “Severo Ochoa” Programme for Centres of Excellence in R& D (SEV-2015-0496), CONSOLIDER Excellence Network (MAT2015-68994-REDC), COACHSUPENERGY project (MAT2014-51778-C21-R, cofinanced by the European Regional Development Fund), and from the Catalan Government with 2014-SGR753 and Xarmae. Some of the electron microscopy work has also been conducted in the Laboratorio de Microscopias Avanzadas (LMA) at Instituto de Nanociencia de Aragcn (INA) at the University of Zaragoza. Part of the electron microscopy work in EMAT group ( University of Antwerp) was performed within the framework of the EUROTAPES project (FP7-NMP. 2011.2.2-1 Grant No. 280432), funded by the European Union. Work at INA-LMA was supported by NanoAraCat. Research at UCM (J.S.) was supported by the ERC starting Investigator Award, Grant No. 239739 STEMOX and Juan de la Cierva Program JCI2011-09428 (MICINN-Spain). The XMCD experiments were performed at the BOREAS beamline of the ALBA Synchrotron Light Facility with the collaboration of ALBA staff. The authors would like to thank SOLEIL synchrotron for allocating beamtime and the DiffAbs beamline staff for help during the experiments. ; Approved Most recent IF: 4.193  
  Call Number UA @ lucian @ c:irua:144852 Serial 4719  
Permanent link to this record
 

 
Author Bafekry, A.; Stampfl, C.; Shayesteh, S.F.; Peeters, F.M. pdf  doi
openurl 
  Title Exploiting the novel electronic and magnetic structure of C3Nvia functionalization and conformation Type A1 Journal article
  Year 2019 Publication Advanced Electronic Materials Abbreviated Journal (up) Adv Electron Mater  
  Volume 5 Issue 5 Pages 1900459  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract 2D polyaniline, C3N, is of recent high interest due to its unusual properties and potential use in various technological applications. In this work, through systematic first-principles calculations, the atomic, electronic, and magnetic structure of C3N and the changes induced due to functionalization by the adsorption of hydrogen, oxygen, and fluorine, for different coverages and sites, as well as on formation of nanoribbons including the effect of adsorbed hydrogen and oxygen, and the effect of strain, are investigated. Among other interesting phenomena, for hydrogen adsorption, a semiconductor-to-topological insulator transition, where two Dirac-points appear around the Fermi level, as well as ferromagnetic ordering for both hydrogen and oxygen functionalization, is identified. Considering C3N nanoribbons, adsorption of H leads to significant changes in the electronic properties, such as transforming the structures from semiconductor to metallic. Furthermore, investigating the effect of strain on the physical properties, it is found that the band gap can be significantly altered and controlled. The present findings predict that a wide variation in the magnetic and electronic structure of C3N can be achieved by adatom functionalization and conformation indicating its high potential for use in various technological applications, ranging from catalysis, energy storage, and nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000486528200001 Publication Date 2019-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-160x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.193 Times cited 35 Open Access  
  Notes ; This work was supported by the FLAG-ERA project 2DTRANS and the Flemish Science Foundation (FWO-Vl). In addition, we acknowledge the OpenMX team for OpenMX code. ; Approved Most recent IF: 4.193  
  Call Number UA @ admin @ c:irua:162790 Serial 5414  
Permanent link to this record
 

 
Author Guo, A.; Bai, H.; Liang, Q.; Feng, L.; Su, X.; Van Tendeloo, G.; Wu, J. pdf  doi
openurl 
  Title Resistive switching in Ag₂Te semiconductor modulated by Ag+-ion diffusion and phase transition Type A1 Journal article
  Year 2022 Publication Advanced Electronic Materials Abbreviated Journal (up) Adv Electron Mater  
  Volume Issue Pages 2200850-2200858  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Memristors are considered to be the fourth circuit element and have great potential in areas like logic operations, information storage, and neuromorphic computing. The functional material in a memristor, which has a nonlinear resistance, is the key component to be developed. Herein, resistive switching is demonstrated and the structural evolutions in Ag2Te are examined under an external electric field. It is shown that the electroresistance effect is originating from an electronically triggered phase transition together with directional Ag+-ion diffusion. Using in situ transmission electron microscopy, the phase transition from the monoclinic alpha-Ag2Te into the face-centered cubic beta-Ag2Te, accompanied by a change in resistance, is directly observed. Diffusion of Ag+-ions modulates the localized density of Ag+-ion vacancies, leading to a change in electrical conductivity and influences the threshold voltage to trigger the phase transition. During the electric field-driven phase transition, the spontaneous and localized multiple polarizations from the low-symmetry alpha-Ag2Te (referring to an antiferroelectric structure) are vanishing in the cubic beta-Ag2Te (referring to a paraelectric structure). The abrupt resistance change of thin Ag2Te caused by the phase transition and modulated by the applied electric field demonstrates its great potential as functional material in volatile memory and memristors with a low-energy consumption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000855728500001 Publication Date 2022-09-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2199-160x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.2 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.2  
  Call Number UA @ admin @ c:irua:190582 Serial 7203  
Permanent link to this record
 

 
Author Conings, B.; Drijkoningen, J.; Gauquelin, N.; Babayigit, A.; D'Haen, J.; D'Olieslaeger, L.; Ethirajan, A.; Verbeeck, J.; Manca, J.; Mosconi, E.; Angelis, F.D.; Boyen, H.G.; pdf  doi
openurl 
  Title Intrinsic thermal instability of methylammonium lead trihalide perovskite Type A1 Journal article
  Year 2015 Publication Laser physics review Abbreviated Journal (up) Adv Energy Mater  
  Volume 5 Issue 5 Pages 1500477  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Organolead halide perovskites currently are the new front-runners as light absorbers in hybrid solar cells, as they combine efficiencies passing already 20% with deposition temperatures below 100 °C and cheap solution-based fabrication routes. Long-term stability remains a major obstacle for application on an industrial scale. Here, it is demonstrated that significant decomposition effects already occur during annealing of a methylammonium lead triiode perovskite at 85 °C even in inert atmosphere thus violating international standards. The observed behavior supports the view of currently used perovskite materials as soft matter systems with low formation energies, thus representing a major bottleneck for their application, especially in countries with high average temperatures. This result can trigger a broader search for new perovskite families with improved thermal stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000359374900005 Publication Date 2015-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 1691 Open Access  
  Notes FWO G004413N; GOA Solarpaint Approved Most recent IF: 16.721; 2015 IF: 16.146  
  Call Number c:irua:127298UA @ admin @ c:irua:127298 Serial 1719  
Permanent link to this record
 

 
Author Guerrero, A.; Heidari, H.; Ripolles, T.S.; Kovalenko, A.; Pfannmöller, M.; Bals, S.; Kauffmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G. pdf  url
doi  openurl
  Title Shelf life degradation of bulk heterojunction solar cells : intrinsic evolution of charge transfer complex Type A1 Journal article
  Year 2015 Publication Laser physics review Abbreviated Journal (up) Adv Energy Mater  
  Volume 5 Issue 5 Pages 1401997  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Achievement of long-term stability of organic photovoltaics is currently one of the major topics for this technology to reach maturity. Most of the techniques used to reveal degradation pathways are destructive and/or do not allow for real-time measurements in operating devices. Here, three different, nondestructive techniques able to provide real-time information, namely, film absorbance, capacitance-voltage (C-V), and impedance spectroscopy (IS), are combined over a period of 1 year using non-accelerated intrinsic degradation conditions. It is discerned between chemical modifications in the active layer, physical processes taking place in the bulk of the blend from those at the active layer/contact interfaces. In particular, it is observed that during the ageing experiment, the main source for device performance degradation is the formation of donor-acceptor charge-transfer complex (P3HT(center dot+)-PCBM center dot-) that acts as an exciton quencher. Generation of these radical species diminishes photocurrent and reduces open-circuit voltage by the creation of electronic defect states. Conclusions extracted from absorption, C-V, and IS measurements will be further supported by a range of other techniques such as atomic force microscopy, X-ray diffraction, and dark-field imaging of scanning transmission electron microscopy on ultrathin cross-sections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication S.l. Editor  
  Language Wos 000352708600013 Publication Date 2014-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 30 Open Access OpenAccess  
  Notes 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 16.721; 2015 IF: 16.146  
  Call Number c:irua:126000 Serial 2994  
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Bals, S.; Koganezawa, T.; Yoshimoto, N.; Hannani, D.; Gaceur, M.; Videlot-Ackermann, C.; Margeat, O.; Ackermann, J. pdf  doi
openurl 
  Title Square-centimeter-sized high-efficiency polymer solar cells : how the processing atmosphere and film quality influence performance at large scale Type A1 Journal article
  Year 2016 Publication Laser physics review Abbreviated Journal (up) Adv Energy Mater  
  Volume 6 Issue 6 Pages 1600290  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Organic solar cells based on two benzodithiophene-based polymers (PTB7 and PTB7-Th) processed at square centimeter-size under inert atmosphere and ambient air, respectively, are investigated. It is demonstrated that the performance of solar cells processed under inert atmosphere is not limited by the upscaling of photoactive layer and the interfacial layers. Thorough morphological and electrical characterizations of optimized layers and corresponding devices reveal that performance losses due to area enlargement are only caused by the sheet resistance of the transparent electrode reducing the effi ciency from 9.3% of 7.8% for PTB7-Th in the condition that both photoactive layer and the interfacial layers are of high layer quality. Air processing of photoactive layer and the interfacial layers into centimeter-sized solar cells lead to additional, but only slight, losses (< 10%) in all photovoltaic parameters, which can be addressed to changes in the electronic properties of both active layer and ZnO layers rather than changes in layer morphology. The demonstrated compatibility of polymer solar cells using solution-processed photoactive layer and interfacial layers with large area indicates that the introduction of a standard active area of 1 cm(2) for measuring effi ciency of organic record solar cells is feasible. However electric standards for indium tin oxides (ITO) or alternative transparent electrodes need to be developed so that performance of new photovoltaic materials can be compared at square centimeter-size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Place of publication unknown Editor  
  Language Wos 000379314700010 Publication Date 2016-05-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 6 Open Access Not_Open_Access  
  Notes ; The authors acknowledge financial support by the French Fond Unique Intermisteriel (FUI) under the project “SFUMATO” (Grant number: F1110019V/ 201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7-contract no. 287594). Generalitat Valenciana (ISIC/2012/008 Institute of Nanotechnologies for Clean Energies) is also acknowledged for providing financial support. The synchrotron radiation experiments were performed at BL46XU and BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2014B1916 and 2015A1984). The authors further acknowledge financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). ; Approved Most recent IF: 16.721  
  Call Number UA @ lucian @ c:irua:134951 Serial 4249  
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Saba, M.I.; Gaceur, M.; Heidari, H.; Videlot-Ackermann, C.; Margeat, O.; Guerrero, A.; Bisquert, J.; Garcia-Belmonte, G.; Mattoni, A.; Bals, S.; Ackermann, J. pdf  doi
openurl 
  Title Toward high-temperature stability of PTB7-based bulk heterojunction solar cells : impact of fullerene size and solvent additive Type A1 Journal article
  Year 2017 Publication Laser physics review Abbreviated Journal (up) Adv Energy Mater  
  Volume 7 Issue 7 Pages 1601486  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The use of fullerene as acceptor limits the thermal stability of organic solar cells at high temperatures as their diffusion inside the donor leads to phase separation via Ostwald ripening. Here it is reported that fullerene diffusion is fully suppressed at temperatures up to 140 degrees C in bulk heterojunctions based on the benzodithiophene-based polymer (the poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b: 4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl) carbonyl]thieno[3,4-b]thiophenediyl]], (PTB7) in combination with the fullerene derivative [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM). The blend stability is found independently of the presence of diiodooctane (DIO) used to optimize nanostructuration and in contrast to PTB7 blends using the smaller fullerene derivative PC70BM. The unprecedented thermal stability of PTB7: PC70BM layers is addressed to local minima in the mixing enthalpy of the blend forming stable phases that inhibit fullerene diffusion. Importantly, although the nanoscale morphology of DIO processed blends is thermally stable, corresponding devices show strong performance losses under thermal stress. Only by the use of a high temperature annealing step removing residual DIO from the device, remarkably stable high efficiency solar cells with performance losses less than 10% after a continuous annealing at 140 degrees C over 3 days are obtained. These results pave the way toward high temperature stable polymer solar cells using fullerene acceptors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Place of publication unknown Editor  
  Language Wos 000396328500009 Publication Date 2016-11-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 27 Open Access Not_Open_Access  
  Notes ; The authors acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (grant number: F1110019V/ 201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, grant number: 287594). Generalitat Valenciana (ISIC/2012/008 Institute of Nanotechnologies for Clean Energies) is also acknowledged for providing financial support. The authors further acknowledge financial support via ERC Starting Grant Colouratoms (335078). ; Approved Most recent IF: 16.721  
  Call Number UA @ lucian @ c:irua:141991UA @ admin @ c:irua:141991 Serial 4697  
Permanent link to this record
 

 
Author Lutz, L.; Corte, D.A.D.; Chen, Y.; Batuk, D.; Johnson, L.R.; Abakumov, A.; Yate, L.; Azaceta, E.; Bruce, P.G.; Tarascon, J.-M.; Grimaud, A. pdf  doi
openurl 
  Title The role of the electrode surface in Na-Air batteries : insights in electrochemical product formation and chemical growth of NaO2 Type A1 Journal article
  Year 2018 Publication Advanced energy materials Abbreviated Journal (up) Adv Energy Mater  
  Volume 8 Issue 4 Pages 1701581  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The Na-air battery, because of its high energy density and low charging overpotential, is a promising candidate for low-cost energy storage, hence leading to intensive research. However, to achieve such a battery, the role of the positive electrode material in the discharge process must be understood. This issue is herein addressed by exploring the electrochemical reduction of oxygen, as well as the chemical formation and precipitation of NaO2 using different electrodes. Whereas a minor influence of the electrode surface is demonstrated on the electrochemical formation of NaO2, a strong dependence of the subsequent chemical precipitation of NaO2 is identified. In the origin, this effect stems from the surface energy and O-2/O-2(-) affinity of the electrode. The strong interaction of Au with O-2/O-2(-) increases the nucleation rate and leads to an altered growth process when compared to C surfaces. Consequently, thin (3 mu m) flakes of NaO2 are found on Au, whereas on C large cubes (10 mu m) of NaO2 are formed. This has significant impact on the cell performance and leads to four times higher capacity when C electrodes with low surface energy and O-2/O-2(-) affinity are used. It is hoped that these findings will enable the design of new positive electrode materials with optimized surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher WILEY-VCH Verlag GmbH & Co. Place of Publication Weinheim Editor  
  Language Wos 000424152200009 Publication Date 2017-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 13 Open Access Not_Open_Access  
  Notes ; L.L. thanks ALISTORE-ERI for his PhD grant. P.G.B. is indebted to the EPSRC for financial support, including the Supergen Energy Storage grant. ; Approved Most recent IF: 16.721  
  Call Number UA @ lucian @ c:irua:149269 Serial 4951  
Permanent link to this record
 

 
Author Dimitrievska, M.; Shea, P.; Kweon, K.E.; Bercx, M.; Varley, J.B.; Tang, W.S.; Skripov, A.V.; Stavila, V.; Udovic, T.J.; Wood, B.C. pdf  url
doi  openurl
  Title Carbon Incorporation and Anion Dynamics as Synergistic Drivers for Ultrafast Diffusion in Superionic LiCB11H12 and NaCB11H12 Type A1 Journal article
  Year 2018 Publication Advanced energy materials Abbreviated Journal (up) Adv Energy Mater  
  Volume 8 Issue 15 Pages 1703422  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The disordered phases of LiCB11H12 and NaCB11H12 possess superb superionic conductivities that make them suitable as solid electrolytes. In these materials, cation diffusion correlates with high orientational mobilities of the CB11H12- anions; however, the precise relationship has yet to be demonstrated. In this work, ab initio molecular dynamics and quasielastic neutron scattering are combined to probe anion reorientations and their mechanistic connection to cation mobility over a range of timescales and temperatures. It is found that anions do not rotate freely, but rather transition rapidly between orientations defined by the cation sublattice symmetry. The symmetry-breaking carbon atom in CB11H12- also plays a critical role by perturbing the energy landscape along the instantaneous orientation of the anion dipole, which couples fluctuations in the cation probability density directly to the anion motion. Anion reorientation rates exceed 3 x 10(10) s(-1), suggesting the underlying energy landscape fluctuates dynamically on diffusion-relevant timescales. Furthermore, carbon is found to modify the orientational preferences of the anions and aid rotational mobility, creating additional symmetry incompatibilities that inhibit ordering. The results suggest that synergy between the anion reorientational dynamics and the carbon-modified cation-anion interaction accounts for the higher ionic conductivity in CB11H12- salts compared with B12H122-.  
  Address  
  Corporate Author Thesis  
  Publisher WILEY-VCH Verlag GmbH & Co. Place of Publication Weinheim Editor  
  Language Wos 000434031400026 Publication Date 2018-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 16.721 Times cited 20 Open Access OpenAccess  
  Notes ; This work was performed in part under the auspices of the U.S. Department of Energy at Lawrence Livermore National Laboratory (LLNL) under Contract No. DE-AC52-07NA27344 and funded by Laboratory Directed Research and Development Grant 15-ERD-022. Computing support came from the LLNL Institutional Computing Grand Challenge program. This work was also performed in part within the assignment of the Russian Federal Agency of Scientific Organizations (program “Spin” No. 01201463330). The authors gratefully acknowledge support from the Russian Foundation for Basic Research under Grant No. 15-03-01114 and the Ural Branch of the Russian Academy of Sciences under Grant No. 15-9-2-9. A.V.S. gratefully acknowledges travel support from CRDF Global in conjunction with this work under Grant No. FSCX-15-61826-0. M.D. gratefully acknowledges research support from the Hydrogen Materials-Advanced Research Consortium (HyMARC), established as part of the Energy Materials Network under the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract No. DE-AC36-08GO28308. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work utilized facilities supported in part by the National Science Foundation under Agreement No. DMR-1508249. The views, opinions, findings, and conclusions stated herein are those of the authors and do not necessarily reflect those of CRDF Global, or the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. ; Approved Most recent IF: 16.721  
  Call Number UA @ lucian @ c:irua:152045 Serial 5015  
Permanent link to this record
 

 
Author Chen, Z.; Tan, Z.; Ji, G.; Schryvers, D.; Ouyang, Q.; Li, Z. pdf  url
doi  openurl
  Title Effect of interface evolution on thermal conductivity of vacuum hot pressed SiC/Al composites Type A1 Journal article
  Year 2015 Publication Advanced engineering materials Abbreviated Journal (up) Adv Eng Mater  
  Volume 17 Issue 17 Pages 1076-1084  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The SiC/Al composites have been fabricated by a vacuum hot pressing (VHP) process in order to study the effect of interface evolution on the global thermal conductivity (TC). By optimizing the VHP parameters of sintering temperature and time, the three different kinds of SiC/Al interface configurations, that is, non-bonded, diffusion-bonded, and reaction-bonded interfaces, are formed and identified by measurement of relative density, X-ray diffraction, scanning and (high-resolution) transmission electron microscopy. The VHPed composite sintered at 655 °C for 60 min is fully dense and presents a tightly-adhered and clean SiC/Al interface at the nanoscale, the ideal diffusion-bonded interface being the most favorable for minimizing interfacial thermal resistance, which in turn results in the highest TC of around 270 W/mK.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000357680700019 Publication Date 2015-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1438-1656; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.319 Times cited 9 Open Access  
  Notes Approved Most recent IF: 2.319; 2015 IF: 1.758  
  Call Number c:irua:123000 Serial 818  
Permanent link to this record
 

 
Author Huijben, M.; Koster, G.; Kruize, M.K.; Wenderich, S.; Verbeeck, J.; Bals, S.; Slooten, E.; Shi, B.; Molegraaf, H.J.A.; Kleibeuker, J.E.; Van Aert, S.; Goedkoop, J.B.; Brinkman, A.; Blank, D.H.A.; Golden, M.S.; Van Tendeloo, G.; Hilgenkamp, H.; Rijnders, G.; pdf  doi
openurl 
  Title Defect engineering in oxide heterostructures by enhanced oxygen surface exchange Type A1 Journal article
  Year 2013 Publication Advanced functional materials Abbreviated Journal (up) Adv Funct Mater  
  Volume 23 Issue 42 Pages 5240-5248  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The synthesis of materials with well-controlled composition and structure improves our understanding of their intrinsic electrical transport properties. Recent developments in atomically controlled growth have been shown to be crucial in enabling the study of new physical phenomena in epitaxial oxide heterostructures. Nevertheless, these phenomena can be influenced by the presence of defects that act as extrinsic sources of both doping and impurity scattering. Control over the nature and density of such defects is therefore necessary to fully understand the intrinsic materials properties and exploit them in future device technologies. Here, it is shown that incorporation of a strontium copper oxide nano-layer strongly reduces the impurity scattering at conducting interfaces in oxide LaAlO3SrTiO3(001) heterostructures, opening the door to high carrier mobility materials. It is proposed that this remote cuprate layer facilitates enhanced suppression of oxygen defects by reducing the kinetic barrier for oxygen exchange in the hetero-interfacial film system. This design concept of controlled defect engineering can be of significant importance in applications in which enhanced oxygen surface exchange plays a crucial role.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000327480900003 Publication Date 2013-06-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 87 Open Access  
  Notes Countatoms; Vortex; Fwo; Ifox ECASJO_; Approved Most recent IF: 12.124; 2013 IF: 10.439  
  Call Number UA @ lucian @ c:irua:109273UA @ admin @ c:irua:109273 Serial 615  
Permanent link to this record
 

 
Author Yiu, H.H.P.; Niu, H.-jun; Biermans, E.; Van Tendeloo, G.; Rosseinsky, M.J. pdf  doi
openurl 
  Title Designed multifunctional nanocomposites for biomedical applications Type A1 Journal article
  Year 2010 Publication Advanced functional materials Abbreviated Journal (up) Adv Funct Mater  
  Volume 20 Issue 10 Pages 1599-1609  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The assembly of multifunctional nanocomposite materials is demonstrated by exploiting the molecular sieving property of SBA-16 nanoporous silica and using it as a template material. The cages of the pore networks are used to host iron oxide magnetic nanoparticles, leaving a pore volume of 0.29 cm3 g-1 accessible for drug storage. This iron oxide-silica nanocomposite is then functionalized with amine groups. Finally the outside of the particle is decorated with antibodies. Since the size of many protein molecules, including that of antibodies, is too large to enter the pore system of SBA-16, the amine groups inside the pores are preserved for drug binding. This is proven using a fluorescent protein, fluorescein-isothiocyanate-labeled bovine serum albumin (FITC-BSA), with the unreacted amine groups inside the pores dyed with rhodamine B isothiocyanate (RITC). The resulting nanocomposite material offers a dual-targeting drug delivery mechanism, i.e., magnetic and antibody-targeting, while the functionalization approach is extendable to other applications, e.g., fluorescence-magnetic dual-imaging diagnosis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000278597100008 Publication Date 2010-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X;1616-3028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 56 Open Access  
  Notes Approved Most recent IF: 12.124; 2010 IF: 8.508  
  Call Number UA @ lucian @ c:irua:83298 Serial 662  
Permanent link to this record
 

 
Author Turner, S.; Lebedev, O.I.; Shenderova, O.; Vlasov, I.I.; Verbeeck, J.; Van Tendeloo, G. pdf  doi
openurl 
  Title Determination of size, morphology, and nitrogen impurity location in treated detonation nanodiamond by transmission electron microscopy Type A1 Journal article
  Year 2009 Publication Advanced functional materials Abbreviated Journal (up) Adv Funct Mater  
  Volume 19 Issue 13 Pages 2116-2124  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Size, morphology, and nitrogen impurity location, all of which are all thought to be related to the luminescent properties of detonation nanodiamonds, are determined in several detonation nanodiamond samples using a combination of transmission electron microscopy techniques. Results obtained from annealed and cleaned detonation nanodiamond samples are compared to results from conventionally purified detonation nanodiamond. Detailed electron energy loss spectroscopy combined with model-based quantification provides direct evidence for the sp3 like embedding of nitrogen impurities into the diamond cores of all the studied nanodiamond samples. Simultaneously, the structure and morphology of the cleaned detonation nanodiamond particles are studied using high resolution transmission electron microscopy. The results show that the size and morphology of detonation nanodiamonds can be modified by temperature treatment and that by applying a special cleaning procedure after temperature treatment, nanodiamond particles with clean facets almost free from sp2 carbon can be prepared. These clean facets are clear evidence that nanodiamond cores are not necessarily in coexistence with a graphitic shell of non-diamond carbon.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000268297800012 Publication Date 2009-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X;1616-3028; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 100 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 12.124; 2009 IF: 6.990  
  Call Number UA @ lucian @ c:irua:78261UA @ admin @ c:irua:78261 Serial 674  
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Gasparotto, A.; Montini, T.; Turner, S.; Lebedev, O.I.; Gombac, V.; Adami, G.; Van Tendeloo, G.; Barreca, D.; Fornasiero, P.; pdf  doi
openurl 
  Title Enhanced hydrogen production by photoreforming of renewable oxygenates through nanostructured Fe2O3 polymorphs Type A1 Journal article
  Year 2014 Publication Advanced functional materials Abbreviated Journal (up) Adv Funct Mater  
  Volume 24 Issue 3 Pages 372-378  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sunlight-driven hydrogen production via photoreforming of aqueous solutions containing renewable compounds is an attractive option for sustainable energy generation with reduced carbon footprint. Nevertheless, the absence of photocatalysts combining high efficiency and stability upon solar light activation has up to date strongly hindered the development of this technology. Herein, two scarcely investigated iron(III) oxide polymorphs, β- and ε-Fe2O3, possessing a remarkable activity in sunlight-activated H2 generation from aqueous solutions of renewable oxygenates (i.e., ethanol, glycerol, glucose) are reported. For β-Fe2O3 and ε-Fe2O3, H2 production rates up to 225 and 125 mmol h−1 m−2 are obtained, with significantly superior performances with respect to the commonly investigated α-Fe2O3.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000332832500011 Publication Date 2013-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 95 Open Access  
  Notes Countatoms; Hercules; Fwo Approved Most recent IF: 12.124; 2014 IF: 11.805  
  Call Number UA @ lucian @ c:irua:113090 Serial 1051  
Permanent link to this record
 

 
Author Wang, J.T.W.; Cabana, L.; Bourgognon, M.; Kafa, H.; Protti, A.; Venner, K.; Shah, A.M.; Sosabowski, J.K.; Mather, S.J.; Roig, A.; Ke, X.; Van Tendeloo, G.; de Rosales, R.T.M.; Tobias, G.; Al-Jamal, K.T. pdf  doi
openurl 
  Title Magnetically decorated multiwalled carbon nanotubes as dual MRI and SPECT contrast agents Type A1 Journal article
  Year 2014 Publication Advanced functional materials Abbreviated Journal (up) Adv Funct Mater  
  Volume 24 Issue 13 Pages 1880-1894  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Carbon nanotubes (CNTs) are one of the most promising nanomaterials to be used in biomedicine for drug/gene delivery as well as biomedical imaging. This study develops radio-labeled, iron oxide-decorated multiwalled CNTs (MWNTs) as dual magnetic resonance (MR) and single photon emission computed tomography (SPECT) contrast agents. Hybrids containing different amounts of iron oxide are synthesized by in situ generation. Physicochemical characterisations reveal the presence of superparamagnetic iron oxide nanoparticles (SPION) granted the magnetic properties of the hybrids. Further comprehensive examinations including high resolution transmission electron microscopy (HRTEM), fast Fourier transform simulations, X-ray diffraction, and X-ray photoelectron spectroscopy assure the conformation of prepared SPION as γ-Fe2O3. High r2 relaxivities are obtained in both phantom and in vivo MRI compared to the clinically approved SPION Endorem. The hybrids are successfully radio labeled with technetium-99m through a functionalized bisphosphonate and enable SPECT/CT imaging and γ-scintigraphy to quantitatively analyze the biodistribution in mice. No abnormality is found by histological examination and the presence of SPION and MWNT are identified by Perls stain and Neutral Red stain, respectively. TEM images of liver and spleen tissues show the co-localization of SPION and MWNTs within the same intracellular vesicles, indicating the in vivo stability of the hybrids after intravenous injection. The results demonstrate the capability of the present SPIONMWNT hybrids as dual MRI and SPECT contrast agents for in vivo use.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000333674100007 Publication Date 2013-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 50 Open Access  
  Notes Countatoms; Fp7; Esteem2; esteem2_ta Approved Most recent IF: 12.124; 2014 IF: 11.805  
  Call Number UA @ lucian @ c:irua:111589 Serial 1891  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: