toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ishikawa, K.; Karahashi, K.; Ichiki, T.; Chang, J.P.; George, S.M.; Kessels, W.M.M.; Lee, H.J.; Tinck, S.; Um, J.H.; Kinoshita, K. pdf  url
doi  openurl
  Title Progress and prospects in nanoscale dry processes: How can we control atomic layer reactions? Type A1 Journal article
  Year 2017 Publication Japanese journal of applied physics Abbreviated Journal (down) Jpn J Appl Phys  
  Volume 56 Issue 56 Pages 06HA02  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this review, we discuss the progress of emerging dry processes for nanoscale fabrication. Experts in the fields of plasma processing have contributed to addressing the increasingly challenging demands in achieving atomic-level control of material selectivity and physicochemical reactions involving ion bombardment. The discussion encompasses major challenges shared across the plasma science and technology community. Focus is placed on advances in the development of fabrication technologies for emerging materials, especially metallic and intermetallic compounds and multiferroic, and two-dimensional (2D) materials, as well as state-of-the-art techniques used in nanoscale semiconductor manufacturing with a brief summary of future challenges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000425887900001 Publication Date 2017-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-4922 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.384 Times cited 18 Open Access OpenAccess  
  Notes The authors would like to thank Drs. Masanobu Honda, Miyako Matsui, Tomohiro Okumura, Tetsuya Tatsumi, Satoshi Hamaguchi, Hiroto Ohtake, Yoshinobu Ohya, Kazunori Shinoda, Masaru Izawa, Hisataka Hayashi, Toshio Hayashi, Makoto Sekine, and Masaru Hori, and all members of the Program and Publication Committee of the 38th International Symposium on Dry Process 2016 held in Sapporo, Japan, as well as Nicholas Altieri and Jeffrey Chang at UCLA for proofreading and providing feedback on the manuscript. Approved Most recent IF: 1.384  
  Call Number PLASMANT @ plasmant @ c:irua:143872 Serial 4576  
Permanent link to this record
 

 
Author Le Compte, M.; Cardenas De La Hoz, E.; Peeters, S.; Smits, E.; Lardon, F.; Roeyen, G.; Vanlanduit, S.; Prenen, H.; Peeters, M.; Lin, A.; Deben, C. url  doi
openurl 
  Title Multiparametric tumor organoid drug screening using widefield live-cell imaging for bulk and single-organoid analysis Type A1 Journal article
  Year 2022 Publication Jove-Journal Of Visualized Experiments Abbreviated Journal (down) Jove-J Vis Exp  
  Volume Issue 190 Pages 1-18  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Center for Oncological Research (CORE)  
  Abstract Patient-derived tumor organoids (PDTOs) hold great promise for preclinical and translational research and predicting the patient therapy response from ex vivo drug screenings. However, current adenosine triphosphate (ATP)-based drug screening assays do not capture the complexity of a drug response (cytostatic or cytotoxic) and intratumor heterogeneity that has been shown to be retained in PDTOs due to a bulk readout. Live-cell imaging is a powerful tool to overcome this issue and visualize drug responses more in-depth. However, image analysis software is often not adapted to the three-dimensionality of PDTOs, requires fluorescent viability dyes, or is not compatible with a 384-well microplate format. This paper describes a semi-automated methodology to seed, treat, and image PDTOs in a high-throughput, 384-well format using conventional, widefield, live-cell imaging systems. In addition, we developed viability marker-free image analysis software to quantify growth rate-based drug response metrics that improve reproducibility and correct growth rate variations between different PDTO lines. Using the normalized drug response metric, which scores drug response based on the growth rate normalized to a positive and negative control condition, and a fluorescent cell death dye, cytotoxic and cytostatic drug responses can be easily distinguished, profoundly improving the classification of responders and non-responders. In addition, drug-response heterogeneity can by quantified from single-organoid drug response analysis to identify potential, resistant clones. Ultimately, this method aims to improve the prediction of clinical therapy response by capturing a multiparametric drug response signature, which includes kinetic growth arrest and cell death quantification. ,  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000928020400010 Publication Date 2022-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1940-087x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.2 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 1.2  
  Call Number UA @ admin @ c:irua:193168 Serial 7271  
Permanent link to this record
 

 
Author Chin, C.–M.; Battle, P.D.; Hunter, E.C.; Avdeev, M.; Hendrickx, M.; Hadermann, J. pdf  url
doi  openurl
  Title Magnetic properties of La3Ni2Sb Ta Nb1––O9; from relaxor to spin glass Type A1 Journal article
  Year 2019 Publication Journal of solid state chemistry (Print) Abbreviated Journal (down) Journal of Solid State Chemistry  
  Volume 273 Issue Pages 175-185  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Neutron diffraction experiments conducted at 5 K in a magnetic field 0 < H/kOe < 50 have shown that the monoclinic perovskite La3Ni2TaO9 behaves as a relaxor ferromagnet. Compositions in the series La3Ni2SbxTayNb1–x–yO9 have been synthesized in polycrystalline form. Electron microscopy, X–ray diffraction and neutron diffraction have shown that the solid solutions are largely homogeneous and monophasic. Magnetometry and neutron diffraction have shown that the relaxor magnetisation persists in low fields when x + y = 1 but is rapidly diminished by the introduction of niobium. This change in magnetic behaviour is ascribed to the differences in the d–orbital energies of Sb5+, Nb5+ and Ta5+.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000466261100026 Publication Date 2019-03-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes We thank EPSRC for funding through grant EP/M0189541. CMC thanks the Croucher Foundation and the University of Oxford for the award of a graduate scholarship. Approved no  
  Call Number EMAT @ emat @c:irua:166445 Serial 6346  
Permanent link to this record
 

 
Author Ding, L.; Zhao, M.; Ehlers, F.J.H.; Jia, Z.; Zhang, Z.; Weng, Y.; Schryvers, D.; Liu, Q.; Idrissi, H. pdf  url
doi  openurl
  Title “Branched” structural transformation of the L12-Al3Zr phase manipulated by Cu substitution/segregation in the Al-Cu-Zr alloy system Type A1 Journal article
  Year 2024 Publication Journal of materials science & technology Abbreviated Journal (down) Journal of Materials Science & Technology  
  Volume 185 Issue Pages 186-206  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The effect of Cu on the evolution of the Al3Zr phase in an Al-Cu-Zr cast alloy during solution treatment at 500 °C has been thoroughly studied by combining atomic resolution high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy and first-principles cal- culations. The heat treatment initially produces a pure L12-Al3Zr microstructure, allowing for about 13 % Cu to be incorporated in the dispersoid. Cu incorporation increases the energy barrier for anti-phase boundary (APB) activation, thus stabilizing the L12 structure. Additional heating leads to a Cu-induced “branched”path for the L12 structural transformation, with the latter process accelerated once the first APB has been created. Cu atoms may either (i) be repelled by the APBs, promoting the transformation to a Cu-poor D023 phase, or (ii) they may segregate at one Al-Zr layer adjacent to the APB, promoting a transformation to a new thermodynamically favored phase, Al4CuZr, formed when these segregation layers are periodically arranged. Theoretical studies suggest that the branching of the L12 transformation path is linked to the speed at which an APB is created, with Cu attraction triggered by a comparatively slow process. This unexpected transformation behavior of the L12-Al3Zr phase opens a new path to understanding, and potentially regulating the Al3Zr dispersoid evolution for high temperature applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001154261100001 Publication Date 2023-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1005-0302 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 10.9 Times cited Open Access Not_Open_Access  
  Notes This work was supported by the National Key Research and Development Program (No. 2020YFA0405900), the National Natural Science Foundation of China (Grant No. 52371111 and U2141215 ), the Natural Science Foundation of Jiangsu Province (No. BE2022159 ). We are grateful to the High Performance Computing Center of Nanjing Tech University for supporting the computational resources. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR- FNRS). Approved Most recent IF: 10.9; 2024 IF: 2.764  
  Call Number EMAT @ emat @c:irua:202392 Serial 8981  
Permanent link to this record
 

 
Author Loenders, B.; Michiels, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Is a catalyst always beneficial in plasma catalysis? Insights from the many physical and chemical interactions Type A1 Journal Article
  Year 2023 Publication Journal of Energy Chemistry Abbreviated Journal (down) Journal of Energy Chemistry  
  Volume 85 Issue Pages 501-533  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-catalytic dry reforming of CH4 (DRM) is promising to convert the greenhouse gasses CH4 and CO2 into value-added chemicals, thus simultaneously providing an alternative to fossil resources as feedstock for the chemical industry. However, while many experiments have been dedicated to plasma-catalytic DRM, there is no consensus yet in literature on the optimal choice of catalyst for targeted products, because the underlying mechanisms are far from understood. Indeed, plasma catalysis is very complex, as it encompasses various chemical and physical interactions between plasma and catalyst, which depend on many parameters. This complexity hampers the comparison of experimental results from different studies, which, in our opinion, is an important bottleneck in the further development of this promising research field. Hence, in this perspective paper, we describe the important physical and chemical effects that should be accounted for when designing plasma-catalytic experiments in general, highlighting the need for standardized experimental setups, as well as careful documentation of packing properties and reaction conditions, to further advance this research field. On the other hand, many parameters also create many windows of opportunity for further optimizing plasma-catalytic systems. Finally, various experiments also reveal the lack of improvement in plasma catalysis compared to plasma-only, specifically for DRM, but the underlying mechanisms are unclear. Therefore, we present our newly developed coupled plasma-surface kinetics model for DRM, to provide more insight in the underlying reasons. Our model illustrates that transition metal catalysts can adversely affect plasmacatalytic DRM, if radicals dominate the plasma-catalyst interactions. Thus, we demonstrate that a good understanding of the plasma-catalyst interactions is crucial to avoiding conditions at which these interactions negatively affect the results, and we provide some recommendations for improvement. For instance, we believe that plasma-catalytic DRM may benefit more from higher reaction temperatures, at which vibrational excitation can enhance the surface reactions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links UA library record  
  Impact Factor 13.1 Times cited Open Access Not_Open_Access  
  Notes This research was supported by the FWO-SBO project PlasMa- CatDESIGN (FWO grant ID S001619N), the FWO fellowship of R. Michiels (FWO grant ID 1114921N), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project). The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. Approved Most recent IF: 13.1; 2023 IF: 2.594  
  Call Number PLASMANT @ plasmant @c:irua:198159 Serial 8806  
Permanent link to this record
 

 
Author Wanten, B.; Vertongen, R.; De Meyer, R.; Bogaerts, A. pdf  url
doi  openurl
  Title Plasma-based CO2 conversion: How to correctly analyze the performance? Type A1 journal article
  Year 2023 Publication Journal of Energy Chemistry Abbreviated Journal (down) Journal of Energy Chemistry  
  Volume 86 Issue Pages 180-196  
  Keywords A1 journal article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001070885000001 Publication Date 2023-07-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.1 Times cited Open Access Not_Open_Access  
  Notes We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 110221N), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant agreement No 810182 – SCOPE ERC Synergy project), and the Methusalem funding of the University of Antwerp. We acknowledge the icons from the graphical abstract made by dDara, geotatah, Spashicons and Freepik on www.flaticon.com. We also thank Stein Maerivoet, Joachim Slaets, Elizabeth Mercer, Colín Ó’Modráin, Joran Van Turnhout, Pepijn Heirman, dr. Yury Gorbanev, dr. Fanny Girard-Sahun and dr. Sean Kelly for the interesting discussions and feedback. Approved Most recent IF: 13.1; 2023 IF: 2.594  
  Call Number PLASMANT @ plasmant @c:irua:198709 Serial 8816  
Permanent link to this record
 

 
Author Cai, Y.; Mei, D.; Chen, Y.; Bogaerts, A.; Tu, X. url  doi
openurl 
  Title Machine learning-driven optimization of plasma-catalytic dry reforming of methane Type A1 Journal Article
  Year 2024 Publication Journal of Energy Chemistry Abbreviated Journal (down) Journal of Energy Chemistry  
  Volume 96 Issue Pages 153-163  
  Keywords A1 Journal Article; Plasma catalysis Machine learning Process optimization Dry reforming of methane Syngas production; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract This study investigates the dry reformation of methane (DRM) over Ni/Al2O3 catalysts in a dielectric barrier discharge (DBD) non-thermal plasma reactor. A novel hybrid machine learning (ML) model is developed to optimize the plasma-catalytic DRM reaction with limited experimental data. To address the non-linear and complex nature of the plasma-catalytic DRM process, the hybrid ML model integrates three well-established algorithms: regression trees, support vector regression, and artificial neural networks. A genetic algorithm (GA) is then used to optimize the hyperparameters of each algorithm within the hybrid ML model. The ML model achieved excellent agreement with the experimental data, demonstrating its efficacy in accurately predicting and optimizing the DRM process. The model was subsequently used to investigate the impact of various operating parameters on the plasma-catalytic DRM performance. We found that the optimal discharge power (20 W), CO2/CH4 molar ratio (1.5), and Ni loading (7.8 wt%) resulted in the maximum energy yield at a total flow rate of 51 mL/min. Furthermore, we investigated the relative significance of each operating parameter on the performance of the plasmacatalytic DRM process. The results show that the total flow rate had the greatest influence on the conversion, with a significance exceeding 35% for each output, while the Ni loading had the least impact on the overall reaction performance. This hybrid model demonstrates a remarkable ability to extract valuable insights from limited datasets, enabling the development and optimization of more efficient and selective plasma-catalytic chemical processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-4956 ISBN Additional Links  
  Impact Factor 13.1 Times cited Open Access  
  Notes This project received funding from the European Union’s Hori- zon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 813393. Approved Most recent IF: 13.1; 2024 IF: 2.594  
  Call Number PLASMANT @ plasmant @ Serial 9124  
Permanent link to this record
 

 
Author Kelly, S.; Mercer, E.; Gorbanev, Y.; Fedirchyk, I.; Verheyen, C.; Werner, K.; Pullumbi, P.; Cowley, A.; Bogaerts, A. url  doi
openurl 
  Title Plasma-based conversion of martian atmosphere into life-sustaining chemicals: The benefits of utilizing martian ambient pressure Type A1 Journal article
  Year 2024 Publication Journal of CO2 utilization Abbreviated Journal (down) Journal of CO2 Utilization  
  Volume 80 Issue Pages 102668  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We explored the potential of plasma-based In-Situ Resource Utilization (ISRU) for Mars through the conversion of Martian atmosphere (~96% CO2, 2% N2, and 2% Ar) into life-sustaining chemicals. As the Martian surface pressure is about 1% of the Earth’s surface pressure, it is an ideal environment for plasma-based gas conversion using microwave reactors. At 1000 W and 10 Ln/min (normal liters per minute), we produced ~76 g/h of O2 and ~3 g/h of NOx using a 2.45 GHz waveguided reactor at 25 mbar, which is ~3.5 times Mars ambient pressure. The energy cost required to produce O2 was ~0.013 kWh/g, which is very promising compared to recently concluded MOXIE experiments on the Mars surface. This marks a crucial step towards realizing the extension of human exploration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001156084300001 Publication Date 2024-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 7.7 Times cited Open Access Not_Open_Access  
  Notes We acknowledge financial support by a European Space Agency (ESA) Open Science Innovation Platform study (contract no. 4000137001/21/NL/GLC/ov), the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), the Excellence of Science FWOFNRS PLASyntH2 project (FWO grant no. G0I1822N and EOS no. 4000751) and the Methusalem project of the University of Antwerp. Approved Most recent IF: 7.7; 2024 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:202389 Serial 8986  
Permanent link to this record
 

 
Author Kelly, S.; Mercer, E.; De Meyer, R.; Ciocarlan, R.-G.; Bals, S.; Bogaerts, A. url  doi
openurl 
  Title Microwave plasma-based dry reforming of methane: Reaction performance and carbon formation Type A1 Journal article
  Year 2023 Publication Journal of CO2 utilization Abbreviated Journal (down) Journal of CO2 Utilization  
  Volume 75 Issue Pages 102564  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract e investigate atmospheric pressure microwave (MW) plasma (2.45 GHz) conversion in CO2 and CH4 mixtures (i.e., dry reforming of methane, DRM) focusing on reaction performance and carbon formation. Promising energy costs of ~2.8–3.0 eV/molecule or ~11.1–11.9 kJ/L are amongst the best performance to date considering the current state-of-the-art for plasma-based DRM for all types of plasma. The conversion is in the range of ~46–49% and ~55–67% for CO2 and CH4, respectively, producing primarily syngas (i.e., H2 and CO) with H2/CO ratios of ~0.6–1 at CH4 fractions ranging from 30% to 45%. Water is the largest byproduct with levels ranging ~7–14% in the exhaust. Carbon particles visibly impact the plasma at higher CH4 fractions (> 30%), where they become heated and incandescent. Particle luminosity increases with increasing CH4 fractions, with the plasma becoming unstable near a 1:1 mixture (i.e., > 45% CH4). Electron microscopy of the carbon material reveals an agglomerated morphology of pure carbon nanoparticles. The mean particle size is determined as ~20 nm, free of any metal contamination, consistent with the electrode-less MW design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001065310000001 Publication Date 2023-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.7 Times cited 6 Open Access OpenAccess  
  Notes We acknowledge financial support by a European Space Agency (ESA) Open Science Innovation Platform study (contract no. 4000137001/21/NL/GLC/ov), the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Program (grant no. 810182; SCOPE ERC Synergy project), the Excellence of Science FWOFNRS PLASyntH2 project (FWO grant no. G0I1822N and EOS no. 4000751) and the Methusalem project of the University of Antwerp Approved Most recent IF: 7.7; 2023 IF: 4.292  
  Call Number PLASMANT @ plasmant @c:irua:198155 Serial 8807  
Permanent link to this record
 

 
Author Xu, W.; Buelens, L.C.; Galvita, V.V.; Bogaerts, A.; Meynen, V. pdf  url
doi  openurl
  Title Improving the performance of gliding arc plasma-catalytic dry reforming via a new post-plasma tubular catalyst bed Type A1 Journal Article
  Year 2024 Publication Journal of CO2 Utilization Abbreviated Journal (down) Journal of CO2 Utilization  
  Volume 83 Issue Pages 102820  
  Keywords A1 Journal Article; Dry reforming Gliding arc plasma Plasma catalytic DRM Ni-based mixed oxide Post-plasma catalysis; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract A combination of a gliding arc plasmatron (GAP) reactor and a newly designed tubular catalyst bed (N-bed) was applied to investigate the post-plasma catalytic (PPC) effect for dry reforming of methane (DRM). As comparison, a traditional plasma catalyst bed (T-bed) was also utilized. The post-plasma catalytic effect of a Ni-based mixed oxide (Ni/MO) catalyst with a thermal catalytic performance of 77% CO2 and 86% CH4 conversion at 700 ℃ was studied. Although applying the T-bed had little effect on plasma based CO2 and CH4 conversion, an increase in selectivity to H2 was obtained with a maximum value of 89% at a distance of 2 cm. However, even when only α-Al2O3 packing material was used in the N-bed configuration, compared to the plasma alone and the T-bed, an increase of the CO2 and CH4 conversion from 53% and 53% to 69% and 69% to 83% was achieved. Addition of the Ni/MO catalyst further enhanced the DRM reaction, resulting in conversions of 79% for CO2 and 91% for

CH4. Hence, although no insulation nor external heating was applied to the N-bed post plasma, it provides a slightly better conversion than the thermal catalytic performance with the same catalyst, while being fully electrically driven. In addition, an enhanced CO selectivity to 96% was obtained and the energy cost was reduced from ~ 6 kJ/L (plasma alone) to 4.3 kJ/L. To our knowledge, it is the first time that a post-plasma catalytic system achieves this excellent catalytic performance for DRM without extra external heating or insulation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-05-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links  
  Impact Factor 7.7 Times cited Open Access  
  Notes Wencong Xu, Vladimir V. Galvita, Annemie Bogaerts, and Vera Meynen would like to acknowledge the VLAIO Catalisti Moonshot project D2M and the VLAIO Catalisti transition project CO2PERATE (HBC.2017.0692). Lukas C. Buelens acknowledges financial support from the Fund for Scientific Research Flanders (FWO Flanders) through a postdoctoral fellowship grant 12E5623N. Vladimir V. Galvita also acknowledges a personal grant from the Research Fund of Ghent University (BOF; 01N16319). Approved Most recent IF: 7.7; 2024 IF: 4.292  
  Call Number PLASMANT @ plasmant @ Serial 9131  
Permanent link to this record
 

 
Author Sebhatu, K.T.; Gezahegn, T.W.; Berhanu, T.; Maertens, M.; Van Passel, S.; D’Haese, M. url  doi
openurl 
  Title Conflict, fraud, and distrust in Ethiopian agricultural cooperatives Type A1 Journal Article
  Year 2020 Publication Journal of Co-operative Organization and Management Abbreviated Journal (down) Journal of Co-operative Organization and Management  
  Volume 8 Issue 1 Pages 100106  
  Keywords A1 Journal Article; Agricultural cooperatives; Cooperative size; Conflict; Fraud; Distrust; Ethiopia; Engineering Management (ENM) ;  
  Abstract Agricultural cooperatives are seen as an efficient way for smallholder farmers to create bargaining power in order to achieve poverty reduction and food security. However, the success of these cooperatives depends on their ability to maintain their social capital, which is at the core of collective action. A few studies have addressed issues of member participation, commitment, and trust, yet less is known about rural cooperatives in developing countries as a social organization. It is also unclear whether a relationship exists between cooperative size and the incidence of conflict, fraud, and distrust. Using unique data collected from 511 agricultural cooperatives in 12 districts of Tigray region in northern Ethiopia, this paper examines the effects of cooperative size on conflict, fraud, and distrust. We used instrumental variables (IV) probit estimation techniques, accounting for endogeneity of membership size, to confirm that cooperative size does affect the occurrence of conflict, fraud, and trust. The results also indicate that other influencing factors include: cooperative age, number of employees, payment of dividends based on transaction volume, and heterogeneity of member goals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000536594400001 Publication Date 2020-04-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2213297X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes The authors would like to thank the office of the twelve districts, facilitators and Cooperative Promotion Agency staff for their collaboration in facilitating the field survey, most of all the chair- and vice-chairpersons of the study Agricultural Cooperatives who had to respond to all our questions with seriousness and patience. Approved Most recent IF: NA  
  Call Number ENM @ enm @c:irua:170073 Serial 6379  
Permanent link to this record
 

 
Author Kelly, S.; Bogaerts, A. pdf  url
doi  openurl
  Title Nitrogen fixation in an electrode-free microwave plasma Type A1 Journal Article
  Year 2021 Publication Joule Abbreviated Journal (down) Joule  
  Volume 5 Issue 11 Pages 3006-3030  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma-based gas conversion has great potential for enabling carbon-free fertilizer production powered by renewable electricity. Sustaining an energy-efficient plasma process without eroding the containment vessel is currently a significant challenge, limiting scaling to higher powers and throughputs. Isolation of the plasma from contact with any solid surfaces is an advantage, which both limits energy loss to the walls and prevents material erosion that could lead to disastrous soil contamination. This paper presents highly energy-efficient nitrogen fixation from air into NOx by microwave plasma, with the plasma filament isolated at the center of a quartz tube using a vortex gas flow. NOx production is found to scale very efficiently when increasing both gas flow rate and absorbed power. The lowest energy cost recorded of ~2 MJ/mol, for a total NOx production of ~3.8%, is the lowest reported up to now for atmospheric pressure plasmas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000723010700018 Publication Date 2021-10-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2542-4351 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes We acknowledge financial support by the European Marie Skłodowska-Curie Individual Fellowship ‘‘PENFIX’’ within Horizon 2020 (grant no. 838181), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 810182 – SCOPE ERC Synergy project), and the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Centre VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. We thank Dr. Waldo Bongers and Dr. Floran Peeters of the DIFFER institute for their help and advice in the initial phase of the project, as well as Mr. Luc van‘t Dack, Dr. Karen Leyssens and Ing. Karel Venken for their technical assistance. We thank Dr. Klaus Werner, executive director of the RF Energy Alliance, for his extensive expertise and helpful discourse regarding solid-state MW technology. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:184250 Serial 6835  
Permanent link to this record
 

 
Author Shveigert, I.V.; Peeters, F.M. doi  openurl
  Title Effect of the size of nanoparticles on the properties of a capacitive high-frequency discharge Type A1 Journal article
  Year 2007 Publication Journal of experimental and theoretical physics letters Abbreviated Journal (down) Jetp Lett+  
  Volume 86 Issue 9 Pages 572-576  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The properties of a capacitive HF discharge with growing nanoparticles are studied with the use of kinetic PIC-MCC simulation. At the initial stage of growth, the nanoparticles are shown to be localized at the interface between the near-electrode layer and quasi-neutral plasma, where the rate of ionization by electron impact has the maximum value. At the beginning of formation of particles, plasma parameters change rapidly and a transition between the capacitive and spatial discharge burning modes is observed for a certain critical size of the particles. If the growth of the dust particles continues, their distribution over the discharge becomes more uniform and the steady-state parameters of the gas-discharge plasma hardly change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000252531900004 Publication Date 2009-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-3640;1090-6487; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.235 Times cited 11 Open Access  
  Notes Approved Most recent IF: 1.235; 2007 IF: 1.378  
  Call Number UA @ lucian @ c:irua:67696 Serial 849  
Permanent link to this record
 

 
Author Tytgat, T.; Hauchecorne, B.; Smits, M.; Verbruggen, S.; Lenaerts, S. doi  openurl
  Title Concept and validation of a fully automated photocatalytic test setup Type A1 Journal article
  Year 2012 Publication Journal of laboratory automation Abbreviated Journal (down) Jala-J Lab Autom  
  Volume 17 Issue 2 Pages 134-143  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Photocatalytic activity can be studied by several methods, each with its own strengths and weaknesses. To study photocatalytic activity in an easy, user-friendly, and realistic way, a completely new setup has been built. The setup is modularly constructed around Fourier transform infrared spectroscopy (FTIR) spectroscopy at the heart of it, resulting in great versatility. Complementary software has been written for automatic control of the setup and for processing the generated data. Two pollutants, oil and n-octane, are tested to validate the performance of the setup. These validation experiments confirm the usefulness and added value of the setup in general and of the FTIR detection methodology as well. It becomes clear that a system of online measurements with good repeatability, accuracy, and user-friendliness has been created.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304775300006 Publication Date 2014-07-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-0682 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.85 Times cited 15 Open Access  
  Notes ; The authors disclosed receipt of the following financial support for the research and/or authorship of this article: This work was supported by a Ph.D. grant (T. Tytgat) funded by the Institute of Innovation by Science and Technology in Flanders (IWT) and by a Ph.D. grant (S. Verbruggen) from the Research Foundation of Flanders (FWO). Other funding was made possible by the University of Antwerp. ; Approved Most recent IF: 2.85; 2012 IF: 1.457  
  Call Number UA @ admin @ c:irua:96649 Serial 5935  
Permanent link to this record
 

 
Author Zheng, J.; Zhang, H.; Lv, J.; Zhang, M.; Wan, J.; Gerrits, N.; Wu, A.; Lan, B.; Wang, W.; Wang, S.; Tu, X.; Bogaerts, A.; Li, X. url  doi
openurl 
  Title Enhanced NH3Synthesis from Air in a Plasma Tandem-Electrocatalysis System Using Plasma-Engraved N-Doped Defective MoS2 Type A1 Journal Article
  Year 2023 Publication JACS Au Abbreviated Journal (down) JACS Au  
  Volume 3 Issue 5 Pages 1328-1336  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract We have developed a sustainable method to produce NH3 directly from air using a plasma tandem-electrocatalysis system that operates via the N2−NOx−NH3 pathway. To efficiently reduce NO2− to NH3, we propose a novel electrocatalyst consisting of defective N-doped molybdenum sulfide nanosheets on vertical graphene arrays (N-MoS2/VGs). We used a plasma engraving process to form the metallic 1T phase, N doping, and S vacancies in the electrocatalyst simultaneously. Our system exhibited a remarkable NH3 production rate of 7.3 mg h−1 cm−2 at −0.53 V vs RHE, which is almost 100 times higher than the state-of-the-art electrochemical nitrogen reduction reaction and more than double that of other hybrid systems. Moreover, a low energy consumption of only 2.4 MJ molNH3−1 was achieved in this study. Density functional theory calculations revealed that S vacancies and doped N atoms play a dominant role in the selective reduction of NO2− to NH3. This study opens up new avenues for efficient NH3 production using cascade systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000981779300001 Publication Date 2023-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2691-3704 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (51976191, 5227060056, 52276214) and the National Key Technologies R&D Program of China (2018YFE0117300). N.G. was financially supported through an NWO Rubicon Grant (019.202EN.012). X.T. acknowl- edges the support of the Engineering and Physical Sciences Research Council (EP/X002713/1). Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:196761 Serial 8792  
Permanent link to this record
 

 
Author De Backer, A.; van den Bos, K.H.W.; Van den Broek, W.; Sijbers, J.; Van Aert, S. pdf  url
doi  openurl
  Title StatSTEM: An efficient program for accurate and precise model-based quantification of atomic resolution electron microscopy images Type P1 Proceeding
  Year 2017 Publication Journal of physics : conference series T2 – Electron Microscopy and Analysis Group Conference 2017 (EMAG2017), 3-6 July 2017, Manchester, UK Abbreviated Journal (down) J. Phys.: Conf. Ser.  
  Volume 902 Issue Pages 012013  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract An efficient model-based estimation algorithm is introduced in order to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for the overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, is investigated. The highest attainable precision is reached even for low dose images. Furthermore, advantages of the model- based approach taking into account overlap between neighbouring columns are highlighted. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000416370700013 Publication Date 2017-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access OpenAccess  
  Notes The authors acknowledge nancial support from the Research Foundation Flanders (FWO, Belgium) through project funding (G.0374.13N, G.0368.15N, G.0369.15N, WO.010.16N) and a PhD research grant to K H W van den Bos, and a postdoctoral research grant to A De Backer. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). A Rosenauer is acknowledged for providing the STEMsim program. Approved Most recent IF: NA  
  Call Number EMAT @ emat @c:irua:147188 Serial 4764  
Permanent link to this record
 

 
Author Heirman, P.; Verloy, R.; Baroen, J.; Privat-Maldonado, A.; Smits, E.; Bogaerts, A. pdf  url
doi  openurl
  Title Liquid treatment with a plasma jet surrounded by a gas shield: effect of the treated substrate and gas shield geometry on the plasma effluent conditions Type A1 Journal article
  Year 2024 Publication Journal of physics: D: applied physics Abbreviated Journal (down) J. Phys. D: Appl. Phys.  
  Volume 57 Issue 11 Pages 115204  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract The treatment of a well plate by an atmospheric pressure plasma jet is common for<italic>in vitro</italic>plasma medicine research. Here, reactive species are largely produced through the mixing of the jet effluent with the surrounding atmosphere. This mixing can be influenced not only by the ambient conditions, but also by the geometry of the treated well. To limit this influence and control the atmosphere, a shielding gas is sometimes applied. However, the interplay between the gas shield and the well geometry has not been investigated. In this work, we developed a 2D-axisymmetric computational fluid dynamics model of the kINPen plasma jet, to study the mixing of the jet effluent with the surrounding atmosphere, with and without gas shield. Our computational and experimental results show that the choice of well type can have a significant influence on the effluent conditions, as well as on the effectiveness of the gas shield. Furthermore, the geometry of the shielding gas device can substantially influence the mixing as well. Our results provide a deeper understanding of how the choice of setup geometry can influence the plasma treatment, even when all other operating parameters are unchanged.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001127372200001 Publication Date 2024-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access Not_Open_Access  
  Notes Fund for Scientific Research Flanders, 1100421N ; Approved Most recent IF: 3.4; 2024 IF: 2.588  
  Call Number PLASMANT @ plasmant @c:irua:201999 Serial 8977  
Permanent link to this record
 

 
Author Gerrits, N.; Jackson, B.; Bogaerts, A. file  url
doi  openurl
  Title Accurate Reaction Probabilities for Translational Energies on Both Sides of the Barrier of Dissociative Chemisorption on Metal Surfaces Type A1 Journal Article
  Year 2024 Publication The Journal of Physical Chemistry Letters Abbreviated Journal (down) J. Phys. Chem. Lett.  
  Volume 15 Issue 9 Pages 2566-2572  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Molecular dynamics simulations are essential for a better understanding of dissociative chemisorption on metal surfaces, which is often the rate-controlling step in heterogeneous and plasma catalysis. The workhorse quasi-classical trajectory approach ubiquitous in molecular dynamics is able to accurately predict reactivity only for high translational and low vibrational energies. In contrast, catalytically relevant conditions generally involve low translational and elevated vibrational energies. Existing quantum dynamics approaches are intractable or approximate as a result of the large number of degrees of freedom present in molecule−metal surface reactions. Here, we extend a ring polymer molecular dynamics approach to fully include, for the first time, the degrees of freedom of a moving metal surface. With this approach, experimental sticking probabilities for the dissociative chemisorption of methane on Pt(111) are reproduced for a large range of translational and vibrational energies by including nuclear quantum effects and employing full-dimensional simulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001177959900001 Publication Date 2024-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 5.7 Times cited Open Access  
  Notes Nick Gerrits has been financially supported through a Dutch Research Council (NWO) Rubicon grant (019.202EN.012). The computational resources and services used in this work were provided by the high performance computing (HPC) core facility CalcUA of the Universiteit Antwerpen and the Flemish Supercomputer Center (VSC) funded by the Research Foundation−Flanders (FWO) and the Flemish Government. The authors thank Mark Somers for useful discussions. Approved Most recent IF: 5.7; 2024 IF: 9.353  
  Call Number PLASMANT @ plasmant @c:irua:204818 Serial 9114  
Permanent link to this record
 

 
Author Teunissen, J.L.; Braeckevelt, T.; Skvortsova, I.; Guo, J.; Pradhan, B.; Debroye, E.; Roeffaers, M.B.J.; Hofkens, J.; Van Aert, S.; Bals, S.; Rogge, S.M.J.; Van Speybroeck, V. pdf  url
doi  openurl
  Title Additivity of Atomic Strain Fields as a Tool to Strain-Engineering Phase-Stabilized CsPbI3Perovskites Type A1 Journal Article
  Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal (down) J. Phys. Chem. C  
  Volume 127 Issue 48 Pages 23400-23411  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract CsPbI3 is a promising perovskite material for photovoltaic applications in its photoactive perovskite or black phase. However, the material degrades to a photovoltaically inactive or yellow phase at room temperature. Various mitigation strategies are currently being developed to increase the lifetime of the black phase, many of which rely on inducing strains in the material that hinder the black-to-yellow phase transition. Physical insight into how these strategies exactly induce strain as well as knowledge of the spatial extent over which these strains impact the material is crucial to optimize these approaches but is still lacking. Herein, we combine machine learning potential-based molecular dynamics simulations with our in silico strain engineering approach to accurately quantify strained large-scale atomic structures on a nanosecond time scale. To this end, we first model the strain fields introduced by atomic substitutions as they form the most elementary strain sources. We demonstrate that the magnitude of the induced strain fields decays exponentially with the distance from the strain source, following a decay rate that is largely independent of the specific substitution. Second, we show that the total strain field induced by multiple strain sources can be predicted to an excellent approximation by summing the strain fields of each individual source. Finally, through a case study, we illustrate how this additive character allows us to explain how complex strain fields, induced by spatially extended strain sources, can be predicted by adequately combining the strain fields caused by local strain sources. Hence, the strain additivity proposed here can be adopted to further our insight into the complex strain behavior in perovskites and to design strain from the atomic level onward to enhance their sought-after phase stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001116862000001 Publication Date 2023-12-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes This work was supported by iBOF-21-085 PERsist (Special Research Fund of Ghent University, KU Leuven Research Fund, and the Research Fund of the University of Antwerp). S.M.J.R., T.B., and B.P. acknowledge financial support from the Research Foundation-Flanders (FWO) through two postdoctoral fellow- ships [grant nos. 12T3522N (S.M.J.R.) and 1275521N (B.P.)] and an SB-FWO fellowship [grant no. 1SC1319 (T.B.)]. E.D., M.B.J.R., and J.H. acknowledge financial support from the Research Foundation-Flanders (FWO, grant nos. G.0B39.15, G.0B49.15, G098319N, S002019N, S004322N, and ZW15_09- GOH6316). J.H. acknowledges support from the Flemish government through long-term structural funding Methusalem (CASAS2, Meth/15/04) and the MPI as an MPI fellow. S.V.A. and S.B. acknowledge financial support from the Research Foundation-Flanders (FWO, grant no. G0A7723N). S.M.J.R. and V.V.S. acknowledge funding from the Research Board of Ghent University (BOF). The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation- Flanders (FWO) and the Flemish Government�department EWI.; KU Leuven, iBOF-21-085 PERsist ; Universiteit Antwerpen, iBOF-21-085 PERsist ; Universiteit Gent, iBOF-21-085 PERsist ; Vlaamse regering, CASAS2, Meth/15/04 ; Fonds Wetenschappelijk Onderzoek, G.0B39.15 G098319N G.0B49.15 1SC1319 12T3522N ZW15 09-GOH6316 G0A7723N 1275521N S004322N S002019N ; Approved Most recent IF: 3.7; 2023 IF: 4.536  
  Call Number EMAT @ emat @c:irua:202124 Serial 8985  
Permanent link to this record
 

 
Author Delfino, C.L.; Hao, Y.; Martin, C.; Minoia, A.; Gopi, E.; Mali, K.S.; Van der Auweraer, M.; Geerts, Y.H.; Van Aert, S.; Lazzaroni, R.; De Feyter, S. pdf  url
doi  openurl
  Title Conformation-Dependent Monolayer and Bilayer Structures of an Alkylated TTF Derivative Revealed using STM and Molecular Modeling Type A1 Journal Article
  Year 2023 Publication The Journal of Physical Chemistry C Abbreviated Journal (down) J. Phys. Chem. C  
  Volume 127 Issue 47 Pages 23023-23033  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract In this study, the multi-layer self-assembled molecular network formation of an alkylated tetrathiafulvalene compound is studied at the liquid-solid interface between 1-phenyloctane and graphite. A combined theoretical/experimental approach associating force-field and quantum-chemical calculations with scanning tunnelling microscopy is used to determine the two-dimensional self-assembly beyond the monolayer, but also to further the understanding of the molecular adsorption conformation and its impact on the molecular packing within the assemblies at the monolayer and bilayer level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001111637100001 Publication Date 2023-11-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access OpenAccess  
  Notes Financial support from the Research Foundation-Flanders (FWO G081518N, G0A3220N) and KU Leuven–Internal Funds (C14/19/079) is acknowledged. This work was in part supported by FWO and F. R. S.-FNRS under the Excellence of Science EOS program (project 30489208 and 40007495). C.M. acknowledges the financial support: Grants PID2021-128761OA-C22 and CNS2022-136052 funded by MCIN/AEI/10.13039/501100011033 by the “European Union” and SBPLY/21/180501/000127 funded by JCCM and by the EU through “Fondo Europeo de Desarollo Regional” (FEDER). Research in Mons is also supported by the Belgian National Fund for Scientific Research (FRS-FNRS) within the Consortium des Équipements de Calcul Intensif – CÉCI, under Grant 2.5020.11, and by the Walloon Region (ZENOBE Tier-1 supercomputer, under grant 1117545). Approved Most recent IF: 3.7; 2023 IF: 4.536  
  Call Number EMAT @ emat @c:irua:201671 Serial 8974  
Permanent link to this record
 

 
Author Gorle, C.; Garcia Sánchez, C.; Iaccarino, G. pdf  doi
openurl 
  Title Quantifying inflow and RANS turbulence model form uncertainties for wind engineering flows Type A1 Journal article
  Year 2015 Publication Journal of wind engineering and industrial aerodynamics T2 – 6th International Symposium on Computational Wind Engineering (CWE), JUN 08-12, 2014, Hamburg, GERMANY Abbreviated Journal (down) J Wind Eng Ind Aerod  
  Volume 144 Issue 144 Pages 202-212  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reynolds-averaged Navier-Stokes (RANS) simulations are often used in the wind engineering practice for the analysis of turbulent bluff body flows. An approach that allows identifying the uncertainty related to the use of reduced-order turbulence models in RANS simulations would significantly increase the confidence in the use of simulation results as a basis for design decisions. In the present study we apply a strategy that enables quantifying these uncertainties by introducing perturbations in the Reynolds stress tensor to simulations of the flow in downtown Oklahoma City. The method is combined with a framework to quantify uncertainties in the inflow wind direction and intensity, and the final result of the UQ approach is compared to field measurement data for the velocity at 13 locations in the downtown area. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication Amsterdam Editor  
  Language Wos 000360874900023 Publication Date 2015-08-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-6105 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.049 Times cited 22 Open Access  
  Notes Approved Most recent IF: 2.049; 2015 IF: 1.414  
  Call Number UA @ lucian @ c:irua:127843 Serial 4230  
Permanent link to this record
 

 
Author Longo, R.; Ferrarotti, M.; Garcia Sánchez, C.; Derudi, M.; Parente, A. pdf  doi
openurl 
  Title Advanced turbulence models and boundary conditions for flows around different configurations of ground-mounted buildings Type A1 Journal article
  Year 2017 Publication Journal of wind engineering and industrial aerodynamics Abbreviated Journal (down) J Wind Eng Ind Aerod  
  Volume 167 Issue Pages 160-182  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract When dealing with Atmospheric Boundary Layer (ABL) simulations, commercial computational fluid dynamics (CFD) acquires a strategic resonance. Thanks to its good compromise between accuracy of results and calculation time, RANS still represents a valid alternative to more resource-demanding methods. However, focusing on the models' performances in urban studies, LES generally outmatches RANS results, even if the former is at least one order of magnitude more expensive. Consequently, the present work aims to propose a variety of approaches meant to solve some of the major problems linked to RANS simulations and to further improve its accuracy in typical urban contexts. All of these models are capable of switching from an undisturbed flux formulation to a disturbed one through a local deviation or a marker function. For undisturbed flows, a comprehensive approach is adopted, solving the issue of the erroneous stream-wise gradients affecting the turbulent profiles. Around obstacles, Non-Linear Eddy-Viscosity closures are adopted, due to their prominent capability in capturing the anisotropy of turbulence. The purpose of this work is then to propose a new Building Influence Area concept and to offer more affordable alternatives to LES simulations without sacrificing a good grade of accuracy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000405766600013 Publication Date 2017-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-6105 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.049 Times cited 9 Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: 2.049  
  Call Number UA @ lucian @ c:irua:145191 Serial 4713  
Permanent link to this record
 

 
Author Blommaert, W.; Vandelannoote, R.; Sadurski, A.; Van 't dack, L.; Gijbels, R. pdf  doi
openurl 
  Title Trace-element geochemistry of thermal water percolating through a karstic environment in the region of Saint Ghislain (Belgium) Type A1 Journal article
  Year 1983 Publication Journal of volcanology and geothermal research Abbreviated Journal (down) J Volcanol Geoth Res  
  Volume 19 Issue 3/4 Pages 331-348  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Five geothermal waters from the Mons area (southern Belgium) have been studied: one natural hot spring at Stambruges, one stagnant warm water from the inclined tunnels at Baudour, and three thermal waters from the drillholes at St. Ghislain, Ghlin and Douvrain, originating from the carbonate/anhydrite-bearing Visean strata, at depths of ca. 2600, 1550 and 1300 m, respectively. Multielement chemical analysis of the filtered water and its suspended matter > 0.4 μm) was carried out by instrumental neutron activation. Temperature in depth, calculated using the silica (chalcedony) chemical geothermometer, ranged from 75 to 88°C, in good agreement with experimentally determined values. Na/K and Na/K/Ca geothermometers yieilded erratic results, as expected from the geological environment in the aquifer. From the analytical data it can be calculated that the thermal waters of St. Ghislain, Ghlin and Douvrain are not only saturated with respect to chalcedony, but also to anhydrite, calcite, fluorite, barite, strontianite, and possibly zinc silicate, iron (III) hydroxide or siderite, albite, microcline, gibbsite and kaolinite. They are oversaturated with respect to muscovite. Data are also presented for the other thermal waters, and a cold spring water (Claire Fontaine, Stambruges). The similar trace-element composition of the thermal waters can be explained by percolation of the water in the same distant recharge zone, from where it descends, becomes heated at depth and rises along collapse breccia, and locally (Baudour, Stambruges) along fissures. The uptake of higher amounts of Ca, Mg, Sr and sulfate in St. Ghislain and Ghlin, as compared to Douvrain and Baudour is correlated with the boundary between the non-dissolved and dissolved evaporitic zones. This boundary is situated between St. Ghislain and Douvrain, and is roughly parallel with the direction of the groundwater flow (WNW).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1983RY57700008 Publication Date 2003-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0377-0273; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.543 Times cited 2 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:111444 Serial 3694  
Permanent link to this record
 

 
Author Dubourdieu, C.; Rauwel, E.; Roussel, H.; Ducroquet, F.; Hollaender, B.; Rossell, M.; Van Tendeloo, G.; Lhostis, S.; Rushworth, S. pdf  doi
openurl 
  Title Addition of yttrium into HfO2 films: microstructure and electrical properties Type A1 Journal article
  Year 2009 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal (down) J Vac Sci Technol A  
  Volume 27 Issue 3 Pages 503-514  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The cubic phase of HfO2 was stabilized by addition of yttrium in thin films grown on Si/SiO2 by metal-organic chemical vapor deposition. The cubic phase was obtained for contents of 6.5 at. % Y or higher at a temperature as low as 470 °C. The complete compositional range (from 1.5 to 99.5 at. % Y) was investigated. The crystalline structure of HfO2 was determined from x-ray diffraction, electron diffraction, and attenuated total-reflection infrared spectroscopy. For cubic films, the continuous increase in the lattice parameter indicates the formation of a solid-solution HfO2Y2O3. As shown by x-ray photoelectron spectroscopy, yttrium silicate is formed at the interface with silicon; the interfacial layer thickness increases with increasing yttrium content and increasing film thickness. The dependence of the intrinsic relative permittivity r as a function of Y content was determined. It exhibits a maximum of ~30 for ~8.8 at. % Y. The cubic phase is stable upon postdeposition high-temperature annealing at 900 °C under NH3.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000265739100016 Publication Date 2009-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 29 Open Access  
  Notes Approved Most recent IF: 1.374; 2009 IF: 1.297  
  Call Number UA @ lucian @ c:irua:77054 Serial 58  
Permanent link to this record
 

 
Author Mihailescu, I.N.; Gyorgy, E.; Marin, G.; Popescu, M.; Teodorescu, V.S.; van Landuyt, J.; Grivas, C.; Hatziapostolou, A. pdf  doi
openurl 
  Title Crystalline structure of very hard tungsten carbide thin films obtained by reactive pulsed laser deposition Type A1 Journal article
  Year 1999 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal (down) J Vac Sci Technol A  
  Volume 17 Issue 1 Pages 249-255  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000078136300038 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 8 Open Access  
  Notes Approved Most recent IF: 1.374; 1999 IF: 1.742  
  Call Number UA @ lucian @ c:irua:29689 Serial 581  
Permanent link to this record
 

 
Author Liu, Y.-X.; Zhang, Y.-R.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Electromagnetic effects in high-frequency large-area capacitive discharges : a review Type A1 Journal article
  Year 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal (down) J Vac Sci Technol A  
  Volume 33 Issue 33 Pages 020801  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In traditional capacitively coupled plasmas, the discharge can be described by an electrostatic model, in which the Poisson equation is employed to determine the electrostatic electric field. However, current plasma reactors are much larger and driven at a much higher frequency. If the excitation wavelength k in the plasma becomes comparable to the electrode radius, and the plasma skin depth d becomes comparable to the electrode spacing, the electromagnetic (EM) effects will become significant and compromise the plasma uniformity. In this regime, capacitive discharges have to be described by an EM model, i.e., the full set of Maxwells equations should be solved to address the EM effects. This paper gives an overview of the theory, simulation and experiments that have recently been carried out to understand these effects, which cause major uniformity problems in plasma processing for microelectronics and flat panel display industries. Furthermore, some methods for improving the plasma uniformity are also described and compared.  
  Address  
  Corporate Author Thesis  
  Publisher A v s amer inst physics Place of Publication Melville Editor  
  Language Wos 000355739500007 Publication Date 2015-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 10 Open Access  
  Notes Approved Most recent IF: 1.374; 2015 IF: 2.322  
  Call Number c:irua:123541 Serial 903  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Gao, F.; Li, X.-C.; Bogaerts, A.; Wang, Y.-N. url  doi
openurl 
  Title Fluid simulation of the bias effect in inductive/capacitive discharges Type A1 Journal article
  Year 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal (down) J Vac Sci Technol A  
  Volume 33 Issue 33 Pages 061303  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Computer simulations are performed for an argon inductively coupled plasma (ICP) with a capacitive radio-frequency bias power, to investigate the bias effect on the discharge mode transition and on the plasma characteristics at various ICP currents, bias voltages, and bias frequencies. When the bias frequency is fixed at 13.56 MHz and the ICP current is low, e.g., 6A, the spatiotemporal averaged plasma density increases monotonically with bias voltage, and the bias effect is already prominent at a bias voltage of 90 V. The maximum of the ionization rate moves toward the bottom electrode, which indicates clearly the discharge mode transition in inductive/capacitive discharges. At higher ICP currents, i.e., 11 and 13 A, the plasma density decreases first and then increases with bias voltage, due to the competing mechanisms between the ion acceleration power dissipation and the capacitive power deposition. At 11 A, the bias effect is still important, but it is noticeable only at higher bias voltages. At 13 A, the ionization rate is characterized by a maximum at the reactor center near the dielectric window at all selected bias voltages, which indicates that the ICP power, instead of the bias power, plays a dominant role under this condition, and no mode transition is observed. Indeed, the ratio of the bias power to the total power is lower than 0.4 over a wide range of bias voltages, i.e., 0300V. Besides the effect of ICP current, also the effect of various bias frequencies is investigated. It is found that the modulation of the bias power to the spatiotemporal distributions of the ionization rate at 2MHz is strikingly different from the behavior observed at higher bias frequencies. Furthermore, the minimum of the plasma density appears at different bias voltages, i.e., 120V at 2MHz and 90V at 27.12 MHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000365503800020 Publication Date 2015-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 9 Open Access  
  Notes Approved Most recent IF: 1.374; 2015 IF: 2.322  
  Call Number c:irua:126824 Serial 1229  
Permanent link to this record
 

 
Author Bogaerts, A.; Naylor, J.; Hatcher, M.; Jones, W.J.; Mason, R. doi  openurl
  Title Influence of sticking coefficients on the behavior of sputtered atoms in an argon glow discharge: modeling and comparison with experiment Type A1 Journal article
  Year 1998 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal (down) J Vac Sci Technol A  
  Volume 16 Issue 4 Pages 2400-2410  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000074852700061 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 12 Open Access  
  Notes Approved Most recent IF: 1.374; 1998 IF: 1.612  
  Call Number UA @ lucian @ c:irua:24124 Serial 1634  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Tinck, S.; De Schepper, P.; Wang, Y.-N.; Bogaerts, A. url  doi
openurl 
  Title Modeling and experimental investigation of the plasma uniformity in CF4/O2 capacitively coupled plasmas, operating in single frequency and dual frequency regime Type A1 Journal article
  Year 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal (down) J Vac Sci Technol A  
  Volume 33 Issue 33 Pages 021310  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional hybrid Monte Carlofluid model, incorporating a full-wave solution of Maxwell's equations, is employed to describe the behavior of high frequency (HF) and very high frequency capacitively coupled plasmas (CCPs), operating both at single frequency (SF) and dual frequency (DF) in a CF4/O2 gas mixture. First, the authors investigate the plasma composition, and the simulations reveal that besides CF4 and O2, also COF2, CF3, and CO2 are important neutral species, and CF+3 and F− are the most important positive and negative ions. Second, by comparing the results of the model with and without taking into account the electromagnetic effects for a SF CCP, it is clear that the electromagnetic effects are important, both at 27 and 60 MHz, because they affect the absolute values of the calculation results and also (to some extent) the spatial profiles, which accordingly affects the uniformity in plasma processing. In order to improve the plasma radial uniformity, which is important for the etch process, a low frequency (LF) source is added to the discharge. Therefore, in the major part of the paper, the plasma uniformity is investigated for both SF and DF CCPs, operating at a HF of 27 and 60 MHz and a LF of 2 MHz. For this purpose, the authors measure the etch rates as a function of position on the wafer in a wide range of LF powers, and the authors compare them with the calculated fluxes toward the wafer of the plasma species playing a role in the etch process, to explain the trends in the measured etch rate profiles. It is found that at a HF of 60 MHz, the uniformity of the etch rate is effectively improved by adding a LF power of 2 MHz and 300 W, while its absolute value increases by about 50%, thus a high etch rate with a uniform distribution is observed under this condition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000355739500026 Publication Date 2015-01-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.374; 2015 IF: 2.322  
  Call Number c:irua:122650 Serial 2107  
Permanent link to this record
 

 
Author Depla, D.; Chen, Z.Y.; Bogaerts, A.; Ignatova, V.; de Gryse, R.; Gijbels, R. doi  openurl
  Title Modeling of the target surface modification by reactive ion implantation during magnetron sputtering Type A1 Journal article
  Year 2004 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal (down) J Vac Sci Technol A  
  Volume 22 Issue 4 Pages 1524-1529  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000223322000075 Publication Date 2004-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0734-2101; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.374 Times cited 13 Open Access  
  Notes Approved Most recent IF: 1.374; 2004 IF: 1.557  
  Call Number UA @ lucian @ c:irua:47331 Serial 2137  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: