toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shpanchenko, R.V.; Tsirlin, A.A.; Kondakova, E.S.; Antipov, E.V.; Bougerol, C.; Hadermann, J.; Van Tendeloo, G.; Sakurai, H.; Takayama-Muromachi, E. doi  openurl
  Title New germanates RCrGeO5 (R=NdEr, Y): synthesis, structure, and properties Type A1 Journal article
  Year 2008 Publication Journal of solid state chemistry Abbreviated Journal (up) J Solid State Chem  
  Volume 181 Issue 9 Pages 2433-2441  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The new complex germanates RCrGeO5 (R=NdEr, Y) have been synthesized and investigated by means of X-ray powder diffraction, electron microscopy, magnetic susceptibility and specific heat measurements. All the compounds are isostructural and crystallize in the orthorhombic symmetry, space group Pbam, and Z=4. The crystal structure of RCrGeO5, as refined using X-ray powder diffraction data, includes infinite chains built by edge-sharing Cr+3O6 octahedra with two alternating Cr−Cr distances. The chains are combined into a three-dimensional framework by Ge2O8 groups consisting of two edge-linked square pyramids oriented in opposite directions. The resulting framework contains pentagonal channels where rare-earth elements are located. Thus, RCrGeO5 germanates present new examples of RMn2O5-type compounds and show ordering of Cr+3 and Ge+4 cations. Electron diffraction as well as high-resolution electron microscopy confirm the structure solution. Magnetic susceptibility data for R=Nd, Sm, and Eu are qualitatively consistent with the presence of isolated 3d (antiferromagnetically coupled Cr+3 cations) and 4f (R+3) spin subsystems in the RCrGeO5 compounds. NdCrGeO5 undergoes long-range magnetic ordering at 2.6 K, while SmCrGeO5 and EuCrGeO5 do not show any phase transitions down to 2 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000259415800047 Publication Date 2008-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 6 Open Access  
  Notes Approved Most recent IF: 2.299; 2008 IF: 1.910  
  Call Number UA @ lucian @ c:irua:72948 Serial 2314  
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Tsirlin, A.A.; Tan, H.; Verbeeck, J.; Zhang, H.; Dikarev, E.V.; Shpanchenko, R.V.; Antipov, E.V. doi  openurl
  Title Original close-packed structure and magnetic properties of the Pb4Mn9O20 manganite Type A1 Journal article
  Year 2009 Publication Journal of solid state chemistry Abbreviated Journal (up) J Solid State Chem  
  Volume 182 Issue 8 Pages 2231-2238  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure of the Pb4Mn9O20 compound (previously known as Pb0.43MnO2.18) was solved from powder X-ray diffraction, electron diffraction, and high resolution electron microscopy data (S.G. Pnma, a=13.8888(2) Å, b=11.2665(2) Å, c=9.9867(1) Å, RI=0.016, RP=0.047). The structure is based on a 6H (cch)2 close packing of pure oxygen h-type (O16) layers alternating with mixed c-type (Pb4O12) layers. The Mn atoms occupy octahedral interstices formed by the oxygen atoms of the close-packed layers. The MnO6 octahedra share edges within the layers, whereas the octahedra in neighboring layers are linked through corner sharing. The relationship with the closely related Pb3Mn7O15 structure is discussed. Magnetization measurements reveal a peculiar magnetic behavior with a phase transition at 52 K, a small net magnetization below the transition temperature, and a tendency towards spin freezing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000269066400035 Publication Date 2009-06-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 5 Open Access  
  Notes The authors are grateful to Christoph Geibel for the help in magnetization measurements. A.Ts. acknowledges MPI CKS for hospitality and financial support during the stay. E.D. thanks the National Science Foundation (CHE-0718900) for financial support. This work was supported by the Russian Foundation of Basic Research (RFBR Grants 07-03-00664-a, 06-03-90168-a and 07-03-00890-a). The authors acknowledge financial support from the European Union under the Framework 6 program under a contract for an Integrated Infrastructure Initiative. Reference 026019 ESTEEM. Approved Most recent IF: 2.299; 2009 IF: 2.340  
  Call Number UA @ lucian @ c:irua:78935UA @ admin @ c:irua:78935 Serial 2529  
Permanent link to this record
 

 
Author d' Hondt, H.; Hadermann, J.; Abakumov, A.M.; Kalyuzhnaya, A.S.; Rozova, M.G.; Tsirlin, A.A.; Tan, H.; Verbeeck, J.; Antipov, E.V.; Van Tendeloo, G. pdf  doi
openurl 
  Title Synthesis, crystal structure and magnetic properties of the Sr2Al0.78Mn1.22O5.2 anion-deficient layered perovskite Type A1 Journal article
  Year 2009 Publication Journal of solid state chemistry Abbreviated Journal (up) J Solid State Chem  
  Volume 182 Issue 2 Pages 356-363  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new layered perovskite Sr2Al0.78Mn1.22O5.2 has been synthesized by solid state reaction in a sealed evacuated silica tube. The crystal structure has been determined using electron diffraction, high-resolution electron microscopy, and high-angle annular dark field imaging and refined from X-ray powder diffraction data (space group P4/mmm, a=3.89023(5) Å, c=7.8034(1) Å, RI=0.023, RP=0.015). The structure is characterized by an alternation of MnO2 and (Al0.78Mn0.22)O1.2 layers. Oxygen atoms and vacancies, as well as the Al and Mn atoms in the (Al0.78Mn0.22)O1.2 layers are disordered. The local atomic arrangement in these layers is suggested to consist of short fragments of brownmillerite-type tetrahedral chains of corner-sharing AlO4 tetrahedra interrupted by MnO6 octahedra, at which the chain fragments rotate over 90°. This results in an averaged tetragonal symmetry. This is confirmed by the valence state of Mn measured by EELS. The relationship between the Sr2Al0.78Mn1.22O5.2 tetragonal perovskite and the parent Sr2Al1.07Mn0.93O5 brownmillerite is discussed. Magnetic susceptibility measurements indicate spin glass behavior of Sr2Al0.78Mn1.22O5.2. The lack of long-range magnetic ordering contrasts with Mn-containing brownmillerites and is likely caused by the frustration of interlayer interactions due to presence of the Mn atoms in the (Al0.78Mn0.22)O1.2 layers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000263124700022 Publication Date 2008-11-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 12 Open Access  
  Notes Iap Vi Approved Most recent IF: 2.299; 2009 IF: 2.340  
  Call Number UA @ lucian @ c:irua:72943 Serial 3450  
Permanent link to this record
 

 
Author Batuk, D.; de Dobbelaere, C.; Tsirlin, A.A.; Abakumov, A.M.; Hardy, A.; van Bael, M.K.; Greenblatt, M.; Hadermann, J. pdf  doi
openurl 
  Title Crystal structure and magnetic properties of the Cr-doped spiral antiferromagnet BiMnFe2O6 Type A1 Journal article
  Year 2013 Publication Materials research bulletin Abbreviated Journal (up) Mater Res Bull  
  Volume 48 Issue 9 Pages 2993-2997  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the Cr3+ for Mn3+ substitution in the BiMnFe2O6 structure. The BiCrxMn1-xFe2O6 solid solution is obtained by the solution-gel synthesis technique for the x values up to 0.3. The crystal structure investigation using a combination of X-ray powder diffraction and transmission electron microscopy demonstrates that the compounds retain the parent BiMnFe2O6 structure (for x = 0.3, a = 5.02010(6)angstrom, b = 7.06594(7)angstrom, c = 12.6174(1)angstrom, S.G. Pbcm, R-1 = 0.036, R-p = 0.011) with only a slight decrease in the cell parameters associated with the Cr3+ for Mn3+ substitution. Magnetic susceptibility measurements suggest strong similarities in the magnetic behavior of BiCrxMn1-xFe2O6 (x = 0.2; 0.3) and parent BiMnFe2O6. Only T-N slightly decreases upon Cr doping that indicates a very subtle influence of Cr3+ cations on the magnetic properties at the available substitution rates. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000322354000002 Publication Date 2013-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 3 Open Access  
  Notes Fwo Approved Most recent IF: 2.446; 2013 IF: 1.968  
  Call Number UA @ lucian @ c:irua:109755 Serial 561  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Chernaya, V.V.; Shpanchenko, R.V.; Antipov, E.V.; Hadermann, J. pdf  doi
openurl 
  Title Crystal structure and properties of the new complex vanadium oxide K2SrV3O9 Type A1 Journal article
  Year 2005 Publication Materials research bulletin Abbreviated Journal (up) Mater Res Bull  
  Volume 40 Issue 5 Pages 800-809  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000229376500010 Publication Date 2005-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 9 Open Access  
  Notes Approved Most recent IF: 2.446; 2005 IF: 1.380  
  Call Number UA @ lucian @ c:irua:52373 Serial 564  
Permanent link to this record
 

 
Author Batuk, M.; Tyablikov, O.A.; Tsirlin, A.A.; Kazakov, S.M.; Rozova, M.G.; Pokholok, K.V.; Filimonov, D.S.; Antipov, E.V.; Abakumov, A.M.; Hadermann, J. pdf  doi
openurl 
  Title Structure and magnetic properties of a new anion-deficient perovskite Pb2Ba2BiFe4ScO13 with crystallographic shear structure Type A1 Journal article
  Year 2013 Publication Materials research bulletin Abbreviated Journal (up) Mater Res Bull  
  Volume 48 Issue 9 Pages 3459-3465  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pb2Ba2BiFe4ScO13, a new n = 5 member of the oxygen-deficient perovskite-based A(n)B(n)O(3n-2) homologous series, was synthesized using a solid-state method. The crystal structure of Pb2Ba2BiFe4ScO13 was investigated by a combination of synchrotron X-ray powder diffraction, electron diffraction, high-angle annular dark-field scanning transmission electron microscopy and Mossbauer spectroscopy. At 900 K, it crystallizes in the Ammm space group with the unit cell parameters a = 5.8459(1) angstrom, b = 4.0426(1) angstrom, and c=27.3435(1) angstrom. In the Pb2Ba2BiFe4ScO13 structure, quasi-two-dimensional perovskite blocks are periodically interleaved with 1/2[1 1 0] ((1) over bar 0 1)(p) crystallographic shear (CS) planes. At the CS planes, the corner-sharing FeO6 octahedra are transformed into chains of edge-sharing FeO5 distorted tetragonal pyramids. B-positions of the perovskite blocks between the CS planes are jointly occupied by Fe3+ and Sc3+. The chains of the FeO5 pyramids and (Fe,Sc)O-6 octahedra delimit six-sided tunnels that are occupied by double columns of cations with a lone electron pair (Pb2+). The remaining A-cations (Bi3+, Ba2+) occupy positions in the perovskite block. According to the magnetic susceptibility measurements, Pb2Ba2BiFe4ScO13 is antiferromagnetically ordered below T-N approximate to 350 K. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000322354000076 Publication Date 2013-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.446; 2013 IF: 1.968  
  Call Number UA @ lucian @ c:irua:109756 Serial 3282  
Permanent link to this record
 

 
Author Ovsyannikov, S.V.; Bykov, M.; Bykova, E.; Kozlenko, D.P.; Tsirlin, A.A.; Karkin, A.E.; Shchennikov, V.V.; Kichanov, S.E.; Gou, H.; Abakumov, A.M.; Egoavil, R.; Verbeeck, J.; McCammon, C.; Dyadkin, V.; Chernyshov, D.; van Smaalen, S.; Dubrovinsky, L.S. pdf  url
doi  openurl
  Title Charge-ordering transition in iron oxide Fe4O5 involving competing dimer and trimer formation Type A1 Journal article
  Year 2016 Publication Nature chemistry Abbreviated Journal (up) Nat Chem  
  Volume 8 Issue 8 Pages 501-508  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Phase transitions that occur in materials, driven, for instance, by changes in temperature or pressure, can dramatically change the materials' properties. Discovering new types of transitions and understanding their mechanisms is important not only from a fundamental perspective, but also for practical applications. Here we investigate a recently discovered Fe4O5 that adopts an orthorhombic CaFe3O5-type crystal structure that features linear chains of Fe ions. On cooling below approximately 150 K, Fe4O5 undergoes an unusual charge-ordering transition that involves competing dimeric and trimeric ordering within the chains of Fe ions. This transition is concurrent with a significant increase in electrical resistivity. Magnetic-susceptibility measurements and neutron diffraction establish the formation of a collinear antiferromagnetic order above room temperature and a spin canting at 85 K that gives rise to spontaneous magnetization. We discuss possible mechanisms of this transition and compare it with the trimeronic charge ordering observed in magnetite below the Verwey transition temperature.  
  Address Bayerisches Geoinstitut, Universitat Bayreuth, Universitatsstrasse 30, D-95447, Bayreuth, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Wos 000374534100019 Publication Date 2016-04-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-4330 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 25.87 Times cited 51 Open Access  
  Notes S.V.O. acknowledges the financial support of the Deutsche Forschungsgemeinschaft (DFG) under project OV-110/1-3. A.E.K. and V.V.S. acknowledge the support of the Russian Foundation for Basic Research (Project 14–02–00622a). H.G. acknowledges the support from the Alexander von Humboldt (AvH) Foundation and the National Natural Science Foundation of China (No. 51201148). A.M.A., R.E. and J.V. acknowledge financial support from the European Commission (EC) under the Seventh Framework Programme (FP7) under a contract for an Integrated Infrastructure Initiative, Reference No. 312483- ESTEEM2. R.E. acknowledges support from the EC under FP7 Grant No. 246102 IFOX. A.M.A. acknowledges funding from the Russian Science Foundation (Grant No. 14-13- 00680). A.A.T. acknowledges funding and from the Federal Ministry for Education and Research through the Sofja Kovalevkaya Award of the AvH Foundation. Funding from the Fund for Scientific Research Flanders under FWO Project G.0044.13N is acknowledged. M.B. and S.v.S. acknowledge support from the DFG under Project Sm55/15-2. We acknowledge the European Synchrotron Radiation Facility for the provision of synchrotron radiation facilities.; esteem2jra2; esteem2jra3 Approved Most recent IF: 25.87  
  Call Number c:irua:133593 c:irua:133593UA @ admin @ c:irua:133593 Serial 4068  
Permanent link to this record
 

 
Author Erni, R.; Abakumov, A.M.; Rossell, M.D.; Batuk, D.; Tsirlin, A.A.; Nénert, G.; Van Tendeloo, G. pdf  doi
openurl 
  Title Nanoscale phase separation in perovskites revisited Type L1 Letter to the editor
  Year 2014 Publication Nature materials Abbreviated Journal (up) Nat Mater  
  Volume 13 Issue 3 Pages 216-217  
  Keywords L1 Letter to the editor; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000331945200002 Publication Date 2014-02-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 5 Open Access  
  Notes Approved Most recent IF: 39.737; 2014 IF: 36.503  
  Call Number UA @ lucian @ c:irua:114579 Serial 2270  
Permanent link to this record
 

 
Author Abakumov, A.M.; Batuk, D.; Tsirlin, A.A.; Prescher, C.; Dubrovinsky, L.; Sheptyakov, D.V.; Schnelle, W.; Hadermann, J.; Van Tendeloo, G. url  doi
openurl 
  Title Frustrated pentagonal Cairo lattice in the non-collinear antiferromagnet Bi4Fe5O13F Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B  
  Volume 87 Issue 2 Pages 024423-24429  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on the crystal structure and magnetism of the iron-based oxyfluoride Bi4Fe5O13F, a material prototype of the Cairo pentagonal spin lattice. The crystal structure of Bi4Fe5O13F is determined by a combination of neutron diffraction, synchrotron x-ray diffraction, and transmission electron microscopy. It comprises layers of FeO6 octahedra and FeO4 tetrahedra forming deformed pentagonal units. The topology of these layers resembles a pentagonal least-perimeter tiling, which is known as the Cairo lattice. This topology gives rise to frustrated exchange couplings and underlies a sequence of magnetic transitions at T-1 = 62 K, T-2 = 71 K, and T-N = 178 K, as determined by thermodynamic measurements and neutron diffraction. Below T-1, Bi4Fe5O13F forms a fully ordered non-collinear antiferromagnetic structure, whereas the magnetic state between T-1 and T-N may be partially disordered according to the sizable increase in the magnetic entropy at T-1 and T-2. Bi4Fe5O13F reveals unanticipated magnetic transitions on the pentagonal Cairo spin lattice and calls for a further work on finite-temperature properties of this strongly frustrated spin model. DOI: 10.1103/PhysRevB.87.024423  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000314224800002 Publication Date 2013-02-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 17 Open Access  
  Notes Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:107688 Serial 1293  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Nath, R.; Abakumov, A.M.; Shpanchenko, R.V.; Geibel, C.; Rosner, H. url  doi
openurl 
  Title Frustrated square lattice with spatial anisotropy: crystal structure and magnetic properties of PbZnVO(PO4)2 Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B  
  Volume 81 Issue 17 Pages 174424,1-174424,13  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Crystal structure and magnetic properties of the layered vanadium phosphate PbZnVO(PO4)2 are studied using x-ray powder diffraction, magnetization and specific-heat measurements, as well as band-structure calculations. The compound resembles AA′VO(PO4)2 vanadium phosphates and fits to the extended frustrated square-lattice model with the couplings J1, J1′ between nearest neighbors and J2, J2′ between next-nearest neighbors. The temperature dependence of the magnetization yields estimates of averaged nearest-neighbor and next-nearest-neighbor couplings, J̅ 1≃−5.2 K and J̅ 2≃10.0 K, respectively. The effective frustration ratio α=J̅ 2/J̅ 1 amounts to −1.9 and suggests columnar antiferromagnetic ordering in PbZnVO(PO4)2. Specific-heat data support the estimates of J̅ 1 and J̅ 2 and indicate a likely magnetic ordering transition at 3.9 K. However, the averaged couplings underestimate the saturation field, thus pointing to the spatial anisotropy of the nearest-neighbor interactions. Band-structure calculations confirm the identification of ferromagnetic J1, J1′ and antiferromagnetic J2, J2′ in PbZnVO(PO4)2 and yield (J1′−J1)≃1.1 K in excellent agreement with the experimental value of 1.1 K, deduced from the difference between the expected and experimentally measured saturation fields. Based on the comparison of layered vanadium phosphates with different metal cations, we show that a moderate spatial anisotropy of the frustrated square lattice has minor influence on the thermodynamic properties of the model. We discuss relevant geometrical parameters, controlling the exchange interactions in these compounds and propose a strategy for further design of strongly frustrated square-lattice materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000278141600082 Publication Date 2010-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 27 Open Access  
  Notes Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83384 Serial 1294  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Abakumov, A.M.; Van Tendeloo, G.; Rosner, H. url  doi
openurl 
  Title Interplay of atomic displacement in the quantum magnet (CuCI)LaNb2O7 Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B  
  Volume 82 Issue 5 Pages 054107,1-054107,12  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on the crystal structure of the quantum magnet CuClLaNb2O7 that was controversially described with respect to its structural organization and magnetic behavior. Using high-resolution synchrotron powder x-ray diffraction, electron diffraction, transmission electron microscopy, and band-structure calculations, we solve the room-temperature structure of this compound -CuClLaNb2O7 and find two high-temperature polymorphs. The -CuClLaNb2O7 phase, stable above 640 K, is tetragonal with asub=3.889 Å, csub =11.738 Å, and the space group P4/mmm. In the -CuClLaNb2O7 structure, the Cu and Cl atoms are randomly displaced from the special positions along the 100 directions. The phase asub2asubcsub, space group Pbmm and the phase 2asub2asubcsub, space group Pbam are stable between 640 K and 500 K and below 500 K, respectively. The structural changes at 500 and 640 K are identified as order-disorder phase transitions. The displacement of the Cl atoms is frozen upon the → transformation while a cooperative tilting of the NbO6 octahedra in the phase further eliminates the disorder of the Cu atoms. The low-temperature -CuClLaNb2O7 structure thus combines the two types of the atomic displacements that interfere due to the bonding between the Cu atoms and the apical oxygens of the NbO6 octahedra. The precise structural information resolves the controversy between the previous computation-based models and provides the long-sought input for understanding CuClLaNb2O7 and related compounds with unusual magnetic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000280849400001 Publication Date 2010-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 13 Open Access  
  Notes Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:83991 Serial 1706  
Permanent link to this record
 

 
Author Gou, H.; Tsirlin, A.A.; Bykova, E.; Abakumov, A.M.; Van Tendeloo, G.; Richter, A.; Ovsyannikov, S.V.; Kurnosov, A.V.; Trots, D.M.; Konôpková, Z.; Liermann, H.P.; Dubrovinsky, L.; Dubrovinskaia, N.; url  doi
openurl 
  Title Peierls distortion, magnetism, and high hardness of manganese tetraboride Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B  
  Volume 89 Issue 6 Pages 064108-64109  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report crystal structure, electronic structure, and magnetism of manganese tetraboride, MnB4, synthesized under high-pressure, high-temperature conditions. In contrast to superconducting FeB4 and metallic CrB4, which are both orthorhombic, MnB4 features a monoclinic crystal structure. Its lower symmetry originates from a Peierls distortion of the Mn chains. This distortion nearly opens the gap at the Fermi level, but despite the strong dimerization and the proximity of MnB4 to the insulating state, we find indications for a sizable paramagnetic effective moment of about 1.7 mu(B)/f.u., ferromagnetic spin correlations, and, even more surprisingly, a prominent electronic contribution to the specific heat. However, no magnetic order has been observed in standard thermodynamic measurements down to 2 K. Altogether, this renders MnB4 a structurally simple but microscopically enigmatic material; we argue that its properties may be influenced by electronic correlations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000332405000002 Publication Date 2014-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 39 Open Access  
  Notes Approved Most recent IF: 3.836; 2014 IF: 3.736  
  Call Number UA @ lucian @ c:irua:115819 Serial 2571  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Nath, R.; Abakumov, A.M.; Furukawa, Y.; Johnston, D.C.; Hemmida, M.; Krug von Nidda, H.-A.; Loidl, A.; Geibel, C.; Rosner, H. url  doi
openurl 
  Title Phase separation and frustrated square lattice magnetism of Na1.5VOPO4F0.5 Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B  
  Volume 84 Issue 1 Pages 014429-014429,16  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Crystal structure, electronic structure, and magnetic behavior of the spin-1/2 quantum magnet Na1.5VOPO4F0.5 are reported. The disorder of Na atoms leads to a sequence of structural phase transitions revealed by synchrotron x-ray powder diffraction and electron diffraction. The high-temperature second-order α↔β transition at 500 K is of the order-disorder type, whereas the low-temperature β↔γ+γ′ transition around 250 K is of the first order and leads to a phase separation toward the polymorphs with long-range (γ) and short-range (γ′) order of Na. Despite the complex structural changes, the magnetic behavior of Na1.5VOPO4F0.5 probed by magnetic susceptibility, heat capacity, and electron spin resonance measurements is well described by the regular frustrated square lattice model of the high-temperature α-polymorph. The averaged nearest-neighbor and next-nearest-neighbor couplings are J̅ 1≃−3.7 K and J̅ 2≃6.6 K, respectively. Nuclear magnetic resonance further reveals the long-range ordering at TN=2.6 K in low magnetic fields. Although the experimental data are consistent with the simplified square-lattice description, band structure calculations suggest that the ordering of Na atoms introduces a large number of inequivalent exchange couplings that split the square lattice into plaquettes. Additionally, the direct connection between the vanadium polyhedra induces an unusually strong interlayer coupling having effect on the transition entropy and the transition anomaly in the specific heat. Peculiar features of the low-temperature crystal structure and the relation to isostructural materials suggest Na1.5VOPO4F0.5 as a parent compound for the experimental study of tetramerized square lattices as well as frustrated square lattices with different values of spin.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000293247400008 Publication Date 2011-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 47 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:91770 Serial 2588  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Abakumov, A.M.; Ritter, C.; Henry, P.F.; Janson, O.; Rosner, H. url  doi
openurl 
  Title Short-range order of Br and three-dimensional magnetism in (CuBr)LaNb2O7 Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B  
  Volume 85 Issue 21 Pages 214427  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present a comprehensive study of the crystal structure, magnetic structure, and microscopic magnetic model of (CuBr)LaNb2O7, the Br analog of the spin-gap quantum magnet (CuCl) LaNb2O7. Despite similar crystal structures and spin lattices, the magnetic behavior and even peculiarities of the atomic arrangement in the Cl and Br compounds are very different. The high- resolution x-ray and neutron data reveal a split position of Br atoms in (CuBr) LaNb2O7. This splitting originates from two possible configurations developed by [CuBr] zigzag ribbons. While the Br atoms are locally ordered in the ab plane, their arrangement along the c direction remains partially disordered. The predominant and energetically more favorable configuration features an additional doubling of the c lattice parameter that was not observed in (CuCl) LaNb2O7. (CuBr) LaNb2O7 undergoes long-range antiferromagnetic ordering at T-N = 32 K, which is nearly 70% of the leading exchange coupling J4 similar or equal to 48 K. The Br compound does not show any experimental signatures of low-dimensional magnetism because the underlying spin lattice is three-dimensional. The coupling along the c direction is comparable to the couplings in the ab plane, even though the shortest Cu-Cu distance along c (11.69 angstrom) is three times larger than nearest-neighbor distances in the ab plane (3.55 angstrom). The stripe antiferromagnetic long-range order featuring columns of parallel spins in the ab plane and antiparallel spins along c is verified experimentally and confirmed by the microscopic analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000305557600002 Publication Date 2012-06-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:100289 Serial 2998  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Shpanchenko, R.V.; Antipov, E.V.; Bougerol, C.; Hadermann, J.; Van Tendeloo, G.; Schnelle, W.; Rosner, H. doi  openurl
  Title Spin ladder compound Pb0.55Cd0.45V2O5: synthesis and investigation Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B  
  Volume 76 Issue 10 Pages 104429,1-7  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000249786300074 Publication Date 2007-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 1 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:65594 Serial 3091  
Permanent link to this record
 

 
Author Abakumov, A.M.; Tsirlin, A.A.; Perez-Mato, J.M.; Petřiček, V.; Rosner, H.; Yang, T.; Greenblatt, M. url  doi
openurl 
  Title Spiral ground state against ferroelectricity in the frustrated magnet BiMnFe2O6 Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B  
  Volume 83 Issue 21 Pages 214402-214402,10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The spiral magnetic structure and underlying spin lattice of BiMnFe2O6 are investigated by low-temperature neutron powder diffraction and density functional theory band structure calculations. In spite of the random distribution of the Mn3+ and Fe3+ cations, this centrosymmetric compound undergoes a transition into an incommensurate antiferromagnetically ordered state below TN≃220 K. The magnetic structure is characterized by the propagation vector k=[0,β,0] with β≃0.14 and the P221211′(0β0)0s0s magnetic superspace symmetry. It comprises antiferromagnetic helixes propagating along the b axis. The magnetic moments lie in the ac plane and rotate about π(1+β)≃204.8-deg angle between the adjacent magnetic atoms along b. The spiral magnetic structure arises from the peculiar frustrated arrangement of exchange couplings in the ab plane. The antiferromagnetic coupling along the c axis cancels the possible electric polarization and prevents ferroelectricity in BiMnFe2O6.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000291197400001 Publication Date 2011-06-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:90080 Serial 3107  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Abakumov, A.M.; Ritter, C.; Rosner, H. url  doi
openurl 
  Title (CuCl)LaTa2O\text{7} and quantum phase transition in the (CuX)LaM2O7 family (X=Cl, Br; M=Nb, Ta) Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal (up) Phys Rev B  
  Volume 86 Issue 6 Pages 064440-12  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We apply neutron diffraction, high-resolution synchrotron x-ray diffraction, magnetization measurements, electronic structure calculations, and quantum Monte-Carlo simulations to unravel the structure and magnetism of (CuCl)LaTa2O7. Despite the pseudo-tetragonal crystallographic unit cell, this compound features an orthorhombic superstructure, similar to the Nb-containing (CuX)LaNb2O7 with X = Cl and Br. The spin lattice entails dimers formed by the antiferromagnetic fourth-neighbor coupling J(4), as well as a large number of nonequivalent interdimer couplings quantified by an effective exchange parameter J(eff). In (CuCl)LaTa2O7, the interdimer couplings are sufficiently strong to induce the long-range magnetic order with the Neel temperature T-N similar or equal to 7 K and the ordered magnetic moment of 0.53 mu(B), as measured with neutron diffraction. This magnetic behavior can be accounted for by J(eff)/J(4) similar or equal to 1.6 and J(4) similar or equal to 16 K. We further propose a general magnetic phase diagram for the (CuCl)LaNb2O7-type compounds, and explain the transition from the gapped spin-singlet (dimer) ground state in (CuCl)LaNb2O7 to the long-range antiferromagnetic order in (CuCl)LaTa2O7 and (CuBr)LaNb2O7 by an increase in the magnitude of the interdimer couplings J(eff)/J(4), with the (CuCl)LaM2O7 (M = Nb, Ta) compounds lying on different sides of the quantum critical point that separates the singlet and long-range-ordered magnetic ground states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000308127600006 Publication Date 2012-08-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 6 Open Access  
  Notes Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:101886 Serial 3526  
Permanent link to this record
 

 
Author Tsirlin, A.A.; Rousochatzakis, I.; Filimonov, D.; Batuk, D.; Frontzek, M.; Abakumov, A.M. url  doi
openurl 
  Title Spin-reorientation transitions in the Cairo pentagonal magnet Bi4Fe5O13F Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal (up) Phys Rev B  
  Volume 96 Issue 9 Pages 094420  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We show that interlayer spins play a dual role in the Cairo pentagonal magnet Bi4Fe5O13F, on one hand mediating the three-dimensional magnetic order, and on the other driving spin-reorientation transitions both within and between the planes. The corresponding sequence of magnetic orders unraveled by neutron diffraction and Mossbauer spectroscopy features two orthogonal magnetic structures described by opposite local vector chiralities, and an intermediate, partly disordered phase with nearly collinear spins. A similar collinear phase has been predicted theoretically to be stabilized by quantum fluctuations, but Bi4Fe5O13F is very far from the relevant parameter regime. While the observed in-plane reorientation cannot be explained by any standard frustration mechanism, our ab initio band-structure calculations reveal strong single-ion anisotropy of the interlayer Fe3+ spins that turns out to be instrumental in controlling the local vector chirality and the associated interlayer order.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000411161700002 Publication Date 2017-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 7 Open Access OpenAccess  
  Notes We are grateful to J.-M. Perez-Mato and Dmitry Khalyavin for valuable discussions on the magnetic structures and symmetries. D.F. and A.A. are grateful to the Russian Science Foundation (Grant No. 14-13-00680) for support. A.T. was supported by the Federal Ministry for Education and Research through the Sofja Kovalevskaya Award of the Alexander von Humboldt Foundation. This work is based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institut, Villigen, Switzerland. Approved Most recent IF: 3.836  
  Call Number EMAT @ emat @c:irua:146748 Serial 4774  
Permanent link to this record
 

 
Author Gou, H.; Dubrovinskaia, N.; Bykova, E.; Tsirlin, A.A.; Kasinathan, D.; Schnelle, W.; Richter, A.; Merlini, M.; Hanfland, M.; Abakumov, A.M.; Batuk, D.; Van Tendeloo, G.; Nakajima, Y.; Kolmogorov, A.N.; Dubrovinsky, L.; url  doi
openurl 
  Title Discovery of a superhard iron tetraboride superconductor Type A1 Journal article
  Year 2013 Publication Physical review letters Abbreviated Journal (up) Phys Rev Lett  
  Volume 111 Issue 15 Pages 157002-157005  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Single crystals of novel orthorhombic (space group Pnnm) iron tetraboride FeB4 were synthesized at pressures above 8 GPa and high temperatures. Magnetic susceptibility and heat capacity measurements demonstrate bulk superconductivity below 2.9 K. The putative isotope effect on the superconducting critical temperature and the analysis of specific heat data indicate that the superconductivity in FeB4 is likely phonon mediated, which is rare for Fe-based superconductors. The discovered iron tetraboride is highly incompressible and has the nanoindentation hardness of 62(5) GPa; thus, it opens a new class of highly desirable materials combining advanced mechanical properties and superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000325371500011 Publication Date 2013-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 127 Open Access  
  Notes Countatoms Approved Most recent IF: 8.462; 2013 IF: 7.728  
  Call Number UA @ lucian @ c:irua:110820 Serial 729  
Permanent link to this record
 

 
Author Shpanchenko, R.V.; Tsirlin, A.A.; Hadermann, J.; Antipov, E.V. doi  openurl
  Title Synthesis and crystal structure of new titanyl phosphate Sr2TiO(PO4)2 Type A1 Journal article
  Year 2008 Publication Russian chemical bulletin Abbreviated Journal (up) Russ Chem B+  
  Volume 57 Issue 3 Pages 552-556  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract New strontium titanyl phosphate Sr2TiO(PO4)2 (1) was synthesized and characterized by X-ray powder diffraction, electron diffraction, high-resolution electron microscopy, and band structure calculations. Titanyl phosphate 1 is isostructural with vanadyl phosphate Sr2VO(PO4)2 and has a layered structure. The titanium atoms are shifted from the centers of the TiO6 octahedra and form short (1.74 Å) titanyl bonds. The structure of 1 is an unusual example of the disordered orientation of the chains formed by TiO6 octahedra in complex titanium phosphates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000263566900015 Publication Date 2009-03-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1066-5285;1573-9171; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.529 Times cited 2 Open Access  
  Notes Approved Most recent IF: 0.529; 2008 IF: 0.469  
  Call Number UA @ lucian @ c:irua:73712 Serial 3423  
Permanent link to this record
 

 
Author Hadermann, J.; Abakumov, A.M.; Tsirlin, A.A.; Filonenko, V.P.; Gonnissen, J.; Tan, H.; Verbeeck, J.; Gemmi, M.; Antipov, E.V.; Rosner, H. pdf  doi
openurl 
  Title Direct space structure solution from precession electron diffraction data: resolving heavy and light scatterers in Pb13Mn9O25 Type A1 Journal article
  Year 2010 Publication Ultramicroscopy Abbreviated Journal (up) Ultramicroscopy  
  Volume 110 Issue 7 Pages 881-890  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure of a novel compound Pb13Mn9O25 has been determined through a direct space structure solution with a Monte-Carlo-based global optimization using precession electron diffraction data (a=14.177(3) Å, c=3.9320(7) Å, SG P4/m, RF=0.239) and compositional information obtained from energy dispersive X-ray analysis and electron energy loss spectroscopy. This allowed to obtain a reliable structural model even despite the simultaneous presence of both heavy (Pb) and light (O) scattering elements and to validate the accuracy of the electron diffraction-based structure refinement. This provides an important benchmark for further studies of complex structural problems with electron diffraction techniques. Pb13Mn9O25 has an anion- and cation-deficient perovskite-based structure with the A-positions filled by the Pb atoms and 9/13 of the B positions filled by the Mn atoms in an ordered manner. MnO6 octahedra and MnO5 tetragonal pyramids form a network by sharing common corners. Tunnels are formed in the network due to an ordered arrangement of vacancies at the B-sublattice. These tunnels provide sufficient space for localization of the lone 6s2 electron pairs of the Pb2+ cations, suggested as the driving force for the structural difference between Pb13Mn9O25 and the manganites of alkali-earth elements with similar compositions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000280050900023 Publication Date 2010-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 24 Open Access  
  Notes Fwo; Bof; Esteem Approved Most recent IF: 2.843; 2010 IF: 2.063  
  Call Number UA @ lucian @ c:irua:84085UA @ admin @ c:irua:84085 Serial 721  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: